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SUMMARY

This paper is an advanced extension of the work reported in (Nonlinear Anal. 2005; 63:1467-1473). A
transport equation that describes the propagation of a substance in a moving fluid or gas is considered.
The equation contains the transient, convection, and diffusion terms. The problem is formulated in a
bounded domain provided with an inlet and an outlet for the fluid or gas flow. The crucial point of the
problem setting is a hysteresis-type condition posed on an active part of the boundary. This condition
reflects the nondecreasing accumulation with saturation of the transported substance at each point of
the active boundary part. We prove the existence and uniqueness of solutions to this problem, study
the regularity properties of solutions, and perform numerical simulations that clarify the behavior of the
model. Comparing with the results of (Nonlinear Anal. 2005; 63:1467-1473), the advancement of this
work consists in accounting for the motion of the fluid or gas and posing inlet and outlet boundary
conditions. Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The objective of this paper is to extend the results obtained in [1]. Remember that the problem
under consideration is motivated by the development of biosensors that serve for the quantitative
detection of proteins in solutions. An important part of such sensors is a wet cell, say a tiny
box, provided with an inlet and an outlet for the solution containing a protein to be detected.
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Remark 1.1

A simplified notation n=.o7(u) will be used instead of (6), i.e. the arguments will be omitted
whenever this does not lead to a confusion. Moreover, note that the surface concentration of the
protein # assumes values from the interval [0, 1], whereas the rescaled protein volume fraction u
is of the order 1 but can exceed 1.

In order to reduce the diffusion coefficient to 1, rescale the time variable by multiplying it by
o (see formula (1)). In the new variables (the old notation is kept for the rescaled time and fluid
velocity), our problem is rewritten as follows:

Qx[0,T]: wur=Au—div(uV) (8)
0Q\I'x[0,T]: Z—z:O 9)
Ju
I'x[0,T]: =3 n=.of(u) (10)
v
t=0: u:uo, 17:170 (11

where .of is defined by (7), see also (6) and Remark 1.1. Assume that the velocity V is sufficiently
smooth, bounded, i.e. |V(x,t)|<C, and satisfies the conditions: divV=0and V- v| 0Q\(rnurout =0.

Suppose for simplicity that V is time independent on I'™ and ™.
Problems (8)—(11) is called Problem A.
1.2. Main result

Definition 1.2
A pair of functions

we H'(Qr), nel™I7)

with u|,—o=u"

is called a generalized solution to Problem A, if
n(x,t)=s/(u(x,-))(¢) for almostall (x,t)el’r (12)

and the following integral identity

T T T
/ /[utlp—f—Vule—uVle]dxdt—f—/ / glp(V~v)dsdt—|—/ / uy(V-v)dsdr
0 JQ 0o Jrm o Jrew

T
_/O /rmptdsdr—/rn%ods:o (13)

holds for every smooth function ¥ such that y/|;—r =0.

Here Qr =Qx[0,T], I'r=I"x[0, T], wozwt:o, ds denotes the two-dimensional Lebesgue
measure, #° is a weak initial condition for #.
The following theorem is the main result of this paper.



Theorem 1.3 '
Let u® e H/(Q)NL®(Q), u’>0, g € L°(T™), and #° is a measurable function such that #°(x) =
H(u%(x)) for xT". Then there exists a unique generalized solution to Problem A such that

ur, Aue L*(Qr), u,, € L0, T;L*(Q), o¢=1,2,3
O<u<max{[|u® || @), gl oogrim)}

neL*(I'r), neHY*(I'r)

Remark 1.4
The condition #°=H (u°) has a physical sense and, besides that, simplifies some mathematical
calculations. Nevertheless, it is not important and can be relaxed.

