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1. F irs t-O rd er E llip tic  System s

In a domain D C C o n  the plane, let us consider the first-order elliptic system

A dU A dU
^ 17^ + ^ 2^  =  0 1

ox  oy

having constant coefficients Ai e  C lx l. The ellipticity condition means that detA j /  0, i =  1 , 2, and 
the characteristic equation det(A i +  A 2Z) =  0 has no real roots. It is well known that solutions 
U =  ( U \ , , Ui) of this system are real-analytic in the domain D.

Let the boundary T =  dD  of the domain be a piecewise-Lyapunov contour, i.e., its connected 
components are homeomorphic to the circle and admit a representation in the form of the union of 
finitely many Lyapunov arcs that can pairwise intersect only along their endpoints. Recall that an 
arc is Lyapunov if it admits a smooth parametrization of class C 1,M with a certain 0 <  /x <  1. Choose 
a sequence of contours Tra C D, n =  1,2. . . ,  converging to T in the following sense. There exists a 
homeomorphic mapping an : T —> Tra with piecewise-continuous derivative a'n such that an(t ) — t —> 0 
as n —> 00 with respect to the sup-norm and the derivatives oln are uniformly bounded.

We introduce the Hardy space H P(D ),  1 <  p <  00, of solutions of the elliptic system by the finiteness 
conditions of the norm

\U\ =  sup|f/|LP(rn). (2)
n

Here, the domain D  can be finite, as well as infinite, and, in the latter case, the solutions u of system
(1) are assumed to be bounded at infinity. The L p norm of a function U (t )  on Tra is understood with
respect to the numerical function \U(t)\, where | • | denotes a certain fixed norm in M.1. The definition
of H p can also be considered for p =  1, but we exclude this case in what follows.

For analytic functions, this definition generalizes the classical Hardy class over the unit disk and 
is due to V. I. Smirnov, M. A. Lavrent’ev, and M. V. Keldysh [3]. The notation E P( D ) is also used 
for it.



Systems (1) of the particular form

dA _ j dA  =  o (3)
dy dx U

where the spectrum a (J )  of the matrix J  £ C lxl lies in the upper half-plane, are of especial inter­
est. System (3) is a natural generalization of the Cauchy-Riemann system and was introduced by 
A. Douglis [2]. The main properties of analytic functions admit a generalization [6] to solutions of 
this system; for this reason, they are called hyperanalytic functions or Douglis analytic functions (in 
short, J-analytic functions).

In the general case, the solutions of system (1) can be uniquely expressed through the solutions of 
(3). Indeed, there exist a block-diagonal matrix J  =  diag(Ji, J 2), where J& e C lkXlk and cr(Jfc) C 
{ Im z  >  0 }, and an invertible matrix B  e  C lxl such that A\B  +  A 2B J  =  0. In accordance with this, 
we have the representation U =  B(f), (f> =  of a solution of system (1) through J^-analytic
functions 4>k- This fact allows us to perform all the consideration for system (3) in what follows.

If a J-analytic function <fi is continuous in a closed domain D  =  D  UT, then the Cauchy formula [6]

24> ( z )  =  —  f ( t -  z ) ~ j l d t j ( f > + { t ) ,  t  G D ,  ( 4)
m  J 

r

holds, where we have accepted the notation (x \ + ix 2) j  =  X1 I + X 2 J, Xj e  M; the writing (d x i+ id xz ) j  =  
(dx i ) l  +  (dx2)J  for the matrix differential has an analogous meaning, and the contour T =  dD  is 
positively oriented with respect to D. Replacing the boundary value (f)+ by an arbitrary density (p in 
it, we obtain a generalized integral of Cauchy type denoted by ( I<p)(z).

The definition of the Hardy spaces naturally extends to the weighted case. Let F  be a finite subsets 
of points r  G T. Starting from the family A =  (Ar , r  e  F )  of real numbers (weighted order), we 
denote by C \ (T ,F )  the class of functions continuous in T \ F  and having the behavior 0 ( l )\ t  — t \Xt  

as t —► t. A  scalar-valued function p £ C\ is said to be weighted (of order A) if it does not vanish and 
p~l G C —\. The dependence on A is shown by the notation p =  p\.

In a similar way, we define weight functions in the domain D  with respect to the corresponding class 
C\ =  C \ (D ,F ) .  In this case, the J-analytic I x /-matrix weight functions R (z )  =  R\(z) satisfying 
system (3) and subject to the additional condition R (z )J  =  J R (z ) ,  z e  D, are of main interest. The 
latter condition means that the operation <fi —> Ref) of multiplication by a weight function preserves 
the J-analytic vector-valued functions (f). The weight functions R\(z) indicated always exist. For 
example, if the domain D  is finite and T is a simple contour, then we can set

=  Y \ ( z - t ) x/ .
reF

Here, in notation (4), the factor

(z -  t ) j  =  exp [a In (z -  r )  j\

is understood in the sense of a function of matrices starting from a branch of the logarithm ln(z — r ) 
continuous in D.

