CHARACTERISTICALLY CLOSED DOMAINS FOR FIRST ORDER STRICTLY HYPERBOLIC SYSTEMS IN THE PLANE

A. P. Soldatov
Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS 49, Vavilov St., Moscow 119333, Russia
soldatov48@gmail.com

UDC 517.9

Abstract

We consider a first order strictly hyperbolic system of n equations with constant coefficients in a bounded domain. It is assumed that the domain is strictly convex relative to characteristics, so that the projection along each characteristic is an involution having two fixed singular points. The natural statement of boundary value problems for such systems requires that singular points go to singular points under such transformations. We present a necessary and sufficient condition for the existence of such domains, called characteristically closed. Bibliography: 4 titles.

Dedicated to the memory of V. V. Zhikov

In a bounded domain D in the plane, we consider the first order hyperbolic system

$$
\begin{equation*}
\frac{\partial u}{\partial x_{2}}-A \frac{\partial u}{\partial x_{1}}=0, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \tag{1}
\end{equation*}
$$

for a vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, where the real constant $n \times n$-matrix $A \in \mathbb{R}^{n \times n}$ has distinct real eigenvalues $\nu_{1}, \nu_{2}, \ldots, \nu_{n}$. Characteristics of this system are lines parallel to the lines

$$
\begin{equation*}
l_{k}: x_{1}+\nu_{k} x_{2}=0, \quad k=1,2, \ldots, n . \tag{2}
\end{equation*}
$$

Apparently, the systematic study of boundary value problems for hyperbolic systems with many (including multiple) characteristics comes back to [1] and is further developed in [2]. As a rule, such problems were studied in infinite sector type domains with curved boundaries. In the case of finite domains, there is no systematic theory of boundary value problems for hyperbolic type equations with many characteristics. The particular case of three characteristics was considered in [3]. However, even in this case, a correct statement of boundary valued problems requires certain conditions on the domain D where the solution is looked for. The situation becomes much more complicated if $n>3$, where n is the number of characteristics. In this paper, we describe such domains in the case $n>3$.

[^0]The first natural assumption on the domain D is that the interior points of any characteristic segment with endpoints in \bar{D} are contained in D. Such domains are called characteristically convex. In particular, the boundary Γ of D contains no characteristic segments. By the same reason, for each $k=1,2, \ldots, n$ there are two supporting characteristics l_{k}^{0} and l_{k}^{1} that are parallel to l_{k} and pass through the boundary points τ_{k}^{0} and τ_{k}^{1}, called singular, between which the domain D is located. The set of singular points is denoted by F. Since several supporting characteristics can pass through the same singular point, elements of F are located between 2 and $2 n$.

We show that a characteristically convex domain is bounded by a simple Jordan contour Γ divided by the points τ_{k}^{0} and τ_{k}^{1} into two arcs Γ_{k}^{0} and Γ_{k}^{1} with common endpoints τ_{k}^{0} and τ_{k}^{1}.

Indeed, let us fix k and consider the Cartesian coordinates ξ, η with the η-axis directed along l_{k}. Then the domain D can be described by the inequalities $f(\xi)<\eta<g(\xi), a<\xi<b$, where the functions f and g take the same values at the points $\xi=a$ and $\xi=b$ (so that the points $(a, f(a))$ and $(b, f(b))$ are singular). It suffices to show that f and g are continuous. Assume the contrary. Let there exist a sequence $c_{j} \in[a, b]$ converging to c such that it has the limit $d=\lim f\left(c_{j}\right)$ different from $f(c)$. But, in this case, the sequence of boundary points $\left(c_{j}, f\left(c_{j}\right)\right)$ converges to a point $(c, d) \in \Gamma$. By the characteristic convexity of the domain, the interior of the segment with endpoints (c, d) and $(c, f(c))$ is contained in D, which is impossible.

By the characteristic convexity of the domain, the projection along l_{k} is a homeomorphism, denoted by δ_{k}, from the contour Γ to itself. It is obvious that δ_{k} is involutive, i.e., $\delta_{k}\left[\delta_{k}(t)\right]=t$, $t \in \Gamma$, fixed points are the singular points $\tau_{k}^{0}, \tau_{k}^{1}$, and Γ_{k}^{0} goes to Γ_{k}^{1} under the transformation δ_{k}.

