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Abstract. The possibility of ensuring the safety of flights of aircraft, such as helicopters, at low 

altitudes, where there is a high probability of unauthorized appearance of small-sized objects 

such as unmanned aerial vehicles, is being considered. The possibility of solving the problem of 

detecting such objects on the basis of radar soundings in the resonant frequency range of the 

UHF radio wave range is considered. Sub-band processing of the received signals is proposed, 

based on the division of the spectral definition area into sub-bands, for adaptation to the 

frequency response band and noise filtering. The mathematical apparatus of sub-band signal 

analysis using sub-band matrices has been developed. An optimal solution to the problem of 

filtering responses in given sub-bands is obtained. A procedure for processing the received 

signals is given when making decisions about the presence of a response in a given sub-band. 

Estimates of the probabilities of erroneous decisions are given for a given probability of errors 

of the first kind. 

1. Introduction 

Currently, ensuring flight safety is relevant. Especially when flying at low altitudes. The existing 

onboard optical and radar facilities are not always effective. This is due to the fact that large air and 

ground objects such as airplanes, helicopters, high-altitude masts, power line towers and tall buildings 

are fairly well detectable in both optical and radar ranges. When detecting small-sized aerial objects, for 

example, such as unmanned aerial vehicles (UAVs), problems arise. Currently, small-sized UAVs have 
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become widespread, and their improvement is on the way of reducing the size and expanding the range 

of tasks performed. Consequently, such objects can pose a threat to flight safety, especially at low 

altitudes, where the likelihood of their unauthorized appearance is quite high. 

The linear dimensions of small-sized UAVs (for example, of the "copter" type) are quite small and 

can be only two tens of centimeters, and composite materials are used in the structural elements, which 

reduce radar signature. The use of means of the optical and infrared range does not always allow 

obtaining the required result. This is determined by their dependence on weather conditions, time of day 

and very weak thermal contrast of objects [1]. 

Existing airborne radar facilities, including helicopter ones, operate in the "quasi-optical" frequency 

range (when the wavelength, of the order of 3 cm, is significantly less than the linear dimensions of 

objects). At the same time, the main feature in the reflection of radio waves is that the effective scattering 

surface (ESR) of small objects is very small (about 0.001 - 0.05 m2) [1-2]. Consequently, the detection 

range of small-sized UAVs is limited by the power (energy) characteristics of radar facilities and today 

does not exceed a few kilometers (and even then in almost ideal conditions). At the same time, methods 

based on the Doppler Effect are mainly used (it manifests itself in the presence of the radial velocity of 

an object due to a change in the frequency of the signal during reflection). However, most of the small-

sized UAVs are of low speed, or in general can be practically stationary (hover). In addition, the flight 

altitude of such objects is small, usually not exceeding hundreds of meters. Under these conditions, 

detection and recognition must be carried out against the background of the underlying surface. In this 

case, in the resolved volume of the radar, reflections arise not only from the object itself, but also from 

the underlying surface (earth) and possibly from other foreign objects. Specific EPR of the underlying 

surface, in this radio wave range, can reach 0.1 m2. In this case, the ground is a passive interference, 

and the signal-to-interference ratio in the reflected signal can reach minus 10-15 dB in power (even for 

locators with good resolution) [1-3]. To solve the problems listed above, new approaches and methods 

for processing radar information are required, as well as the use of other radio wave ranges where 

reflections from small-sized UAVs will be more informative. 

To detect and recognize small-sized UAVs, it is necessary to use the radio wave range in which the 

reflective properties of such objects are most fully manifested and where reflections from passive 

interference are much less pronounced, in this case reflections from the underlying surface. The most 

acceptable is the UHF radio wave band. This is due to the fact that in this range, "resonant" properties 

are manifested when signals are reflected. Separate structural elements of small-sized UAVs are capable 

of forming responses to electromagnetic effects [4]. This is especially evident in cases where the 

wavelength is commensurate with or a multiple of the linear dimensions of the structural elements of 

such objects. The dimensions of the reactive structural elements are not known a priori. Therefore, it is 

impossible to determine in advance the frequency of the probing action. As a way out of this situation, 

it is natural to use multi-frequency broadband sounding [5-7]. For this, it is possible to use linear 

frequency modulated (chirp) signals with a wide bandwidth, or ultra-short smooth pulses. Exposure to 

chirp broadband signals is equivalent to the use of short radio pulses of a certain frequency. Synthesis 

of such signals is possible using digital methods [8-9]. 