Remark 1.5
The integral frm g(V-v)ds in (13) represents the mass flux of the protein at the inlet scaled by

OPmax according to (2). It is observed in [2, 7.6] that the equality u=g holds on '™ for any
t>0, if it holds at r =0. A physical explanation of this effect is that the reasonable range of the
diffusion coefficient o is about 10~>—10~7, whereas the magnitude of the velocity V on the inlet
is of the order of 10_%—1, and V is nearly parallel to v, except for a very small region near the
relative boundary of T'™. Therefore, the diffusion mass flux —aV(p Pq5)~v is strongly dominated
by the transport term (p P¢)V~v near the inlet unless the gradient assumes nonphysically large
values. Thus, if g is the trace of u° on '™ at =0, then the trace of u stays very close to g for
t>0. Numerous numerical experiments confirm this effect. Therefore, using the assumption that
divV =0, the integral identity (13) can be replaced by the following one:

T T
/ /(utlp+Vu~le+V~Vmﬂ)dxdt—/ /nlﬂtdsdt—l—/nolﬂods:O (14)
0 Q 0o JI r

1.3. Bibliographical remarks

Problems with hysteresis have been considered in numerous publications. We refer to the books
[3-6] for surveys in this area. The common feature of investigations cited there is the regularizing
term £0u /0t added to the boundary condition (10) to improve the regularity of u|r with respect
to ¢. Thus, the boundary condition on I'" would be transformed to

ou ou
85"”%:—5, n=</(u)

A technique proposed in this paper allows us to handle the singular case with ¢ =0.

2. PROOF OF THE MAIN RESULT

The proof of Theorem 1.3 is rather complicated technically and demands many estimations,
auxiliary results, and accounting for fine properties of solutions to parabolic partial differential
equations (PDEs) stated, e.g. in [7].



2.1. Construction of approximate solutions

Use the implicit time discretization scheme to approximate Problem (8)—(11). Fix arbitrary N e N

and set t="T/N. Define functions 4", n€{1,2,..., N} as solutions of the following problem:
W' —u" ' =1Au" —tV-Vu, xeQ (15)
a n
q-nl= 2 xer (16)
v
a n
M _0, xed\T 17)
v
where
W'(x)= max Hu*x), xel (18)
ke{0,1,....n}
Note that
7' =n""10+H@" x)—"" )T, xel (19)

where as usual, f*:=max(0, f).

Lemma 2.1
If 7 is sufficiently small, the problem (15)—(17) are uniquely solvable with respect to u”.

Proof
Define operator A(u, v): HY(Q) x H'(Q) — (HY(Q))' as follows:

(A(u,v),gb):/ vgbdx—f—r/ VvngdX—i—/(H(v)—n”_1)+q5ds+r/ V- Vugpdx
Q Q r Q

where ¢ € H 1(Q) is an arbitrary function, and (-, -) denotes the duality product between (H'(Q))’
and H'(Q). It is easy to prove that the operator A(u, v) satisfies all conditions of Definition 2.2
of [8], so that the operator A(u)= A(u,u) is a variational one in the sense of this definition. Let
a functional f e (H'(Q)) is defined by

()= /Q Wpdx, pe (@)

According to Corollary 2.1 of [8], the equation A(u)= f has at least one solution. Prove now the
uniqueness of such a solution. Assume, there are two solutions #| and u,. Denote u:=u|—u>.
Then

(A(u1)—A(u2),u1—u2>=/(ﬁ)ZdXJrf/(Vﬁ)de/[(H(ul)—n”_l)+
Q Q I

—(H (u2) =" H [y —us] ds—f—r/ V- Vaiudx=0
Q



Taking into account that the integral over I" is nonnegative, yields for any &>0:
/ (ﬁ)zdx—i—r/ (Vﬁ)zdxgmczf (V)2 dx+ - / ()% dx
Q Q Q €Ja

Choosing £<1/C? and assuming that t<e implies that & =0. O

Lemma 2.2
Let V be a smooth vector function satisfying the following conditions: |V(x, 1)|<C, div V=0, and

V.v<0 onI™
V-v>0 onI"
V-v=0 else

Then, for all functions &, € H'(Q), the following relations hold:

/QV~Vflpdx:/rmuromflp(V~v)ds—/QV~lefdx

/V~fodx:1/v 52(V~v)ds>1/v E(V-v)ds
Q 2 rmurout 2 Tin

1
—/V~V££dx<—/v E|V-v|ds
Q 2 Jrin

The proof is obvious because V-v>0 on I'°™ and V-v<0 on r,

Lemma 2.3
Let f:R— R be a C' function such that f’ does not decrease. Then

f)=fB<f (0)(@—p)

for all o, fe R.