In the case of three characteristics, the statement of a boundary value problem proposed in [3] suggests that the contour Γ is divided into two curves $\Gamma^{ \pm}$such that each involution δ_{k} is a homeomorphism from Γ^{+}onto Γ^{-}. Then the boundary value problem consists of two linear combinations of components of the solution u on Γ^{+}and one combination on Γ^{-}. However, not every characteristically convex domain admits such a division. In the case $n>3$, as we will see below, it is necessary to impose some conditions on the eigenvalues ν_{k} of the matrix A of the hyperbolic system (1). As above, provided that such a division exists, the correct statement of a boundary value problem for the hyperbolic system (1) consists of $m \leqslant n$ linear combinations of components of the solution u on Γ^{+}and $n-m$ such combinations on Γ^{-}. The case $n=0$ or $n=m$ is not excluded and corresponds to the Cauchy problem.

The following theorem completely describes characteristically convex domains that admit such a division of the boundary. By definition, a domain D is characteristically closed if all n transformations δ_{k} are invariant on the set F of singular points.

A Jordan arc Γ_{0} is said to be noncharacteristic if each characteristic can intersect Γ_{0} at most at one point. It is obvious that for such an arc the segment L_{0} joining the arc endpoints is not characteristic. It is clear that for any point $y \in \Gamma_{0}$ the characteristic parallel to l_{k} intersects L_{0} exactly at one point $p_{k}(y)$ and the projection $p_{k}: \Gamma_{0} \rightarrow L_{0}$ is a homeomorphism.

Theorem 1. Let a domain D be characteristically closed. Then the number of singular points is even and is equal to 2 or $2 n$. The arcs on which the contour Γ is divided by these points are noncharacteristic. These arcs are denoted by $\Gamma^{ \pm}$in the first case and by $\Gamma_{j}^{ \pm}, 1 \leqslant j \leqslant n$, where the arcs of the same sign are pairwise disjoint, in the second case. Then each δ_{k} sends an arc to an arc of the opposite sign, in particular, the curve $\Gamma^{+}=\Gamma_{1}^{+} \cup \ldots \cup \Gamma_{m}^{+}$goes to a similar curve Γ^{-}. If the number of singular points is equal to $2 n$, then the polygon P with vertices at singular points is convex and characteristically closed. The converse assertion is also true: If a polygon P of the above type is given and noncharacteristic arcs $\Gamma_{j}^{ \pm}$have common endpoints with
its sides $L_{j}^{ \pm}$, then these arcs form the contour Γ bounding a characteristically closed domain D with singular points at the vertices of the polygon P.

Proof. We fix k and consider the arcs Γ_{k}^{0} and Γ_{k}^{1} with common endpoints at the singular points τ_{k}^{0} and τ_{k}^{1}. Since these points are fixed under the involution δ_{k}, the set $F \backslash\left\{\tau_{k}^{0}, \tau_{k}^{1}\right\}$ is invariant under the involution δ_{k} and, consequently, is divided into pairs of singular points which are transformed to each other. In particular, the set F consists of $2 m$ elements. Denote by $e_{k}^{1}, \ldots, e_{k}^{m-2}$ the segments of characteristics passing through these pairs of points along the $\operatorname{arc} \Gamma_{k}^{0}$ from τ_{k}^{0} to τ_{k}^{1}.

It is obvious that two arcs in the family $\left(\Gamma_{j}^{ \pm}\right)$with a common endpoint τ^{0} have opposite signs. Moving along the arc Γ_{k}^{0} from τ^{0} to τ^{1}, we see that a similar property holds for other pairs of arcs of this family that are transformed by this involution to each other.

Assume that $1<m<n$. Then for some k another supporting line $l_{s}^{0}, s \neq k$, passes through the point τ_{k}^{0}, so that $\tau_{k}^{0}=\tau_{s}^{0}$ and $\tau_{k}^{1}=\tau_{s}^{1}$. Then there is at least one singular point between l_{k}^{0} and e_{s}^{1}, which contradicts the fact that there are $2 m$ points on $e_{s}^{i}, 1 \leqslant i \leqslant 2 m-2$.