To ensure broadband, the chirp samples of the signal must be sufficiently short in duration. However, 

short-term exposure cannot always generate a resonant response; therefore the resulting response 

corresponds to the concept of the impulse response of a certain system. The duration of the reaction 

depends on the bandwidth of the response filter, which must be estimated in order to sufficiently use the 

energy properties of reflections [10]. 

The relatively low mobility of the UAV makes it possible to use the coherent properties of signals 

[11], that is, to accumulate signals reflected from objects. This can provide the necessary energy 

performance for long range detection and with acceptable performance. 

Another important aspect is that in addition to the response in a certain frequency range, there will 

be extraneous noise in the received signal. Therefore, for reliable detection of the response, it is 

necessary to use techniques to reduce their influence. As such a technique, the article proposes to use 

sub-band processing, that is, analysis of the properties of received signals from the standpoint of dividing 
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the frequency band into sub-bands [12-14]. For this, the article has developed a special mathematical 

apparatus and methods of its application. 

2. Mathematical foundations of sub-band signal analysis 

Let further the symbol 𝑥(𝑡), 𝑡 ∈ (0, 𝑇) means some signal of finite duration, the Fourier transform of 

which is determined by the following relation [15] 

 𝑋(𝜔) = ∫ 𝑥(𝑡) exp(−𝑗𝜔𝑡) 𝑑𝑡
𝑇

0
. (1) 

The domain of definition of the transformant (Fourier spectrum) is the entire numerical axis and it is 

assumed that the conditions [16] of the existence of the frequency representation of the original signal 

in the domain of originals are fulfilled (inverse Fourier transform) 

 𝑥(𝑡) = ∫ 𝑋(𝜔) exp(𝑗𝜔𝑡) 𝑑𝜔 2𝜋⁄
∞

−∞
, (2) 

and the validity of Parseval's equality 

 ‖𝑥‖2 = ∫ 𝑥2(𝑡)𝑑𝑡
𝑇

0
= ∫ |𝑋(𝜔)|2𝑑𝜔 2𝜋.⁄

∞

−∞
 (3) 

If the spectrum definition area is divided into symmetric sub-bands of the form 

 Ω𝑟 = [−Ω2𝑟, −Ω1𝑟) ∪[Ω1𝑟, Ω2𝑟),  

 Ω11 = 0, Ω2,(𝑟−1) = Ω1𝑟, 𝑟 = 2, 3, (4) 

where the index 𝑟 denotes the number of the frequency interval, then the Parseval equality can be given 

the following form 

 ‖𝑥‖2 = ∑ 𝑃𝑟(𝑥)∞
𝑟=1 , (5) 

where 

 𝑃𝑟(𝑥) = ∫ |𝑋(𝑧)|2𝑑𝑧 2𝜋⁄
𝑧∈Ω𝑟

. (6) 

It seems natural to call characteristics of the form (6) the sub-band parts of the signal energy. It is 

clear that the definition of these characteristics refers to the techniques of sub-band analysis [12]. 

It is important that the feasibility of such calculations is available directly in the signal definition area 

(originals area). This conclusion can be easily substantiated by substituting representation (1) into 

definition (6). As a result of simple transformations, we obtain the quadratic form 

 𝑃𝑟(𝑥) = ∫ ∫ 𝐴𝑟(𝑡1 − 𝑡2)𝑥(𝑡1)𝑥(𝑡2)𝑑𝑡1𝑑𝑡2
𝑇

0

𝑇

0
, (7) 

whose core is determined by the sub-band integral 

 𝐴𝑟(𝑡) = ∫ exp(−𝑗𝑧𝑡)𝑑𝑧 2𝜋⁄
𝑧∈Ω𝑟

. (8) 

After integration, from this we have 

 𝐴𝑟(𝑡) = (sin(Ω2𝑟𝑡) − sin(Ω1𝑟𝑡)) 𝜋𝑡,⁄   

 𝐴𝑟(0) = (Ω2𝑟 − Ω1𝑟) 𝜋⁄ . (9) 

Kernels of the form (8) will be called sub-band kernels. They serve as the basis for the mathematical 

apparatus of sub-band analysis developed in the article. 