Now let introduce the weighted Banach space L PX(T , F )  over the boundary T =  dD  such that 
L px =  L p for A =  —1 /p and the weighted transformation ip —> puip is an isomorphism of L p onto 
L p , , . Note that the class
v-l/p

CA+0( r , F )  =  (JC 'a+o
£>0

is contained and dense in L PJ T , F ) .



In a similar way, we define the space L PX{ D , F )  over the domain D  with respect to the condition 
L px =  LP for A =  —2/p. In exactly the same way, we define the family of weighted Hardy spaces 
H P{D, F ) with respect to the condition H p =  H p for A =  — 1/p and the weighted transformation <fi —> 
R v(j). Obviously, for A =  0, the space FP0 over T and over D  is the L p-space of measure d/j, =  p -i{ t )ds , 
i  G T and, respectively, of measure d/j, =  p - 2 {z)dxdy, z =  x +  iy G D.

The following theorem unites the main properties of the Hardy spaces.

T h eo rem  1. (a) Let (f) G H P(D )  be a solution of system (1). Then almost everywhere, there exist 
angular limit values 4>+ {t), which defines the function (f)x <E L PX(T ). The space H P(D )  is Banach, the 
norm \(f)\ =  \(f)+ \ i s  equivalent to (2), and the dense continuous embeddings

Cx+ o (D ,F )  C H P{ D , F )  C L PX( D , F )

hold.
(b) I f  <f) G H P{D ), then the restriction of (f) to each subdomain Do C D  bounded by a piecewise- 

Lyapunov contour belongs to H p{Do). Conversely, let subdomains D i , ... ,D m of this type be pairwise 
disjoint, and let D\ U • • • U D m =  D. Then i f  a solution (f) o f system (1) in the domain D  belongs 
to H p(D j ) ,  j  =  1 ,. . .  ,m , it follows that (f) G H P{D );  moreover, the norm in H P(D )  is equivalent to 

\4>\ =  S  101 H^(Dj)-
3

(c) The Cauchy-type integral I  if defines a bounded linear operator

L PX(T , F )  -+ H PX{ D ,F ) ,  —1 <  A <  1, 

and fo r  almost all to G T, the Sokhotskii-Plemejl formula

( I<~p)+ (to) =  <~p(t0) +  —  j  i t -  to ^ d t jL p i t ) ,
7Tl J

r

holds, where the integral is singular and is understood in the Cauchy principal value sense.

The classes Ca+o and L PX{D )  in assertion (b) of the theorem are considered with respect to J-analytic 
functions. In particular, it follows from (a) and (b) that the space H p is independent of the sequence 
Tra in (2) and can be defined as the completion of the class Ca+o with respect to the norm \<fi\ =  10+1 LI- 
For the usual analytic functions, this scheme was realized in [7]. Under more general assumptions on 
the boundary of the domain D  and weights, these spaces were studied in [16] for analytic functions. 
Also, Theorem 1(b) allows us to naturally extend the definition of H P{D )  to domains D  with arbitrary 
piecewise-Lyapunov boundary. Assertion (c) of the theorem is used as a base for proving (a) and (b) 
and is proved completely analogously to [12].

An analog of the N. I. Muskhelishvili theorem on the representation of <fi by the integral lip with a 
real vector-valued function tp proved in [6] in the Holder classes is also preserved for the Hardy classes.

Recall [5] that a bounded operator N  : X  —> Y  acting between Banach spaces X  and Y  is said 
to be Fredholm if its kernel ker N  is finite-dimensional, the image ImJV is closed, and there exists a 
finite-dimensional subspace Yo C Y  such that Y  =  Yo © ImiV.  This subspace is conveniently called 
the co-image of the operator N  and is denoted by kolm N  =  Y  0  Im iV, although it is defined by N  
non-uniquely. The difference ind N  between the dimensions of the kernel and co-image is called the 
index of operator N .