Let the number of singular points be equal to $2 n$, and let the segments $L_{j}^{ \pm}$join the endpoints of $\Gamma_{j}^{ \pm}$. We first show that the polygon P with sides $L_{j}^{ \pm}$is characteristically convex and, consequently, is convex in the usual sense. It suffices to verify that any characteristic can intersect the boundary at most at two points. Without loss of generality we can assume that the characteristic l does not pass through singular points and, for the sake of definiteness, is parallel to the line l_{1}. Assume the contrary. Let l intersect three sides L_{1}, L_{2}, L_{3} of the polygon P at points $\tau_{1}, \tau_{2}, \tau_{3}$ respectively. Assume that $\operatorname{arcs} \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ of the family $\Gamma_{j}^{ \pm}$are associated with L_{1}, L_{2}, L_{3}. Then the points $p_{1}^{-1}\left(\tau_{j}\right)$ lie on the contour Γ, which contradicts the characteristic convexity of D. It is obvious that the small diagonals of P are parallel to the characteristics.

The last assertion of the theorem can be proved by using the projections $p_{k}: \Gamma_{k}^{ \pm} \rightarrow L_{k}^{ \pm}$.
A question arises whether there exists a characteristically closed $2 n$-gon P. Segments joining vertices of a convex polygon are called sections. Two sections are equivalent if two arcs in the division of the part of the polygon boundary lying between these sections contain the same number of vertices. It is obvious that each section is equivalent to either a side or a small diagonal. Moreover, in an n-gon, any diagonal is equivalent to a side if n is odd and to either a pair of sides or a pair of small diagonals if n is even.

We consider a characteristically closed $2 n$-gon P. The small diagonals of P are characteristics since for a supporting line l at a vertex τ the nearest parallel characteristic passes through the small diagonal. Thus, those and only those diagonals that are equivalent to small diagonals are characteristics. The vertex set F can be divided into two subsets F_{1} and F_{2} of n elements in such a way that between any two neighboring points of one set there is a point of the other set. Then the diagonals with endpoints in the same set and only they are characteristics. Consequently if an n-gon Q_{j} is generated by vertices $\tau \in F_{j}$, then all its sides and diagonals are characteristics. Such a polygon Q is called characteristic. It is obvious that any two equivalent sections of such a polygon are parallel. It is clear that for $n=3$ any triangle with characteristic sides is characteristic, whereas for $n=4$ we have a parallelogram with characteristic sides and diagonals.

The following assertion yields a simple description of characteristic polygons.
Theorem 2. A characteristic n-gon is affine equivalent to a regular one, i.e., is the image of a regular n-gon under an affine transformation of the plane.

Proof. It suffices to consider the case $n>4$. We first show that all the vertices of a characteristic n-gon Q lie on some ellipse. Since each convex pentagon can be uniquely inscribed into an ellipse, it suffices to prove that any six sequential vertices lie on some ellipse. It is convenient to denote by $c b a a^{\prime} b^{\prime} c^{\prime}$ these vertices so that the points $a^{\prime} b^{\prime} c^{\prime}$ are successively located, starting with the first of them, while moving along ∂Q in the positive direction, whereas the points $a b c$ move in the opposite direction. Then the segments $b b^{\prime}$ and $c c^{\prime}$ are parallel to the side $a a^{\prime}$. Applying a suitable affine transformation, if necessary, we can assume that the trapezoid $a b b^{\prime} a^{\prime}$ is isosceles.