In addition to calculating the sub-band parts of the signal energies, it is of interest to separate their 

sub-band additive components 

 𝑥(𝑡) = 𝑦𝑟(𝑡) + 𝜀𝑟(𝑡), 𝑡 ∈ (0, 𝑇), (10) 
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which are uniquely determined based on the following requirement for the spectrum of the sought-for 

component 

 𝑌𝑟(𝜔) = ∫ 𝑦𝑟(𝑡) exp(−𝑗𝜔𝑡)𝑑𝑡
𝑇

0
. (11) 

Namely 

 𝑌𝑟(𝜔) = 𝑋(𝜔), 𝜔 ∈ Ω𝑟, (12) 

 𝑌𝑟(𝜔) ≡ 0, 𝜔 ∉ Ω𝑟. (13) 

It is clear that requirements (12) and (13) with a finite duration of the signal components cannot be 

met, but a functional can be introduced that determines the sub-band measure of the error of their 

fulfillment in the space of signals of the original duration 

 𝑆𝑟(𝑦) = 𝑃𝑟(𝑥 − 𝑦) + ‖𝑥‖2 − 𝑃𝑟(𝑦). (14) 

It can be seen that the first term is the measure of the error in meeting requirement (12), while the 

other two, taking into account equality (3), determine the measure of the error of the deviation from zero 

of the squared modulus of the spectrum of the sought component (requirement (13)). Therefore, the 

natural principle is the variational condition for minimizing the error measure in the space of signals of 

the original duration with limited energy 

 𝑆𝑟(𝑦𝑟) = min 𝑆𝑟(𝑦) , 𝑦(𝑡) ∈ 𝐿2(𝑇). (15) 

Omitting details, we present the solution of the variational problem (15) 

 𝑦𝑟(𝑡) = ∫ 𝐴𝑟(𝑡 − 𝜏)𝑥(𝜏)𝑑𝜏
𝑡

0
. (16) 

Thus, in this case, sub-band cores are of decisive importance. 

Note one more important feature of the components of the initial signals obtained on the basis of 

representation (16). If representation (8) is substituted into (16), then after obvious transformations, 

taking into account definition (1), it is easy to obtain the following relation 

 𝑦𝑟(𝑡) = ∫ 𝑋(𝜔) exp(𝑗𝜔𝑡) 𝑑𝜔 2𝜋⁄
𝜔∈Ω𝑟

. (17) 

It shows that the component of the form (16) is completely determined by the segment of the 

spectrum of the original signal in the original sub-band. This is a very important property that cannot be 

achieved with any other filter. 

In addition, unlike other filtering methods, the additivity property ∑ 𝑦𝑟(𝑡) = 𝑥(𝑡)∞
𝑟=1  holds. It 

follows directly from the definition of sub-band kernels. 

3. Computational aspects of sub-band analysis 

The implementation of calculating integrals (8) and (16) using computer technology involves the use of 

quadrature formulas. From many points of view, it seems acceptable to carry out equidistant 

discretization of the integration regions (signal definition regions) and use the quadrature formula of 

rectangles, so that analogs of (8) and (16) are 

 𝑃𝑟(�⃗�) ≅ �⃗�´𝐴𝑟�⃗�, (18) 

 �⃗�𝑟 = 𝐴𝑟𝑥, (19) 

where the top stroke means transpose: 

 �⃗� = (𝑥1, ⋯ , 𝑥𝑁)´; 𝑥𝑘 = 𝑥(𝑘∆𝑡);  𝑘 = 1, ⋯ , 𝑁;  