T h eo rem  2. (a) Let the domain D  be bounded by a Lyapunov contour Y. Then the operator

I - . L PX{ T , F ) ^ H PX{ D ,F ) ,  —1 <  A <  0,



is Fredholm, and its index is equal to l{s — 2), where s is the number of connected components of the 
contour. Moreover, its kernel satisfies

ker/ C C +0( r )  =  (J  C^(T ),
/ i> 0

and there exists a co-image kolm/ C C +0(D ).
(b) Let the matrix J  be triangular, let the domain D  be bounded by a piecewise-Lyapunov contour 

T without cusp points, and let the set F  contain all corner points of the contour. Then the operator

I  : L P(T, F ) H P(D , F ) ,  -1/2 <  A <  0,

is Fredholm, and its index is equal to l(s — 2). Moreover, the elements of the kernel are constant 
on connected components of T, and it is possible to choose the co-image whose elements are constant 
in D.

More precisely, in assertion (b), the kernel and the co-image of the operator / are described as 
follows. If the domain D  is infinite, then ker / consists of all locally constant functions, and we can 
set kolm / =  C l . I f  the domain D  is finite, then ker / consists of all locally constant functions equal 
to zero on the exterior component of the contour T and kolm / =  { i (  \ £ e  M^}. Here, by the exterior 
component we understood the connected component T inside which the domain D  is contained.

Another approach based on the arguments of homogeneity with respect to dilatations is also possible 
for the definition of weighted spaces. Let F  consist of one point, which we assume to be the origin for 
convenience. Let us cover T by smooth curves T i, T 2, . .. so that

fn  =  2nTn C {1/2 <  \t\ <  2 } 

for sufficiently large n. Then with a function tp e  L PX(T, 0), we can associate the sequence of functions

i /p

J , — *  l^ralLP(rn)-
' n '

An analogous fact holds for the weighted Hardy space.

T h eo rem  3. Let D  be represented in the form of the union of domains D\, D 2 , . . .  fo r  which

D n =  2nD n C {1/2 <  \z\ <  2}

fo r  sufficiently large n, and let the boundaries dD n converge to a certain contour T in the same sense 
as in (2). Then fo r  (f) e  H p(D ,0 ) ,  the functions satisfies <pn(z) =  <p(2~nz) e  H pD n), and the space 
H P(D , 0) can be described by using the equivalent norm

H  =  ( E l ^ n  > &> =  2~nX\k\HP{Dny  (6)
 ̂ n '

We see from this theorem that the introduced families of spaces monotonically decrease in each of 
the parameters p and Ar in the sense of Banach space embeddings. Note that the contours dDn in the 
theorem can be chosen to be smooth. Therefore, the weighted Hardy spaces can be introduced starting 
from the definition of the spaces H p in domains with smooth boundary. By using the translation, the 
previous definition is extended to the case F  =  { r }  with an arbitrary point t  /  0. In the general 
case, the domain D  can be represented in the form of the union of domains D T, r  G F, where D T is 
bounded by a contour Tr smooth outside r. Then the space H X(D , F )  can be defined by the condition

ip„(t) =  <p(2 nt) G //(Tra), and the space L^(T, 0) can be described by using the equivalent norm

\ VP
M  =  ( Y j t n \ P ) , Cra =  2~nX\<Pn\Lp(f> y (5)



ф G Н х (D t , t ) for all r  G F .  According to Theorem 1(b), this definition is independent of the 
choice D T.

Based on Theorem 2, we can extend the results of [12] from the weighted Holder spaces to the 
Hardy spaces. In particular, this concerns the Riemann-Hilbert problem with a piecewise-continuous 
matrix coefficient G. We restrict ourselves to the simplest case G =  1 of the Schwarz problem

Re <t>+ =  f  (7)

with a real right-hand side / G L PX(T ,F ) .  The Fredholm property and the index of the problem is 
understood relative to the R-linear operator H p —>■ L px of its boundary condition.

The criterion for the Fredholm property is formulated in terms of the endpoint symbol, the family 
xT( ( ) ,  r  G F ,  of entire functions of the complex variable (  defined as follows. W ith each pair of 
distinct unit vectors a =  a i+ ia z  and b =  b\ +г&2, we associate the analytic function oj of two variables 
(  and и, 1т и /  0, by the formula

С(  a i + u a 2V
u i(a ,b ;u ,( )  =

a i +  v/i2

a r g > - ь Г Т ^
<  7Г.

Since the spectra of the matrices J  and J  lie in the upper and lower half-planes, respectively, where 
o j  is analytic as a function of u, we can introduce the value of this functions at the above matrices. 
As a result, we can define the entire function of the variable (  by the formula

h(a, b; ( )  =  det[emt^oj(a, 6; J, ( )  — e~7Tt(’u(a, 6; J, ( ) ] .  (8)

It is easy to verify that in each band Ai <  R e (  <  A2 of finite width, the function h has finitely 
many zeros. Therefore, the projection of the zero set of this function on the real axis is a discrete 
subset of R  denoted by A  (a, b).

