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We consider a first order strictly hyperbolic system of n equations with constant coeffi-

cients in a bounded domain. It is assumed that the domain is strictly convex relative to

characteristics, so that the projection along each characteristic is an involution having

two fixed singular points. The natural statement of boundary value problems for such

systems requires that singular points go to singular points under such transformations.

We present a necessary and sufficient condition for the existence of such domains, called

characteristically closed. Bibliography: 4 titles.

Dedicated to the memory of V. V. Zhikov

In a bounded domain D in the plane, we consider the first order hyperbolic system

∂u

∂x2
−A

∂u

∂x1
= 0, x = (x1, x2) ∈ R

2, (1)

for a vector u = (u1, u2, . . . , un), where the real constant n × n-matrix A ∈ R
n×n has distinct

real eigenvalues ν1, ν2, . . . , νn. Characteristics of this system are lines parallel to the lines

lk : x1 + νkx2 = 0, k = 1, 2, . . . , n. (2)

Apparently, the systematic study of boundary value problems for hyperbolic systems with many

(including multiple) characteristics comes back to [1] and is further developed in [2]. As a rule,

such problems were studied in infinite sector type domains with curved boundaries. In the case

of finite domains, there is no systematic theory of boundary value problems for hyperbolic type

equations with many characteristics. The particular case of three characteristics was considered

in [3]. However, even in this case, a correct statement of boundary valued problems requires

certain conditions on the domain D where the solution is looked for. The situation becomes

much more complicated if n > 3, where n is the number of characteristics. In this paper, we

describe such domains in the case n > 3.
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The first natural assumption on the domain D is that the interior points of any characteristic

segment with endpoints in D are contained in D. Such domains are called characteristically

convex. In particular, the boundary Γ of D contains no characteristic segments. By the same

reason, for each k = 1, 2, . . . , n there are two supporting characteristics l0k and l1k that are parallel

to lk and pass through the boundary points τ0k and τ1k , called singular, between which the domain

D is located. The set of singular points is denoted by F . Since several supporting characteristics

can pass through the same singular point, elements of F are located between 2 and 2n.

We show that a characteristically convex domain is bounded by a simple Jordan contour Γ

divided by the points τ0k and τ1k into two arcs Γ0
k and Γ1

k with common endpoints τ0k and τ1k .

Indeed, let us fix k and consider the Cartesian coordinates ξ, η with the η-axis directed along

lk. Then the domain D can be described by the inequalities f(ξ) < η < g(ξ), a < ξ < b, where

the functions f and g take the same values at the points ξ = a and ξ = b (so that the points

(a, f(a)) and (b, f(b)) are singular). It suffices to show that f and g are continuous. Assume

the contrary. Let there exist a sequence cj ∈ [a, b] converging to c such that it has the limit

d = lim f(cj) different from f(c). But, in this case, the sequence of boundary points (cj , f(cj))

converges to a point (c, d) ∈ Γ. By the characteristic convexity of the domain, the interior of

the segment with endpoints (c, d) and (c, f(c)) is contained in D, which is impossible.

By the characteristic convexity of the domain, the projection along lk is a homeomorphism,

denoted by δk, from the contour Γ to itself. It is obvious that δk is involutive, i.e., δk[δk(t)] = t,

t ∈ Γ, fixed points are the singular points τ0k , τ
1
k , and Γ0

k goes to Γ1
k under the transformation δk.

In the case of three characteristics, the statement of a boundary value problem proposed in

[3] suggests that the contour Γ is divided into two curves Γ± such that each involution δk is

a homeomorphism from Γ+ onto Γ−. Then the boundary value problem consists of two linear

combinations of components of the solution u on Γ+ and one combination on Γ−. However, not
every characteristically convex domain admits such a division. In the case n > 3, as we will see

below, it is necessary to impose some conditions on the eigenvalues νk of the matrix A of the

hyperbolic system (1). As above, provided that such a division exists, the correct statement of

a boundary value problem for the hyperbolic system (1) consists of m � n linear combinations

of components of the solution u on Γ+ and n−m such combinations on Γ−. The case n = 0 or

n = m is not excluded and corresponds to the Cauchy problem.

The following theorem completely describes characteristically convex domains that admit

such a division of the boundary. By definition, a domain D is characteristically closed if all n

transformations δk are invariant on the set F of singular points.

A Jordan arc Γ0 is said to be noncharacteristic if each characteristic can intersect Γ0 at most

at one point. It is obvious that for such an arc the segment L0 joining the arc endpoints is not

characteristic. It is clear that for any point y ∈ Γ0 the characteristic parallel to lk intersects L0

exactly at one point pk(y) and the projection pk : Γ0 → L0 is a homeomorphism.