 �⃗�𝑟 = (𝑦1𝑟, ⋯ , 𝑦𝑁𝑟)´; 𝑦𝑘𝑟 = 𝑦𝑟(𝑘∆𝑡);  𝑘 = 1, ⋯ , 𝑁;  

 𝐴𝑟 = {𝑎𝑖𝑘
𝑟 };  
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 𝑎𝑖𝑘
𝑟 =

sin(𝑉2𝑟(𝑖−𝑘))−sin(𝑉1𝑟(𝑖−𝑘))

𝜋(𝑖−𝑘)
, 𝑎𝑖𝑖

𝑟 =
𝑉2𝑟−𝑉1𝑟

𝜋
; (20) 

 𝑉𝑚𝑟 = ∆𝑡Ω𝑚𝑟; 𝑚 = 1, 2; (21) 

where ∆𝑡 = 𝑇 𝑁⁄  - sampling step. 

It seems that the use of the same symbols to denote discrete analogs of sub-band cores (sub-band 

matrices) and signals does not lead to distortion of the essence. 

The discretization step must be small enough in the sense of fulfilling the inequalities 

 𝜀𝐺 = 1 − ∫ ∫ 𝐴𝐺(𝑡1 − 𝑡2)𝑥(𝑡1)𝑥(𝑡2)𝑑𝑡1𝑑𝑡2
𝑇

0

𝑇

0
‖𝑥‖2⁄ ≪ 1,  

where 𝐺 - corner frequency interval satisfying the condition, 

 𝐺∆𝑡 = (−𝜋, 𝜋). (22) 

The product on the left side of (22) is usually called the area of normalized circular frequencies, 

which determines the period of changes in the spectrum of the sample vector (keeping the notation): 

 𝑋(𝜔) = ∑ 𝑥𝑘 exp(𝑗𝜔𝑘)𝑁
𝑘=1 ;  −𝜋 ≤ 𝜔 ≤ 𝜋. (23) 

It is clear that with a limited range of definition of the spectrum of the sampled signal, only a finite 

number of sub-bands are formed, which completely cover the area (22). Under conditions of uncertainty 

regarding the properties of the MBPLA structural elements reacting to sounding, it seems natural to 

divide this area as follows (a zero sub-band is introduced) 

 𝑉01 = 0; 𝑉02 = ∆𝑉 2⁄ ; ∆𝑉 = 𝑉2𝑟 − 𝑉1𝑟 = 𝑐𝑜𝑛𝑠𝑡;  

 𝑟 = 1, ⋯ , 𝑅; (24) 

 ∆𝑉(2𝑅 + 1) = 2𝜋. (25) 

It is easy to show that then, in accordance with (20), the sub-band matrices can be represented in the 

following form 

 𝐴𝑟 = 𝐶𝑟𝐴0𝐶𝑟 + 𝑆𝑟𝐴0𝑆𝑟, (26) 

where 

 𝐴0 = {𝑎𝑖𝑘
0 };  

 𝑎𝑖𝑘
0 =

sin(∆𝑉(𝑖−𝑘) 2⁄ )

𝜋(𝑖−𝑘)
;  𝑎𝑖𝑘

0 =
∆𝑉

2𝜋
; 𝑖 = 1, ⋯ , 𝑁; (27) 

 
𝐶𝑟 = diag(cos(𝜔𝑟) , ⋯ , cos(𝜔𝑟𝑁)) ;

𝑆𝑟 = diag(sin(𝜔𝑟) , ⋯ , sin(𝜔𝑟𝑁)) ;
 (28) 

 𝜔𝑟 = 𝑟∆𝑉; 𝑟 = 0, ⋯ , 𝑅. (29) 

Due to the symmetry of the matrices 𝐴𝑟 and their positive definiteness (follows from the positivity 

of the sub-band parts of the energies of signals of finite duration), they are matrices of a simple structure 

and their eigenvalues are positive [17]. Computational experiments, however, show that only defined 

by the following relation (the square bracket means the integer part of the number) 

