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F L U C T U A T I O N S  I N  O N E - D I M E N S I O N A L  D Y N A M I C  S Y S T E M S  

Yu. D. M e n d y g u l o v  and  V. M.  M o s k o v k i n  UDC 517.9 

We consider one-dimensional dynamic systenls with random fluctuations that are encountered in ap- 
plications, analyze solutions, and investigate the stability of stationary points. 

In applications we frequently encounter dynamic systems with one-dimensional phase spaces. Examples are pro- 
vided by coastal systems in geomorphology, autonomous populations in biology, autocatalytic reactions in chemistry, 
etc. [1, 2]. In general, such systems are described by equations of the form 

dw 
- -  = F(,,:), 
dt 

where 
,,,~[a.b]: a. bE R. (1) 

In such systems, an important role is often played by a variety of fluctuat.ions that are as likely to be associated 
with fluctuations in macroscopic parameters as the stochastic nature of processes that occur in the systems themselves. 
Following [2]. we will a t tempt  to account, for random fluctuations by replacing the deterministic equation (1) with the 
stochastic differential equation (a stochastic Ito equation) 

dw = F(w)dt + .qd#(t), (2) 

where the second term describes the contribution of fluctuations to w, and ,q is tile amplitude of the fluctuations (which 
we assume to be constant). 

On do'(t) we impose the conditions 
{ ( d 4 t ) )  = 0. 

((do'(t))  2) = dr. (3) 

where ( . . . )  = f ~ ( . . .  )p(w, t lu'o, to)dw is the statistical average, and p(w, t Ewoto) is the probability that the system 
coordinate in the phase space at time t will have the value w if it has the value w0 at time to. 

Averaging (2), we obtain Ito's equation for tile mean value [2]: 

dw 
d--/- = (e(,,. ,)). (4) 

From Eq. (2) and the statistical independence of do(t) and w we obtain, for the probability distribution fimction. 
~he l to-Fokker-Planck equation [2]: 

Op _ 0 g~- O~-P (.5) 
Ot Ow (F(u')p) + -2 0u ,----g-" 

Tile formal solution of the Cauchy problem for this equation is of the form [3] 

p ( u , , t ) = e x p  ( t - t o )  du"- ~ F ( u , )  ,y(u,), (6) 

where ~(w) ~ p(w. 10) is tile initial condition. 
We now introduce the notation p = -i~--~r. so tile function p(w. t) takes the form of the amplitude of the probability 

(~-function) for a one-dimensional quantum particle with coordinate w and Hamiltonian H = "-i P- + p F ( l l ; )  [4]. Thus. 
every one-dimensional stochastic system can be treated a.s a one-dimensional quantum particle with imaginary mass 
ig-'-' that is subjec~ to friction. [t now follows, according to [4], that p(u. t) = (w]t). where lu') is the eigenvector of 
the coordinaw operator of a qua,~tum particle, and [t) is the state vector of the particle, which depends on time and 
is equal Io 

It) = exp { - i t I ( t  - tu)} ]to) - exp { - i ( l lo  + fl l)( t  -- to)} [to}. (7) 
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where i/o) is the stale vector of the particle at time #0. 

,) 

9- 2 
flo = .~i v . Hi = p v ( , , ) .  (.,Ito) - +,(,,,). 

We represent I t) in the foriii 
It} = exp { - i H o ( t  - to)} Ito) + ~;(t)tto); 

llOW. Ilpon differentiation of expression (8). we obtain, for the operator U(I). the equation 

(8) 

dU 

dt 
- i ( H o + H l ) U - i H l e x p { - i H o ( t - t o ) } ,  (0) 

from which it follows that, 
, t  

U ( t ) = e x p { - i H 0 ( t - t o ) } j  e x p { - i H 0 ( 0 - / 0 ) }  
o 

x [ - i H i U(O)  - iHi  exp { - iHo(O - 1o)}] dO; 

this last. is clearly equivalent to the integral equation 

(lo) 

{ /,' } j" I + i d0exp {iHo(O - t)} H , ( O . . .  U(t)  = - i  d0exp {iHo(O - t )}  
o o 

whose solution is 

Xml exp { - iHo(O  - to)}. ( i l l  

" ' s , '  s  U(t) = Z ( - i )  "+i / dOn d o n - , " "  dO, dOoexp {iHo(On - t)} Hl(0n) 
n = O  d ~0 0 0 

x exp {l i fo(On_,  - 0 , ) }  H , ( O n _ , . . . e x p  {iHo(Oo - 0t)} H,(0o)exp {- iHo(Oo - to)}. (12) 

Here we have used the known expansion for the operators (I  - A) -1 = ~ - - 0  An" where A is an operator and I is the 
identity operator.  As a result, 

p(u,. t) = (wtt )  = (u,t ~xp {-iHo)(t - to)}  tto) + (,vlU(t)lto) 

= exp (t - ,o)T~-77d,~j> ~(,,'1 + F _ . I - i r  '+1 <se. a o . _ , . . ,  ao, aeo 
n = O  o o 

/i /7 s163 •  d & . . . ,  d~,,. d J, d3o < (u, lexp {mo(O. - t)} ]<~.) 