If  a =  —b, then the function satisfies o j  =  1, and hence, with accuracy up to a constant factor, the 
function h(a, —a; Q  coincides with sin1 tt(. Thus,

A  (a, —a) =  Z. (9)

In the scalar case I =  1 where J =  v G C, definition (8) passes to

h (a ,b ] ( )  =  2i\q\c sin 0(, q =  &1 ^  ^  ,
a 1 +  ua 2

where we have set 9 =  arg q, 0 < 9  <  2tt. Obviously, in this case,

A (a , b) =  {(7r/9)k, k G Z }. (10)

We now turn to problem (7). In a small neighborhood of a corner point r  G T, the set ST =  DP\
{\z — t \ <  r }  is a curvilinear sector whose lateral sides are denoted by Tr±o (it is assume that a
turn counterclockwise inside the sector is performed from T r+ o to T r _o ). Let qT± 0 be unit vectors 
tangent to the lateral sides of Tr±o at the point r. Let these side be not tangent to one another, i.e., 
let r  be not a cusp point of the contour T. Then gr _ 0 /  qT+0, and we can consider the function 
xT( ( )  =  h(qT-\-0, qT- 0; ( ) ,  called the endpoint symbol of the problem at the point r. Denote by A r the 
set A (g r+o, (?r -o ) corresponding to it for short. Let an integer-valued function X r(t )  be constant on 
intervals of the complement to A , and for t G A r , let the jump %r (i — 0) — %r (i +  0) coincide with the 
number of zeros of the function x T ( ( )  on the line Re (  =  t with account for their multiplicity. Therefore, 
this function monotonically decreases and is defined with accuracy up to an additive constant, which 
can be fixed by the condition %(—0) =  0.



T h eo rem  4. Let the domain D  be bounded by a piecewise-Lyapunov contour without cusp points, and 
let the set F  contain all corner points of the contour. Then the Fredholm property of problem (7) in 
the class H P( D , F )  is equivalent to the condition

Ar ^ A r , r  G F, ( 11)

and its index x  is given by the formula

x  =  l{2 — s) +  ^  Xr(Ar ),
T

where s is the number of connected components o fT .

Note that in the scalar case where I =  1 and J =  u, the set A r is defined by relation (10), where 
the quantity 9 =  9T is geometrically the angle of the sector to which the curvilinear sector ST passes 
under the affine transformation x +  iy —> x +  vy. In the particular case v =  i of analytic functions, the 
quantity 9T coincides with the angle of the sector ST itself. In the scalar case considered, condition (11) 
reduces to 9t Xt /tt Z, so that X r ( t )  =  —[9Tt/7r] +  1, where the square brackets denote the integral 
part of a number. If the contour T is smooth, then qT+o =  —qT~o at points r e f ,  and, according to 
(9), we have the same situation as in the scalar case.

For now, the boundary T of the domain D  was assumed to be finite. Now let the curve T be 
unbounded, i.e., oo e  T, and let it be a piecewise-Lyapunov contour on the Riemann sphere CUoo. The 
convergence of contours Tra C D  to T is understood in the same sense as above but with the additional 
requirement oo e  T „ for all n (in particular, the function an{t) is unbounded, i.e., an(oo) =  oo). 
Under this conditions, the Hardy space H P(D )  is as before defined by condition (2). In particular, in 
the case of the half-plane {z  =  x  +  iy,y >  0},  as Tra, we can take the lines y =  en, where en —> 0. 
Applied to analytic functions, this yields the classical Hardy space [4].

We now turn to the definition of weighted spaces in the case considered. We include the infinitely 
distant point oo to F  and define the class C \ (T ,F )  as before but with the additional requirement 
cp(t) =  O(l)|i|-Ao° as t —> oo. Starting from this class, we define weight scalar-valued functions 
p i t )  =  P \ ( t )  and J-analytic I x /-matrix functions R (z )  =  R\(z ) analogous to the above. Using these 
functions, we define the weighted spaces as before with the only difference that L PX(T, F )  =  //(T) and 
H P( T ,F )  =  H P(T )  for the weight order A assuming the value —1 /p at finite points r  e  F  and the 
value 1/p at the point r  =  oo, and, analogously, L PX(D , F )  =  I T (D )  for the weight order A assuming 
the value — 2/p at finite points r e f  and the value 2/p at the point r  =  oo. Note that in the case of 
the half-plane, the weighted Hardy space for J-analytic functions was introduced and studied in [8].