 𝐽0 = [𝑁∆𝑉 2𝜋⁄ ] + 2, (30) 

some of the eigenvalues of the zero sub-band matrix are significantly different from zero. Therefore, the 

relation 

 𝐴0 = 𝑄0𝐿0𝑄0, (31) 

where 𝐿0 − diagonal matrix of nonzero eigenvalues, 
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 𝐿0 = diag(𝜆1
0, ⋯ , 𝜆𝐽0

0 ), (32) 

𝑄0 − matrix of eigenvectors corresponding to nonzero eigenvalues, 

 𝐴0𝑄0 = 𝑄0𝐿0. (33) 

Based on the definition of the zero sub-band matrix, one can prove the inequality for the eigenvalues 

[18] 

 1 ≥ 𝜆1
0 ≥ ⋯ ≥ 𝜆𝐽0

0 > 0. (34) 

In turn, using representation (26), one can prove the validity of the following relations for the 

eigenvalues of sub-band matrices of other sub-bands. 

 𝜆2𝑘−1
𝑟 = 𝜆2𝑘

𝑟 = 𝜆𝑘
0 ; 𝑘 = 1, ⋯ , 𝐽0. (35) 

For matrices of eigenvectors corresponding to eigenvalues with odd and even indices, the following 

representations are valid [19] 

 
𝑄𝑟

𝑐 = 𝐶𝑟𝑄0;
𝑄𝑟

𝑠 = 𝑆𝑟𝑄0.
 (36) 

Note that it is expedient to compose the general matrix of eigenvalues bearing in mind the order 

determined by the indices in (35). Then the corresponding eigenvectors in the common matrix will also 

be interspersed in the same order. 

It is easy to show that the substitution of (26) in (18) and (19) gives the corresponding representations 

in terms of the projections of the original vector onto the eigenvectors of the sub-band matrices 

 𝑃𝑟(�⃗�) = ∑ 𝜆𝑘
0 (𝛼𝑘𝑟

2 + 𝛽𝑘𝑟
2 )

𝐽0
𝑘=1 ; (37) 

 �⃗�𝑟 = �⃗�𝑐𝑟 + �⃗�𝑠𝑟; (38) 

 
�⃗�𝑐𝑟 = 𝐶𝑟𝑄0𝐿0�⃗�𝑟;

�⃗�𝑠𝑟 = 𝐶𝑟𝑄0𝐿0𝛽𝑟;
 (39) 

 
�⃗�𝑟 = (𝛼1𝑟, ⋯ , 𝛼𝐽0𝑟)’ = 𝑄’0𝐶𝑟�⃗�;

𝛽𝑟 = (𝛽1𝑟, ⋯ , 𝛽𝐽0𝑟)’ = 𝑄’0𝑆𝑟�⃗�.
 (40) 

Obviously, these relations show the possibility of efficient parallelization of the computations of 

these sub-band characteristics. 

It is of interest to estimate the required dimension of the used sub-band matrices. For this, as a 

measure of the difference between the spectra of the original and the vectors obtained on the basis of 

relation (19), we use the concept of the sub-band part of the energy of their difference, which after 

obvious transformations takes the following form 

 𝑃𝑟(�⃗� − �⃗�𝑟) ∑ 𝜆𝑘
0(1 − 𝜆𝑘

0 )
2

(𝛼𝑘𝑟
2 + 𝛽𝑘𝑟

2 ) =
𝐽0
𝑘=1 (1 − 𝜆𝑚𝑒𝑎𝑛

0 )2𝑃𝑟. (41) 

Here we mean that, in view of the positiveness of the factors in the representation of the terms, there 

is always some mean value of any of them, which makes it possible to express the sum in this form 

(mean value theorem). In this case, the multiplier in front of the sub-band part of the energy can be 

interpreted as a relative error. In view of inequality (34), its value will be less than one. 