Proof

Really, if a>p, then f(o)— f(B)=f'(Ex)(a—P)<f () (ox— p), where Eye[f, a]. If a<p, then
FB)—=fly=f"(Co)(B—o)=f" (o) (f—a), where o€ [a, f]. U
Lemma 2.4

Let u°, 170, and g be nonnegative and bounded. Then, for all n=1,2,..., N and for almost all

x €2, the following estimate holds:

O<u (x)<max{]|u’ |l L0y, gl oo piny}



Proof
Denote b:max{||u0||Loo(Q), ”g”LOO(Fm)} and introduce the function

&, <0
f=1o, 0<E<h
(E=b)%, &b

It is not difficult to see that this function satisfies the conditions of Lemma 2.3. Multiply (15) by
f'(u") and integrate over € to obtain that

n—1

Q
ou™ , nn_nn—l .
— [ 2 pumyds=- / 0 () ds <0 20)
r ov T T

because the function (i7" —i*~1) f/(u") is nonnegative on I.

Really, if u”(x)>0, then f'(x"(x))>0. Then the obvious inequality #">#""! implies that
' (x) =71 X)) £/ (™ (x))=0. If u*(x)<0, then #(x) =#""1(x) (see (19) and take into account
that all 4 are nonnegative because u° is nonnegative). Explicit computations yield Vu” f/(u") =
1/2V f'(u") f'(u"). Therefore, [ V-Vu" f'(u")dx=1/4 [pin f'(w™?*(V-v)ds due to Lemma 2.2.
Using (20), Lemma 2.3, and the convexity of the function f yields:

/ Fuydxs / Forydx— " / WPV -v) ds
Q Q 4 Jrin

The choice of b and the relation u"|pin=g imply that f’(u")|in=0. Therefore, taking again

into account the choice of » implies that fQ f(u")dx=0, which proves the lemma. (|
2 e [ 21V 2 in
Define 18117, rin. 1y vy qp) =S &1V -VIdsSCIgI? _ i meas(T™).
Lemma 2.5

The following estimate holds:

1 n2 < k2 1 02 ro.»
— <= _ .
2/Qw | dx+rk§1/9|w Pax<g | 0P Xt S 18I gin vy

Proof
Multiplying (15) by u” yields

/((u"—u"_l)u"+I|Vu"|2+rVVu"u")dX:—/(H(u")—n"_1)+u"ds
Q I

Obviously

1 1 1
/(u"—u"_l)u"dX:—/ |u”|2dx——/ |u”_1|2dx—|——/ lu” — 17 dx
Q 2 Ja 2Ja 2 Jo



Taking into account that —2f9V~Vu”u”<frmg2|V~v|ds (Lemma 2.2) and (Hu")—

7~ u >0 (Lemma 2.4) yields
O

1 n2 - k2 1 02 r o
Z <- _ ,
Z/Q|u | dX+Tk;/9|Vu | dX\Z Q|u | dx+2”g”L2(Fm;|V~VIds)

Definition 2.6

Define
2

pom [ 19u0Paxt S [ 0Raxs S gl
= A u X 5 Qu X 5 gLZ(l"m;|V~v|ds)

with C:= ||V||L°O(QT)~

Lemma 2.7

The following estimate holds:
1 n k_ k—12 1
- Z‘E/ i dx+—/ Va2 dx< > @1
2k=1 Q T 2 Q

Proof

Multiplying (15) by u" —u”~"! yields:
u _un—l 2
dx+/ Vu”(Vu”—Vu”_l)dX:—/(H(u")—n"_1)+(u”—u"_1)ds
Q r

|
Q T
un_un—l
—‘E/ V.Vau" <7) dx (22)
9 T

If w"(x)<u""!(x), then H(u"(x))<#*"!(x) and, therefore, (H(u"(x))—#""!(x))*=0. Thus,
(H (™) —y*~1)* (" —u~1)>0 for all x eI". Taking into account the identity