Theorems 1 and 2 are also preserved in the case considered with the only difference that the 
conditions —1 <  A <  0 and —1/2  <  A <  0 for r  =  oo are replaced by 0 <  Aoo <  1 and 0 <  Aoo <  1/2, 
respectively. Also, an analog of Theorem 3 holds. Let the set F  consist of the single point r  =  oo,
i.e., the unbounded curve T is smooth. Let us cover T by smooth curves Tra, n <  1, so that

f ra =  2“ "T ra C {1/2 <  \z\ <  2}

for sufficiently large n. Let the domains D n have an analogous meaning with respect to D. Then the 
space L PX(T, oo) can be given by norm (5). The same also concerns the space H P(D , oo) in Theorem 
3 with respect to (6). Therefore, as in the case of finite contours, the family of spaces considered 
monotonically decreases in each of the parameters p, Ar , r  e  F.

Theorem 4 also extends to the case considered; we need to only define the enumeration of arcs 
r r±o with the endpoint r  =  oo and the corresponding unit tangent vectors qT±o to these arcs at this



endpoint. Recall that in the case r  /  oo, the enumeration of lateral sides T r±o of the curvilinear 
sector

ST =  D  n {\z — t \ <  e},

where e >  0 is sufficiently small, with vertex r  corresponds to the following rule. Going around the 
boundary dST through the point r  from Tr_o to Tr+o, the sector ST remains to the left. In this case 
the arc T r±o can be given by the parametric equation z — t  =  rqT±o exp[ih(r)], 0 <  r  <  e, where the 
real-valued function h (r )  is continuous and is equal to zero at the point r  =  0. In these terms, we can 
also analogously proceed in the case r  =  oo. Precisely, for a sufficiently small e >  0, the curvilinear 
“sector”

Soo =  D n  {|z| >  1/e}

has the “arcs” Tr±o with the endpoint r  =  oo as its lateral sides, which admit the parametric equation 
2 =  n?T±o exp[*/i(r)] on the semi-axis r  >  1/e, where the real-valued function h (r )  is continuous and 
tends to zero as r  —> oo. The enumeration of these arcs is chosen in the same way as indicated above 
for finite vertices r.

2. Second-O rder E llip tic  System s

In a domain D C C o n  the plane, let us consider the following second-order elliptic system:

,  d2u , . ,  x d2u . d2u „  . .

11 a~2 ^  ( 12 ^  21)  ̂ 227r~2 =  ( )ox^ o x o y  Oyz

with real coefficients Aij G The ellipticity condition is that det An /  0 and the characteristic
equation

det P {z )  =  0, P {z )  =  A n  +  (A 12 +  A 21) +  A 22Z2,

has no real roots.
The class of elliptic systems (12) in domains with smooth boundary T =  dD  for which the Dirichlet 

problem u|r =  / is Fredholm was studied by A. V. Bitsadze [1]. These systems were called weakly 
coupled by him, and they can be described [9] by the condition

det / 0.

The equivalent requirement is the existence of a matrix J  e  C lx l, a (J )  C { Im z  >  0}, such that 
det(Im J) /  0 and the following matrix equations is satisfied:

A n  +  ( A 12 +  A%i)J  +  A 22J 2 =  0. (13)

In this notation, in each simply connected subdomain Do C D  any solution u of system (12) is 
represented in the form [9]

u =  Re<f) (14)

with a J-analytic function (/>, and, moreover, with accuracy up to a constant summand )) e  C1, 
Rer? =  0, the function (f) is defined uniquely. The fact that formula (14) indeed yields the solutions of 
system ( 12) follows directly from (2) and the equation

dd) T dd) . .

d y ~  ^  =  0, ^

which the J-analytic vector-valued function satisfies by definition. In the whole domain, the function
(t>(z) in representation (14) is multivalued in general and admits a branching when going around
connected components of the boundary dD. I f  this boundary lies in the finite part of the plane, i.e.,



the domain D  contains a neighborhood of the infinitely distant point oo, and the solution u satisfies 
the condition

| gradu|(z) =  0(l)\z\~2 as z —> oo, (16)

then in a neighborhood of oo, this solution is represented by formula (14) with a univalent bounded 
function cf). In what follows, we assume that this condition holds for the domain considered, and 
according to this, the simple connectedness of a domain is determined by the connectedness of its 
boundary.

The Hardy spaces H P(D ),  1 <  p <  oo, are defined below for weakly coupled systems. First, 
assume that the domain D  considered is bounded by a Lyapunov contour, i.e., admits a smooth 
parametrization of class C 1’̂  with a certain 0 <  n <  1. Choose a sequence of contours Tra C D, 
n =  1,2.. . ,  converging to T in the following sense. There exists a homeomorphic mapping an : T —> Tra 
of class C 1,M converging to the identity mapping in the norm of this space as n —> oo.