It is obvious that the section $a^{\prime} b$ is parallel to $b^{\prime} c$, whereas the section $a b^{\prime}$ is parallel to $b^{\prime} c$. Consequently, $b m b^{\prime} n$ is a parallelogram, where m is the intersection point of $a b^{\prime}$ and $b a^{\prime}$, whereas n is the intersection point of $c b^{\prime}$ and $b c^{\prime}$. But the trapezoid $a b b^{\prime} a^{\prime}$ is isosceles and, consequently, $b m=m b^{\prime}$, i.e., this parallelogram is a rhombus. But then $n b=n b^{\prime}$ and the trapezoid $b b^{\prime} c c^{\prime}$ is isosceles, so that the line $m n$ is the symmetry axis of the hexagon $c b a a^{\prime} b^{\prime} c^{\prime}$. Therefore, the intersection points d_{1} and d_{2} of the opposite sides and, respectively, $b c, a^{\prime} b^{\prime}$ and $a b, b^{\prime} c^{\prime}$ are also symmetric. Hence the line $d_{1} d_{2}$ is parallel to the sides $a a^{\prime}$ and $c c^{\prime}$ constituting the third pair.

Thus, the points d_{1} and d_{2} and the ideal point corresponding to the last pair of sides belong to the same line. By the Pascal theorem [4], it is possible to inscribe an ellipse into the hexagon under consideration, which is required.

Thus, the polygon Q can be inscribed into an ellipse which can be transformed to a circle by an affine transformation, as we will assume below. It suffices to verify that all n arcs have the same length. Since $n>4$, we can consider only two disjoint arcs with endpoints a, b and a^{\prime}, b^{\prime}. The enumeration is taken in such a way that the points b and b^{\prime} lie on the same side of the section $a a^{\prime}$. But, in this case, the section $a a^{\prime}$ is parallel to $b b^{\prime}$ and, consequently, the arcs under consideration have the same length, which completes the proof.

The question arises under what conditions on the parameters ν_{k} defining the characteristics (2) there exist characteristic n-gons.

Lemma 1. Let the characteristics (2) are enumerated in the order of counter-clockwise rotations. Then for $n>3$ a characteristic n-gon exists if and only if

$$
\begin{equation*}
\nu_{k} \neq \frac{\nu_{1} \sin \theta \cos (k-1) \theta+\left(q_{2} \nu_{2}-\nu_{1} \sin \theta\right) \sin (k-1) \theta}{\sin \theta \cos (k-1) \theta-\left(\cos \theta-q_{2}\right) \sin (k-1) \theta}, \quad k=4, \ldots, n, \tag{3}
\end{equation*}
$$

where

$$
\theta=\frac{\pi}{n}, \quad q_{2}=\frac{\nu_{1}-\nu_{3}}{2\left(\nu_{2}-\nu_{3}\right) \cos \theta} .
$$

Proof. We introduce the directed vectors $e_{k}=\left(-1, \nu_{k}\right) \in \mathbb{R}^{2}$ of the lines l_{k} and set

$$
e_{k}^{0}=(\cos (k-1) \theta, \sin (k-1) \theta), \quad 1 \leqslant k \leqslant n,
$$

By Theorem 2, the assertion of the lemma is equivalent to the existence of a nonsingular matrix $a \in \mathbb{R}^{2 \times 2}$ such that the vectors $a e_{k}^{0}$ are proportional to e_{k} for all $k=1, \ldots, n$ (with a nonzero proportionality coefficient). For such a matrix we take

$$
a=\left(\begin{array}{cc}
-\sin \theta & \cos \theta-q_{2} \\
\nu_{1} \sin \theta & q_{2} \nu_{2}-\nu_{1} \cos \theta
\end{array}\right)
$$

and, in addition to q_{2}, introduce the nonzero coefficients $q_{1}=1$ and $q_{3}=\left(\nu_{1}-\nu_{2}\right) /\left(\nu_{2}-\nu_{3}\right)$. A direct verification shows that for these parameters we have $a e_{k}^{0}=(\sin \theta) q_{k} e_{k}, k=1,2,3$. It remains to note that similar identities for $k=4, \ldots, n$ with some nonzero q_{k} hold if and only if the condition (3) is satisfied.