In order for vector (19) to sufficiently reflect the properties of the segment of the Fourier transform 

of the initial data, it is necessary to ensure that the right-hand side of (41) is close to zero. It is clear that 

this is achieved when the maximum projections onto the eigenvectors correspond to the largest 

eigenvalues, and the eigenvalues themselves are close to unity. Computational experiments show that 

the number of eigenvalues sufficiently close to unity is determined by the relation 

 𝐼0 = 𝐽0 − 3. (42) 
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Since the positivity of the right-hand side of (42) must be ensured, bearing in mind (30), we obtain 

the requirement for the number of samples 

 𝑁 ≥ 4𝜋 ∆𝑉⁄ = 2𝜈𝑑 ∆𝜈⁄ , (43) 

where on the right we mean the sampling rate 

 𝜈𝑑 = 1 ∆𝑡⁄ , (44) 

and the width of the original sub-bands in the frequency domain 

 ∆𝜈 = ∆𝑉 2𝜋⁄ . (45) 

It is easy to show that, in this case, the duration of the processed continuous realization must satisfy 

the inequality 

 𝑇 = 𝑁∆𝑡 ≥ 2 ∆𝜈⁄ . (46) 

4. Decisive procedure for sub-band response detection 

It is assumed that after a certain delay in relation to sounding by short pulses at the output of the receiver, 

the vector of signal samples �⃗� of dimension N is recorded. It is necessary to make a decision regarding 

the validity of the following initial hypothesis [20]. 

𝐻9: the components of the vector �⃗� are generated in the absence of responses from the MBPLA. 

 �⃗� ≡ �⃗⃗� = (𝑢1, ⋯ , 𝑢𝑁)𝑇, (47) 

where 𝑢𝑖, 𝑖 = 1, ⋯ , 𝑁 − samples of some centered noise with uncorrelated samples (𝐸 is the mean 

symbol), 

 
𝐸[𝑢𝑖𝑢𝑖+𝜏] = 𝜎𝑢

2, 𝜏 = 0;

𝐸[𝑢𝑖𝑢𝑖+𝜏] = 0, 𝜏 ≠ 0.
   (48) 

In the simplest case, the opposite hypothesis is formulated as follows. 

𝐻1 = �̅�0: the components of the vector �⃗� are recorded in the presence of a response/ 

�⃗⃗⃗�𝑟 = (𝑤1𝑟, ⋯ , 𝑤𝑁𝑟)’ from MBPLA in some previously unknown sub-band from a previously 

formed set of them, that is 

 𝑥𝑖 = 𝑤𝑖𝑟 + 𝑢𝑖, 𝑖 = 1, ⋯ , 𝑁. (49) 

The sub-band test of the validity of the initial hypothesis should be performed by detecting a possible 

response in each of the sub-bands. 

It is proposed to use components of vectors of the form (40) as features. Bearing in mind (47), when 

the initial hypothesis is fulfilled, 

 
�⃗�𝑟

𝑥 = �⃗�𝑟
𝑢 = 𝑄’0𝐶𝑟 �⃗⃗�;

𝛽𝑟
𝑥 = 𝛽𝑟

𝑢 = 𝑄’0𝑆𝑟 �⃗⃗�.
 (50) 

Comparison of these relations with definitions (28) of the matrices included in them shows that 

quadrature processing is implemented, in which the role of the filter is played by the matrix of 

eigenvectors of the zero sub-band matrix. 

The centrality and the property of uncorrelatedness (48) of the noise, as well as the equality to unity 

of the Euclidean norms of the eigenvectors of the zero sub-band matrix, make it possible to obtain the 

following relations for the numerical characteristics of the components of the vectors (50) 

 𝐸[�⃗�𝑟
𝑢] = 𝐸[𝛽𝑟

𝑢] = 0; 𝑚 = 1, ⋯ , 𝐽0; (51) 

 𝑠𝑚𝑟
𝛼2 = 𝐸[(𝛼𝑚𝑟

2 )2] = 𝜎𝑢
2 2⁄ + 𝜎𝑢

2 ∑ cos(2𝜔𝑟𝑘)𝑞𝑘𝑚
2 2⁄𝑁

𝑘=1 ; (52) 