Then the space H P(D ),  1 <  p <  oo, of solutions of system (12) is defined by the finiteness condition 
for the norm

M  =  supM LP(rn). (17)
n

Here, the domain D  can be finite as well as infinite; recall that in the latter case, condition (16) is 
assumed to be fulfilled.

Obviously, the linear operation (14) transforms J-analytic functions <fi from the Hardy class H P(D )  
considered in [10] into an analogous class of solutions of (12). The following important theorem shows 
that the converse is also true.

T h eo rem  5. Let u G H P(D )  be a solution of the weakly coupled system (12) in a domain D  bounded 
by a Lyapunov contour Y. Then in each simply connected subdomain Do C D  bounded by a Lyapunov 
contour, the function u is represented in the form  (14) with a J-analytic function (f) e  H p(Do).

W ith account for the Banach theorem on operators with closed range, it follows from this theorem 
that under the additional assumption u(zo) =  <fi(zo) =  0 at a fixed point zo £ Do, the following 
estimate holds:

\<P\hp (D0) <  const \u \h p (D 0). (18)

We can reformulate this estimate in terms of the function v(z )  conjugated to the solution u of 
system (12). It is defined by the conditions

dv (  . du . du\ dv . du . du  . .

t t  =  ~  ( ^ 21 q—  ̂^ 227T ) an^ TT =  A n  t ,— VA\2 —  . (19)o x  \ Ox Oy J Oy Ox Oy

The correctness of this definition follows from Eq. (12). Differentiating this equation and using 
(15), we obtain

^ = R e < / / , | ^ = R  eJ0 ',
Ox Oy

where (// is the derivative d(f)/dx. Substituting these expressions in (19), for the function v, we obtain 
the following representation analogous to (14):

v{z) -  v(zo) =  ReC[cf)(z) -  (j){z0)\, C  =  ~ ( A 21 +  A 22J).

As a result, (18) leads to the estimate

Mtfr(Do) < co n st  \u \h v { D 0), u {zo) =  v{ zo )  =  0, (20 )



where the norm of the function v on the left-hand side is defined analogously to (17). In the case 
where (12) is the Laplace equation, v is a conjugated harmonic function, and estimate (20) is the 
content of the classical Riesz theorem [3].

It follows from theorem 5 and the corresponding properties of the Hardy space of J-analytic func­
tions [10] that a function u G H P( D ) has angular limit values u+ (t), t G T, almost everywhere, which 
define a function from L p. Moreover, the continuous dense embeddings

C (D )  C H P{D )  C L P(D )

hold.
Also, it follows from Theorem 5 that the operator <fi —> Re</> is Fredholm on the spaces H p, and, 

moreover, its kernel consists of constant vectors {*£, £ e R 1}, whereas the co-image is of dimension 
l(s — 1) and can be chosen in the class C l (D ) .  The assertion on the image of the operator <fi —> Re</> 
presented above is established analogously to [6] by an explicit description of multivalued J-analytic 
function with univalent real part. In particular, the index of this operator is equal to l(s — 2). 
Combining this with the assertion of [10, Theorem 2(a)] on the Cauchy-type integral

(I<p)(z) =  J ( t -  z)~jl dtj<p(t)

r

with a real density <p G L P(T), where the notation z j  =  x  +  Jy G Clxl is accepted for z =  x  +  iy G C, 
we arrive at the following result for the operator

Pip =  R  el(f) (21)

defining the integral representation of functions u G H P{D ).

T h eo rem  6 . The operator P  : L P(T )  —> H P{D ) is Fredholm, and its index is equal to zero; moreover, 
its kernel satisfies

ker P  C C +0( r )  =  (J  C^(T ),
/ i> 0

and there exists a co-image koIm P C C +0(D ).

In explicit form, the operator P  acts by the formula

(P<p)(z) =  J  P ( t , t  -  z)<p(t)dst , z e D ,  (22)
r

with the matrix kernel

2vr iP { t , z )  =  z^ l [e{t)} j — Z j l [e{t)}-j,

where e(t) =  e\(t) +  ie2 (t ) is a unit tangent vector at a point t of the contour T (so that the complex
differential satisfies dt =  e(t)dst). Obviously, the function P ( t , z ) is odd and homogeneous of degree
— 1 in the variable z, and, moreover,

P [ t , e ( t ) } =  0, t e T .  (23)

Since the contour T is Lyapunov, it follows that for z =  to T, the function P (t ,  t — to) has a weak 
singularity at t =  to- More precisely,

P (t ,  t - t 0) =  \ t -  t0\~1k (t0, t ),



where the function k(to ,t) satisfies the Holder condition, i.e., belongs to the class C +0( r  x T) and 
vanishes for t =  to- Moreover, the Sokhotskii-Plemejl formula for the Cauchy-type integral lip in (21) 
implies

(P<p)+ (to) =  ip(to) +  j  P ( to , t  -  to)<p(t) dst . (24)

r
In fact, along with the boundedness of L P(T )  —> H P(D ) ,  the operator P  is bounded as an operator 

C (r )  —> C (D ) .  This fact follows from the following general assertion.