Theorem 1. Let a domain D be characteristically closed. Then the number of singular

points is even and is equal to 2 or 2n. The arcs on which the contour Γ is divided by these points

are noncharacteristic. These arcs are denoted by Γ± in the first case and by Γ±
j , 1 � j � n,

where the arcs of the same sign are pairwise disjoint, in the second case. Then each δk sends an

arc to an arc of the opposite sign, in particular, the curve Γ+ = Γ+
1 ∪ . . . ∪ Γ+

m goes to a similar

curve Γ−. If the number of singular points is equal to 2n, then the polygon P with vertices at

singular points is convex and characteristically closed. The converse assertion is also true: If a

polygon P of the above type is given and noncharacteristic arcs Γ±
j have common endpoints with
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its sides L±
j , then these arcs form the contour Γ bounding a characteristically closed domain D

with singular points at the vertices of the polygon P .

Proof. We fix k and consider the arcs Γ0
k and Γ1

k with common endpoints at the singular

points τ0k and τ1k . Since these points are fixed under the involution δk, the set F \ {τ0k , τ1k}
is invariant under the involution δk and, consequently, is divided into pairs of singular points

which are transformed to each other. In particular, the set F consists of 2m elements. Denote

by e1k, . . . , e
m−2
k the segments of characteristics passing through these pairs of points along the

arc Γ0
k from τ0k to τ1k .

It is obvious that two arcs in the family (Γ±
j ) with a common endpoint τ0 have opposite

signs. Moving along the arc Γ0
k from τ0 to τ1, we see that a similar property holds for other

pairs of arcs of this family that are transformed by this involution to each other.

Assume that 1 < m < n. Then for some k another supporting line l0s , s �= k, passes through

the point τ0k , so that τ0k = τ0s and τ1k = τ1s . Then there is at least one singular point between l0k
and e1s, which contradicts the fact that there are 2m points on eis, 1 � i � 2m− 2.

Let the number of singular points be equal to 2n, and let the segments L±
j join the end-

points of Γ±
j . We first show that the polygon P with sides L±

j is characteristically convex and,

consequently, is convex in the usual sense. It suffices to verify that any characteristic can in-

tersect the boundary at most at two points. Without loss of generality we can assume that the

characteristic l does not pass through singular points and, for the sake of definiteness, is parallel

to the line l1. Assume the contrary. Let l intersect three sides L1, L2, L3 of the polygon P at

points τ1, τ2, τ3 respectively. Assume that arcs Γ1, Γ2, Γ3 of the family Γ±
j are associated with

L1, L2, L3. Then the points p−1
1 (τj) lie on the contour Γ, which contradicts the characteristic

convexity of D. It is obvious that the small diagonals of P are parallel to the characteristics.

The last assertion of the theorem can be proved by using the projections pk : Γ±
k → L±

k .

A question arises whether there exists a characteristically closed 2n-gon P . Segments joining

vertices of a convex polygon are called sections. Two sections are equivalent if two arcs in the

division of the part of the polygon boundary lying between these sections contain the same

number of vertices. It is obvious that each section is equivalent to either a side or a small

diagonal. Moreover, in an n-gon, any diagonal is equivalent to a side if n is odd and to either a

pair of sides or a pair of small diagonals if n is even.

We consider a characteristically closed 2n-gon P . The small diagonals of P are characteristics

since for a supporting line l at a vertex τ the nearest parallel characteristic passes through the

small diagonal. Thus, those and only those diagonals that are equivalent to small diagonals are

characteristics. The vertex set F can be divided into two subsets F1 and F2 of n elements in such

a way that between any two neighboring points of one set there is a point of the other set. Then

the diagonals with endpoints in the same set and only they are characteristics. Consequently if

an n-gon Qj is generated by vertices τ ∈ Fj , then all its sides and diagonals are characteristics.

Such a polygon Q is called characteristic. It is obvious that any two equivalent sections of

such a polygon are parallel. It is clear that for n = 3 any triangle with characteristic sides is

characteristic, whereas for n = 4 we have a parallelogram with characteristic sides and diagonals.

The following assertion yields a simple description of characteristic polygons.

Theorem 2. A characteristic n-gon is affine equivalent to a regular one, i.e., is the image

of a regular n-gon under an affine transformation of the plane.
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Proof. It suffices to consider the case n > 4. We first show that all the vertices of a

characteristic n-gon Q lie on some ellipse. Since each convex pentagon can be uniquely inscribed

into an ellipse, it suffices to prove that any six sequential vertices lie on some ellipse. It is

convenient to denote by cbaa′b′c′ these vertices so that the points a′b′c′ are successively located,

starting with the first of them, while moving along ∂Q in the positive direction, whereas the

points abc move in the opposite direction. Then the segments bb′ and cc′ are parallel to the side

aa′. Applying a suitable affine transformation, if necessary, we can assume that the trapezoid

abb′a′ is isosceles.
It is obvious that the section a′b is parallel to b′c, whereas the section ab′ is parallel to b′c.

Consequently, bmb′n is a parallelogram, where m is the intersection point of ab′ and ba′, whereas
n is the intersection point of cb′ and bc′. But the trapezoid abb′a′ is isosceles and, consequently,
bm = mb′, i.e., this parallelogram is a rhombus. But then nb = nb′ and the trapezoid bb′cc′

is isosceles, so that the line mn is the symmetry axis of the hexagon cbaa′b′c′. Therefore, the

intersection points d1 and d2 of the opposite sides and, respectively, bc, a′b′ and ab, b′c′ are also

symmetric. Hence the line d1d2 is parallel to the sides aa′ and cc′ constituting the third pair.