 𝑠𝑚𝑟
𝛽2

= 𝐸[(𝛽𝑚𝑟
2 )2] = 𝜎𝑢

2 2⁄ − 𝜎𝑢
2 ∑ cos(2𝜔𝑟𝑘)𝑞𝑘𝑚

2 2⁄𝑁
𝑘=1 . (53) 
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These relations imply the obvious equalities 

 𝐸[(�⃗�𝑚𝑟
𝑢 )2] + 𝐸 [(𝛽𝑚𝑟

𝑢 )
2

] = 𝜎𝑢
2. (54) 

It is clear that among the eigenvectors of the zero matrix there is one on which the minimum variance 

of the projection is achieved. This circumstance and relation (54) speaks in favor of using separately the 

responses of the quadrature components as a feature space for detecting the responses of the quadrature 

components. 

Under the conditions of the opposite hypothesis (49), the quadrature components of the projections 

onto the eigenvectors are determined by the following relations 

 �⃗�𝑟
𝑥 = �⃗�𝑟

𝑤 + �⃗�𝑟
𝑢 = 𝑄’0𝐶𝑟(�⃗⃗⃗� + �⃗⃗�); (55) 

 𝛽𝑟
𝑥 = 𝛽𝑟

𝑤 + 𝛽𝑟
𝑢 = 𝑄’0𝑆𝑟(�⃗⃗⃗� + �⃗⃗�). (56) 

It is also easy, taking into account (51), to obtain relations for the mathematical expectations of these 

vectors 

 𝑒𝑟
𝛼 = (𝑒1𝑟

𝛼 , ⋯ , 𝑒𝐽0𝑟
𝛼  )’ = 𝐸[�⃗�𝑟

𝑥] = 𝐸[�⃗�𝑟
𝑤]; (57) 

 𝑒𝑟
𝛽

= (𝑒1𝑟
𝛽

, ⋯ , 𝑒𝐽0𝑟
𝛽

 ) ’ = 𝐸[𝛽𝑟
𝑥] = 𝐸[𝛽𝑟

𝑤]. (58) 

Assuming that the responses are stationary during some time, a large number of soundings of values 

in the sense of preserving the values of the components of vectors (57) and (58), in order to reduce the 

variances of the components of the second terms in (55) and (56), it is advisable to average the resulting 

projections, obtaining estimates of the vectors mathematical expectations 

 �̂�𝑟
𝛼 = ∑ �⃗�𝑟

𝑥(𝑛) 𝐾⁄𝑘
𝑛=1 , (59) 

 �̂�𝑟
𝛽

= ∑ 𝛽𝑟
𝑥(𝑛) 𝐾⁄𝑘

𝑛=1 . (60) 

Here the argument in parentheses means the act of probing. 

It is important that if the terms in (59) and (60) are uncorrelated from sounding to sounding, then the 

variances of their noise components compared with (52) and (53) will decrease by a factor of 𝐾 

 
𝑑𝑚𝑟

𝛼2 = 𝑠𝑚𝑟
𝛼2 𝐾;⁄

𝑑𝑚𝑟
𝛽2

= 𝑠𝑚𝑟
𝛽2

𝐾.⁄
 (61) 

When checking the validity of the initial hypothesis, we use the following decision rule: the 

hypothesis of the absence of a response in the tested sub-band is rejected if at least one of the following 

inequalities is satisfied 

 |�̂�𝑚𝑟
𝛼 | ≥ ℎ𝑚𝑟

𝛼 , 𝑚 = 1, ⋯ , 𝐽0; (62) 

 |�̂�𝑚𝑟
𝛽

| ≥ ℎ𝑚𝑟
𝛽

, 𝑚 = 1, ⋯ , 𝐽0. (63) 

where ℎ𝑚𝑟
𝛼  и ℎ𝑚𝑟

𝛽
, 𝑚 = 1, ⋯ , 𝐽0 − some thresholds that are determined in the learning process with a 

deliberate lack of responses. 