Lem m a 1. Let the contour T be Lyapunov, and let the function P ( t , z ), t G T, be odd, homogeneous
of degree —1 in the variable z G C, satisfy condition (23), and infinitely times differentiable in the
variables x =  R ez  and x =  Im z  (so that its partial derivatives P i ( t , z ) =  dP/dx and pP 2 ( t ,z )  =  
dP/dy are homogeneous of degree —2 in the variable z). Let the functions P ( t , z ), P\, and P 2 satisfy 
the Holder condition on T. Then operator (22) is bounded as an operator C (r )  —> C (D ) ,  and formula 
(24) holds fo r  boundary values.

In the case where T is the unit circle and the matrix J  is scalar and coincides with the imaginary 
unit i, with accuracy up to an additive summand, the function q (t , t  — z) coincides with the Poisson 
kernel

P ( t , t - z )  =  - ------------ 1 ~  r „ .----- * +  - ,  t =  eie,z  =  reie°.
2tt 1 — 2r cos (9 — 9o) + r 2 2

Obviously, the integral operator on the right-hand side of (24) is compact on the space L P(T), and, 
therefore, with account for the Riesz theorem, Theorem 6 directly implies that the operator u —> u+ is 
Fredholm as an operator H P(D )  —> L P(T )  and its index is equal to zero. In other words, the Dirichlet 
problem is Fredholm in the class H p and is of index zero. More precisely, the following assertion holds.

T h eo rem  7. (a) The solution space {u  G H P( D ), Re-u+ =  0 } of the homogeneous Dirichlet problem 
is finite-dimensional and is contained in C + (D ) .  There exists a finite-dimensional space Y  C  C + (T ) 

of the same dimension such that the orthogonality conditions

J  f ( t ) g ( t )  dst =  0, g e Y,

are necessary and sufficient fo r  the solvability of the inhomogeneous problem Re-u+ =  /.
(b) Any solution u G H P(D )  of the Dirichlet problem with the right-hand side f  G C (r )  belongs to 

the class C (D ) .

The second assertion of the theorem is a consequence of Lemma 1 and the compactness of the 
integral operator on the right-hand side of (24) on the space C'(T). This means that the Dirichlet 
problem is Fredholm in the class of continuous functions. For the first time, this effect was discovered 
by N. E. Tovmasyan [13] for a definite class of elliptic systems.

For now, the exponent p in definition (13) of the Hardy class was assumed to be greater than 1. 
We can show that the operator P  is also bounded as an operator from L 1(T ) into H 1(D )  (although 
for the Cauchy-type operator I  in (21) this fact is violated). Therefore Theorem 7 also holds for the 
class H 1(D ).

As a consequence of the Fredholm property of the Dirichlet problem, we note that the relation

M  = \u + \l p (T)  + M  L P (D )  (25)

defines an equivalent norm in the space H P(D ).  To prove this, we only need to take into account the 
following assertion.



Lem m a 2. Let an operator R  : X  —> Y  be Fredholm, and in a Banach space X ,  let a norm \ \' 
admitting the estimate \x\' <  C\x\x be given. Then the relation \x\" =  \x\' +  \Rx\y defines an 
equivalent norm in X .

The definition of Hardy spaces over domains with piecewise-smooth boundary, including the case 
of weighted spaces, differs from the analogous definition for J-analytic functions considered in [10]. 
The distinction of these two cases is caused by the essence of the subject and is related to the fact 
that there are no weight functions the multiplication by which is invariant in the class of solutions 
of system (12). Definite difficulties arise even for harmonic functions. In this case, these spaces were 
studied by V. I. Vlasov [14, 15] in detail.

Let a domain D  considered on the Riemann sphere C U {o o } be bounded by a piecewise-Lyapunov 
contour T. Choose a finite set F  C T containing all corner points of the curve. If the curve T is 
unbounded, i.e., contains the infinitely distant point oo on the Riemann sphere, then we include this 
point in F. In the case where T is connected, i.e., is a simple contour and F  consists of a single point r, 
this curve is called a closed Lyapunov arc with common endpoint r. In this case, for r  =  oo, T is a 
smooth curve in each finite part of the plane.