( , ,~lH,(0n)l . '&)(3~ I exp {trio(On_, - 0n)} la~- 0(on-,IH~(0n-,)tdn- 0 

(3._ t I - . - (3 ,  I exp {iHo(Oo - Oi )} Ioo)(~,01H,(0o)130) 

J "~ d q e x p {  (u ' - !# )2  } x ( 3 ~ 1 7 6 1 7 6 1 7 6 1 7 6  gk /2 l I ( t  - to) 2)T(T-s 

/ , ; s , i s  s7 x ~:(9) + don dO,,_ t '"  �9 dO, dOo dd,~" +t3o 
7) 0 t o  i 

f_ (it-&)". ] exp ]1"_ ( ,3 . -&-i)  a 

' ,.la,lrj-~(t _ O,)al- !lav/rJ-H(On _ 0 ,_ l )a / "  

ox- f (<h-3o) ~ "1 
x[3, ,_ 7,,_i1F(.7,,_,)... " P t  "-'-~"'-->V;)J r 1q0)3/2 ]I I 3o]F(30) 
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/ " J:/ { I J , , -  :/)~ 1, 
X . . . .  : i x / 2 n ( 0  - to) exp  ~u'-'(00 - t~,) j , : (u).  

In II,e computalion above we used the kuown formulas 

r d'  ~ f ' ~  d q { [ , , , -y)~} exp {..-~T.~ j~ ,:(,~.) = _~ ~ I,/~.-~-- exp ~.i ,:(U); 

OI;h(o)la) - (alPF(u')13) = -id'(a -3 )F(3) .  (13) 

where (oJHI(O)J,3) is the operator Ht in the w-representation [4]. In the zero-th order theory of perturbations we have 

/_-v d.q e x p {  (u,--y)'- }?(y)  
p 0 ( , , ' , 0  = ~ g,/2n(t - ~ 0 )  ~ - ~  27o) 

_. _ f I ' , ' - - , )  ~ "1 

+ ~o d-, . . . . .  [,,'-~,,]F(:,) 
' gav/~(t  - 0).3/2 

f e e  d9 e x p {  ( ~ _ y 2 )  } 
x . . . .  j d ' m ( o  - t o )  2 Z ( Y : ; - o )  # (u ) .  (14) 

As we can see, the zero-th approximation (14) corresponds to expansion in the amplitude of the fluctuations to 
1/9 4 , inclusive. Thus, this approximation is better for sufficiently large fluctuation amplitudes. 

We now consider the stationary case of Eq. (5), 

2 d 2 
(dv[F(w)p(w)l + 2 ~w2P(W ) = 0. (15) 

Integration of Eq. (15) yields 
2 I p - ---~Fp = const. (16) g- 

It follows from the physical meaning of p(u') that 

lira p'(w) = lim p(w) = 0. (17) 
w --,+ o o  w --+ c ,o  

It follows that Eq. (16) now takes the form 
, p F(w)p = 0, (18) 

9- 
whose solution is 

p = C e x p { 2  f F(u,)dw}. (19) 

where the constant C is found from the normalization conditions. 
The extrema of the function (19) are fonnd from the condition F(w) = O. 
Thus. the extrema of lhe flmction (19) correspond to the fixed point, of the dynamic system (1). Let the function 

(19) have a maximum or minimunl at the point ~,. Now 

F(n,) = F'(~,)(u" - ~,) + O ( l u , -  ~'12), (20) 

where O is the Landau symbol. If & is a maxinmm point. F'(w) < 0 and it is clear from (20) that tb is a stable 
stationary point. If. however, d, is a minimum point, F'(w) > 0 and d' is an unstable stationary point. Thus. in 
n~easurements we most probably observe a system at a stable stationary point, and least probably detect an unstable 
point, with agrees with the case of the dynamic system (1) without fluctuations. If. however, the right side of (1) 
depends on a parameter and the system loses stability at a stationary point when the parameter is changed, in the 
case of stochastic dynamics, a change in the system parameter will cause the system to leave the neighborhood of a 
stationary point, when it becomes unstable to enter the neighborhood of another stable stationary point. 
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