Thus, the points d1 and d2 and the ideal point corresponding to the last pair of sides belong

to the same line. By the Pascal theorem [4], it is possible to inscribe an ellipse into the hexagon

under consideration, which is required.

Thus, the polygon Q can be inscribed into an ellipse which can be transformed to a circle

by an affine transformation, as we will assume below. It suffices to verify that all n arcs have

the same length. Since n > 4, we can consider only two disjoint arcs with endpoints a, b and a′,
b′. The enumeration is taken in such a way that the points b and b′ lie on the same side of the

section aa′. But, in this case, the section aa′ is parallel to bb′ and, consequently, the arcs under

consideration have the same length, which completes the proof.

The question arises under what conditions on the parameters νk defining the characteristics

(2) there exist characteristic n-gons.

Lemma 1. Let the characteristics (2) are enumerated in the order of counter-clockwise

rotations. Then for n > 3 a characteristic n-gon exists if and only if

νk �= ν1 sin θ cos(k − 1)θ + (q2ν2 − ν1 sin θ) sin(k − 1)θ

sin θ cos(k − 1)θ − (cos θ − q2) sin(k − 1)θ
, k = 4, . . . , n, (3)

where

θ =
π

n
, q2 =

ν1 − ν3
2(ν2 − ν3) cos θ

.

Proof. We introduce the directed vectors ek = (−1, νk) ∈ R
2 of the lines lk and set

e0k = (cos(k − 1)θ, sin(k − 1)θ), 1 � k � n,

By Theorem 2, the assertion of the lemma is equivalent to the existence of a nonsingular matrix

a ∈ R
2×2 such that the vectors ae0k are proportional to ek for all k = 1, . . . , n (with a nonzero

proportionality coefficient). For such a matrix we take

a =

(
− sin θ cos θ − q2

ν1 sin θ q2ν2 − ν1 cos θ

)
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and, in addition to q2, introduce the nonzero coefficients q1 = 1 and q3 = (ν1 − ν2)/(ν2 − ν3).

A direct verification shows that for these parameters we have ae0k = (sin θ)qkek, k = 1, 2, 3. It

remains to note that similar identities for k = 4, . . . , n with some nonzero qk hold if and only if

the condition (3) is satisfied.

We illustrate the lemma by an example of four characteristics, n = 4. In this case, θ = π/4,√
2q2 = (ν1 − ν3)/(ν2 − ν3), and the condition (3) becomes

ν1ν2 + ν2ν3 − 2ν1ν3
2ν2 − ν1 − ν3

= ν4. (4)

We consider orthogonal lines l1 and l3 such that ν1ν3 = −1. Then the characteristic 4-gon with

sides parallel to l1 and l3 is a rectangle whose diagonals are parallel to l2 and l4. In particular,

they form equal angles with l1. Let lk form the angle θk with the x1-axis so that νk = tan θk.

Then θ2− θ1 and θ1− θ4 coincide up to a summand multiple to π. Therefore, their tangents are

equal, which leads to the equality

ν2 − ν1
1 + ν1ν2

=
ν1 − ν4
1 + ν1ν4

or ν4 =
2ν1 + ν21ν2 − ν2
2ν1ν2 + 1− ν21

.

This equality coincides with (4) with ν3 = −1/ν1.

As was already noted, small diagonals of a characteristically closed 2n-gon P form two char-

acteristic n-gons Q1 and Q2. We note that for odd n their sides run over all the characteristics.

For even n the sides of Q1 run over the group of n/2 characteristics, whereas the diagonals of Q1

run over the group of the remaining characteristics. Relative to Q2 these groups exchange. In

such a case, we say that these polygons are conjugate. For example, in the case of a character-

istic rectangle, the conjugate of a tetragon is a rhombus. For n = 3 the conjugate of a triangle

is a triangle of the same type.

If a similar conjugacy property is valid for two regular n-gons Q0
1 and Q0

2 inscribed into the

same circle, then one of these polygons is obtained from the other by rotation by the angle π/n.

Moreover, in the case of odd n, they are also centrally symmetric. In the general case, Q0
2 is

obtained from Q0
1 by successively applying the rotation by the angle π/n about the center (or

the central symmetry in the case of odd n) and then homothety from this center with positive

coefficient and translation.

Thus, by Theorem 2, the characteristic n-gons Q1 and Q2 are affine conjugate, i.e., they are

the images of two mutually conjugate regular polygons Q0
1 and Q0

2 under some affine transfor-

mation. Owing to this fact, we can explicitly construct the characteristic polygon conjugate to

a given one. Since the central symmetry operation is preserved under an affine transformation,

for odd n the affine-conjugate n-gon Q2 is obtained from Q1 by successively applying homoth-

ety with negative coefficient and translation. This property is also generalized to characteristic

triangles in the case n = 3.

Thus, one can construct a characteristically closed 2n-gonP as follows. We choose two

conjugate characteristic n-gons Q1 and Q2 such that the vertices of Q1 lie outside Q2 and

conversely. Then their common vertices form a 2n-gon P with the required properties.
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