The learning process is implemented on the basis of 𝛼 given probability α of errors of the first kind 

(false alarms). It determines the required number 𝑀 of repetitions of averaging procedures of the form 

(59) and (60) (here the square bracket is the integer part of the number) in the deliberate absence of 

responses 

 𝑀 = [1 𝛼⁄ ] + 1. (64) 

In the absence of responses, the thresholds are determined from the condition 
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 ℎ𝑚𝑟
𝛼 = max|∑ cos(𝜔𝑟𝑘)𝑞𝑘𝑚(𝑘)�̅�𝑘

𝑖𝑁
𝑘=1 |, (65) 

where 𝑖 = 1, ⋯ , 𝑀. 

 ℎ𝑚𝑟
𝛽

= max|∑ sin(𝜔𝑟𝑘)𝑞𝑘𝑚(𝑘)�̅�𝑘
𝑖 (𝑖)𝑁

𝑘=1 |, (66) 

where 𝑖 = 1, ⋯ , 𝑀. 

Here the symbol �̅�𝑘
𝑖  means the component of the noise vector obtained with the i averaging (see (59) 

and (60)) 

 �̅�𝑘
𝑖 = ∑ 𝑢𝑘

𝑖 (𝑛) 𝐾⁄𝐾
𝑛=1 . (67) 

Here, again, the symbol 𝑛 in brackets denotes the probing number in the formation of sums of the 

form (59) and (60). Thus, averaging is reduced to averaging the noise vectors. 

It is of interest to estimate the probability of errors of the second kind (missing a target) [20]. To do 

this, assume that the noise has a Gaussian distribution. Then the ratios for the probabilities of errors of 

the second kind in the detection of responses have the form 

 𝑝𝑚𝑟
𝛼 = 𝐹((ℎ𝑚𝑟

𝛼 + |𝑒𝑚𝑟
𝛼 |) 𝑑𝑚𝑟

𝛼 +⁄ 𝐹 (ℎ𝑚𝑟
𝛼 − |𝑒𝑚𝑟

𝛼 |) 𝑑𝑚𝑟
𝛼⁄ ) − 1; (68) 

 𝑝𝑚𝑟
𝛽

= 𝐹 ((ℎ𝑚𝑟
𝛽

+ |𝑒𝑚𝑟
𝛽

|) 𝑑𝑚𝑟
𝛽

+⁄ 𝐹 (ℎ𝑚𝑟
𝛽

− |𝑒𝑚𝑟
𝛽

|) 𝑑𝑚𝑟
𝛽

⁄ ) − 1. (69) 

Here we mean the integral of the probability for the Gaussian distribution [20] 

 𝐹(𝑐) = (2𝜋)−
1

2 ∫ exp(−𝑥2 2⁄ )𝑑𝑥
𝑐

−∞
. (70) 

These relations show that in order to achieve the probability of correct detection of the order of 0.98 

with the probability of a type I error of the order of 0.0001, at least one of the following inequalities 

must be satisfied 

 |𝑒𝑚𝑟
𝛼 | > 2𝑑𝑟𝑚

𝛼 . (71) 

5. Conclusion 

Within the framework of this article, the urgent problem of radar detection of small-sized UAVs to 

ensure the safety of flights of aircraft at low altitudes is considered. The conditions of reaction to 

sounding of only individual parts of structures of small-sized UAVs of unknown dimensions are 

considered. Under these conditions, the responses to sounding are formed on the basis of resonances in 

a previously unknown frequency band. Therefore, it is advisable to use sounding with broadband signals, 

for example, multifrequency signals in the form of a chirp with digital shaping. 

Sub-band processing of the received signals, which is realized on the basis of dividing the domain of 

spectral definitions into sub-bands, is of paramount importance, this is how you can adapt to the 

frequency response band from small objects and filter noise. 

The article describes the elements of the mathematical apparatus of sub-band signal analysis in the 

form of sub-band matrices and their eigenvalues and vectors. The concept of sub-band parts of signal 

energies is introduced and an optimal solution to the problem of filtering responses in given sub-bands 

is obtained in the sense of minimizing the sub-band measure of the square error of approximations. 

A procedure for processing received signals when making decisions about the presence of a response 

in a given sub-band is developed and an estimate of the probabilities of erroneous decisions is given for 

a given probability of errors of the first kind. 
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