Denote by Hfoc( D , F )  the class of all solutions of system (12) in the domain D  that belong to 
H p(D o ) in each subdomain Do C D  with Lyapunov boundary dDo disjoined with F. By Theorem 5, 
this definition is correct. Clearly, the functions of this class admit angular limit values u+ belonging 
to L poc(T ,F ) ,  i.e., to L p(To) on each smooth arc To C T  disjoined with F.

Starting from a family A =  (Ar , r  G F )  of real numbers (weighted order), we introduce the Hardy 
space

H px ( D , F ) C H poc( D , F )

by the pattern of definition from [10, Theorem 7] for Douglis analytic functions. As in [10], we first 
assume that T is connected and F  consists of a single point r, i.e., T is a closed Lyapunov arc with 
the common endpoint r. Obviously, it suffices to restrict ourselves to two cases r  =  0 and r  =  oo, 
which we consider separately.

(1) Let r  =  0. Represent D  in the form of the union of domains D n, n >  1, with Lyapunov 
boundary for which

D n =  T D n C  {1/2 <  \z\ <  2}

for sufficiently large n and whose boundaries dD n converge to a certain contour T in the same sense 
as in (13). Then for u G Hfoc(D , 0),

un(z) =  u(2~nz ) G H p(D n), 

and the space H P(D,  0) is defined by the finiteness condition for the norm

\ Vp
’ t>n =  2~nX\un\HP{Bn). (26)

n '

(2) Let r  =  oo. Represent D  in the form of the union of domains D n, n <  1, with Lyapunov 
boundary for which

D n =  2~nD n C  {1/2 <  \z\ <  2}

for sufficiently large n and whose boundary dDn converge to a certain contour T in the same sense as 
in (13). Then for u e  Hfoc(D , oo),

un(z) =  2~nXu(2~nz ) G H p(D n), 

and the space H P(D,  oo) is defined by the finitness condition for norm (26).



Theorem 8. Let u G H x( D , t )  be a solution of the weakly coupled system (1) in the domain D  
bounded by a closed bounded Lyapunov arc T with common endpoint r. Let r  be not a cusp point of 
the curve T (on the Riemann sphere). Then u is represented in the form  (14) with the J-analytic 
function ( f )  G H x( D , t ) .

For A <  1, it is convenient to extend the space H x ( D , t ) by adding a constant function. This 
extension is a Banach space denoted by H PX̂ (D, r )  with respect to the corresponding norm. Obviously 

it coincides with H x ( D , t ) for A <  0 and H px^ (D ,t ) =  H x ( D , t ) © R 1 for 0 <  A <  1. In this notation, 

Theorem 4 leads to the following estimate analogous to (18):

101 <  const |u|Hp , u(zo) =  H zo) =  0,
(A) (A)

where the point zo G D  is fixed.
In the general case where the set F  is multipoint, we can represent the domain D  in the form of 

the union of domains D T, r  G F ,  where D T is bounded by a closed Lyapunov arc T r with common 
endpoint r. Then the space H X( D , F )  can be defined by the condition u G ( D t , t )  for all r  G F  
(by the corresponding norm). According to Theorem 5, this definition is independent of the choice of 
D T. In a similar way, we also define the space H PX̂ (D, F ) ,  A <  1.

As in the case of Theorem 5, Theorem 8 easily implies that the operator <fi —> Re(/> is Fredholm on 
the spaces anc  ̂moreover, its kernel consists of constant vectors {*£, £ G R 1}, whereas the direct 

complement to its image is of dimension l(s — 1) and can be chosen in the class of functions satisfying 
the Holder condition in the closed domain D  on the Riemann sphere C U {o o }.

As in the case of smooth domains, the criterion for the Fredholm property of the Schwarz problem 
R e<fi+ =  f  for J-analytic functions given in [10] simultaneously serves as a criterion for the Fredholm 
property of the Dirichlet problem Re-u+ =  / for solutions of system (12). In the notation of [10], it is 
formulated as follows.

Theorem 9. Let a domain D  be bounded by a piecewise-Lyapunov contour without cusp points, and 
let the set F  contain all corner points of the contour. Then the Fredholm property fo r  the Dirichlet 
problem fo r  system (12) in the class H PX̂ ( D, F ) ,  where 0 <  |Ar | <  1, is equivalent to the condition

XT £ A T, t  G F, (27)

and its index x  is given by the formula x  =  J2Xr ( XT) .
T

An analogous result for the weighted Holder spaces was obtained in [11] (in slightly different terms). 
As above, on the basis of Theorem 9 and Lemma 2, we conclude that under assumption (27), the 
relation

\u \ = \u + \l px (T)  + M  L PX(D )  

defines an equivalent norm in the space H X( D , F ) .
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