We illustrate the lemma by an example of four characteristics, $n=4$. In this case, $\theta=\pi / 4$, $\sqrt{2} q_{2}=\left(\nu_{1}-\nu_{3}\right) /\left(\nu_{2}-\nu_{3}\right)$, and the condition (3) becomes

$$
\begin{equation*}
\frac{\nu_{1} \nu_{2}+\nu_{2} \nu_{3}-2 \nu_{1} \nu_{3}}{2 \nu_{2}-\nu_{1}-\nu_{3}}=\nu_{4} . \tag{4}
\end{equation*}
$$

We consider orthogonal lines l_{1} and l_{3} such that $\nu_{1} \nu_{3}=-1$. Then the characteristic 4 -gon with sides parallel to l_{1} and l_{3} is a rectangle whose diagonals are parallel to l_{2} and l_{4}. In particular, they form equal angles with l_{1}. Let l_{k} form the angle θ_{k} with the x_{1}-axis so that $\nu_{k}=\tan \theta_{k}$. Then $\theta_{2}-\theta_{1}$ and $\theta_{1}-\theta_{4}$ coincide up to a summand multiple to π. Therefore, their tangents are equal, which leads to the equality

$$
\frac{\nu_{2}-\nu_{1}}{1+\nu_{1} \nu_{2}}=\frac{\nu_{1}-\nu_{4}}{1+\nu_{1} \nu_{4}} \quad \text { or } \quad \nu_{4}=\frac{2 \nu_{1}+\nu_{1}^{2} \nu_{2}-\nu_{2}}{2 \nu_{1} \nu_{2}+1-\nu_{1}^{2}} .
$$

This equality coincides with (4) with $\nu_{3}=-1 / \nu_{1}$.
As was already noted, small diagonals of a characteristically closed $2 n$-gon P form two characteristic n-gons Q_{1} and Q_{2}. We note that for odd n their sides run over all the characteristics. For even n the sides of Q_{1} run over the group of $n / 2$ characteristics, whereas the diagonals of Q_{1} run over the group of the remaining characteristics. Relative to Q_{2} these groups exchange. In such a case, we say that these polygons are conjugate. For example, in the case of a characteristic rectangle, the conjugate of a tetragon is a rhombus. For $n=3$ the conjugate of a triangle is a triangle of the same type.

If a similar conjugacy property is valid for two regular n-gons Q_{1}^{0} and Q_{2}^{0} inscribed into the same circle, then one of these polygons is obtained from the other by rotation by the angle π / n. Moreover, in the case of odd n, they are also centrally symmetric. In the general case, Q_{2}^{0} is obtained from Q_{1}^{0} by successively applying the rotation by the angle π / n about the center (or the central symmetry in the case of odd n) and then homothety from this center with positive coefficient and translation.

Thus, by Theorem 2, the characteristic n-gons Q_{1} and Q_{2} are affine conjugate, i.e., they are the images of two mutually conjugate regular polygons Q_{1}^{0} and Q_{2}^{0} under some affine transformation. Owing to this fact, we can explicitly construct the characteristic polygon conjugate to a given one. Since the central symmetry operation is preserved under an affine transformation, for odd n the affine-conjugate n-gon Q_{2} is obtained from Q_{1} by successively applying homothety with negative coefficient and translation. This property is also generalized to characteristic triangles in the case $n=3$.

Thus, one can construct a characteristically closed $2 n$-gon P as follows. We choose two conjugate characteristic n-gons Q_{1} and Q_{2} such that the vertices of Q_{1} lie outside Q_{2} and conversely. Then their common vertices form a $2 n$-gon P with the required properties.

References

1. A. V. Bitsadze, Some Classes of Partial Differential Equations, Gordon and Breach, New York etc. (1988).
2. S. S. Kharibegashvili, "Goursat problem for a class of systems of second order hyperbolic equations," Differ. Equations 18, 131-142 (1982).
3. N. A. Zhura and A. P. Soldatov, "Boundary value problems for a first order hyperbolic system in a two-dimensional domain," Izv. Math. 81, No. 3, 542-567 (2017).
4. N. V. Efimov, Higher Geometry, Mir Publishers, Moscow (1980).

Submitted on November 18, 2017

[^0]: Translated from Problemy Matematicheskogo Analiza 93, 2018, pp. 131-135.
 1072-3374/18/2324-0552 © 2018 Springer Science+Business Media, LLC