1 1 1
/Vu"(Vu"—Vu"_l)dX:—/ |Vu”|2dx——/ |Vu”_1|2dx—|——/ Vi — Vi 12 dx
Q 2 Ja 2Ja 2Ja

2

the estimate
n n—1 2 n n—1
— C —
/V~Vu” P ) ax <—/|vu"|2dx+f/ YR ax
Q T 2e Q 2 Q T
with e=1, and Lemma 2.5, we obtain from (22):
1 n k_ k=12 1 B
- Z‘E/ v dx+—/ Va2 dx< > [
Further, Equation (15), Lemmas 2.5 and 2.7 imply:
n n uk_uk—l 2
3 r/ |Au*)?dx < Z‘E/ 2| ——| 2 VuFP? | dx
k=1 JQ k=1 JQ T
; (23)

<2/Q|Vu0|2dx+2C2/Q|M0|2dX+2C2T||g||L2(rm;|v.v|ds)



Obtain some other estimates. Define

Mx):= max H@ux), xeQ (24)
ke{0,1,...,n}

Note that another equivalent definition of this function is the following:
) =0+ H @ x0) =T )T xeQ (25)
It is obvious that " € H'(Q) and
n"=yol" (26)

The following Lemma gives uniform estimates for {"* and #".

Lemma 2.8
Foralln=1,2,..., N, the following estimates hold:
/Q V"2 dx < c3B (27)
n gk gk 2
3 ‘E/Q — dx < 2B (28)
k=1
n k_ k=152
) ‘E/r <%) ds < %OB 29)
k=1
where co=max;cp(dH (s)/ds).
Proof
Denote

"(x)= max Fx), xeQ
& ke{O,l,...,n}u ®)

It is not difficult to see that " = H(£"). Let G" be the subset of Q where u”>¢"1.
Multiplying (15) by &" —¢&"~! yields:

/Q((u”—u”‘l)(i”—i"‘l)HW”V(i”—é”‘l)+rV~Vu”(€”—€”‘1))dx

+ [or—r e —ei=o
First, note that (1 —u"~1)(&" — & 1> (&" — &2 almost everywhere in Q. Really, if xe G,
then &*(x) =u"(x) and u"(X) —u" L (x) >u" (x) — "L (x) = & (x) — &1 (x). If X ¢ G", then £"(x) =
&1 (x) and (" (%) —u" 1 ()) (€ (0) = & (%) = (& (%) — "1 (%))? = 0. Thus,

/(é”—i"‘l)deJr/(n”—n”_l)(i”—é”‘l)derr/ Vi V(& =g dx
Q r Q

C?:2 1
<= | v P4z / (& — ey dx (30)
2 Jo 2Ja



It is clear that V(&" — &~ 1) =0 almost everywhere in Q\ G". On the other hand, " =¢" and
Vu*=VE" almost everywhere in G". Therefore,

/vu".V(g"—g"—l)dXZ/ Vu V(=N dx
Q Gn
=/ V€”~V(€”—€”‘1)dX=/V€”~V(€”—€”‘1)dx
n Q

1 1 1
=3 [werag [ vertpaxe s [ ver-verpox
2 Ja 2Ja 2Ja
Estimating (30) together with the last relation and Lemma 2.5 yields:

—Z (ék gk= 1>2dx+%f/(nk—nk”)(ék—ék—l)clwf |V 2 dx
Tk:l I Q

Tr=1

c? c’r
< 02 02 el .
\/Q|V€ [ dx+— /Qlu 7 x4 ——llg 2 i, jv.vpas)

Note that (¥ —F 1= H(EF) — H(E ) <o (EF — EF1), where co=max,ep(dH (s)/ds)>0. There-
fore, multiplying the last estimate by c% yields:

—Z/(C" F1 gxg 20 /(n 7 h? ds+cO/ V&P dx<clB

The assertion of the lemma follows immediately from this inequality together with V"=
H'(EMVEr O

2.2. Passage fo the limit

For every N €N, define two kinds of time interpolations of {u"}, {#"}, and {{"}. Let un, ny,

and {y be piecewise linear interpolations, whereas uy, 7, and {y are piecewise constant ones.
That is,

uN(X,t):u"(x)<1—n+£)+un_1(x)<n—£> ifre[n—1rt,nt], n=1,....,N
uy(x,t)=u"(x) ifte((n—1r,n1t], n=1,...,.N

The functions 1y, {y, 7y, and ZN are defined in the same way.

Lemma 2.9

(uy —in)—0, ((y—Cy)—0 inL*Qr), (y—Ty)—0 in L3(I7)

as N — oo.



Proof
Owing to estimate (21), the following is true

T ) N L2 nt ¢ 2
[ v =i gy 0= g [ (en)
0 n=1 n—17 \T

2
_1.2 “B
”un _un ||L2(Q)< 3

I
W A
=

1

n

which proves the first assertion of the lemma because t=7/N. The other two claims can be

proved using the same arguments and estimates (28) and (29).

Estimates (21), (23), (27), (28), and (29) imply:

2
ouy ) oy
‘ o |20 IVUN oo 0,712y IVEN I oo 0,7, 1200)) S B
2
0 B
e,
6t LZ(FT) 2
o | Vi3 Vinl3 <32B
ot 2 IVeN o0, : 120y IVON Wi 0, 70120y S0
2 052 20,0 2 2
1AUN 11720y SNV U2 ) +2C7 N 20y F2C7T NG o pin, y.y )

Equations (15)—(18), under accounting for estimates (31), yield:

a;—;v =Auy—V-Vuy in LZ(QT)

Ony _ Oy L2, T; H~V2(I))
ot ov

a{;‘_N =0 in L20,T; H2(0Q\T)
v

Ny, t)=o/(un(x,-))(t) foraa. (x,t)elr
v, 1) =of (n(x,))(t) foraa. (x,1)eQr
Additionally, relation (26) implies:
fin=7oly in L0, T; HY*(I))

O

€1V

(32)

(33)

(34
(35)
(36)

37

Owing to estimates (31) and Lemma 2.9, there exists a sequence N,, — c¢ and functions u, 7,

and { such that
uy, —u s-weakly in H'(0, T; L>(Q))NL>(0, T; H'(Q))

@y, —u x-weakly in L>(0,T; H(Q))



{n, —{ x-weakly in H'(0, T; L*(Q))NL>(0, T; H'(Q))
Iy, = *-weakly in L™(0, T; H'(Q))

ny, —n weakly in H'(0, T; L*(I"))

Wy, — N *-weakly in L0, T; HY*(I'))

As a corollary, the limiting functions possess the properties:
ue HYO, T, L2 Q)HNL>®O,T: H(Q)), AuecL*Qr)
Le HYO,T; L>(Q)NL>®0, T: H' (Q))
neHYO,T; L>*(I)NL>, T; H/*(I'))
Moreover, the functions u, #, and { are bounded due to Lemma 2.4, and the estimate holds:
0<u(x, 1) <max{u’ L=y, 18] oo rim}

The passage to the limit with respect to the subsequences in (32)—(34), and (37) yields:

Z_L::Au—v.vu in L>(Qr) (38)
M L20.T HVAD) (39)
ot ov
g_” =0 in L20,T; H™V2(0Q\T)) (40)
A%
n=7yol in L>0,T; HY*I)) (A1)

In order to prove the existence of a solution to Problem A, it is necessary to establish (12). First,
prove that

{(x,t)y=o/(u(x,-))(t) for almost all (x,t) € Qr 42)

This can be done almost in the same way as in [4, IX.1]. Note that, for every s € (0, %) the following
embeddings are true:

HYQp)CcH(Q; H' ™50, T)) c L*(Q; C*[0, T))

where o< % —s. Moreover, the last imbedding is compact. Therefore, uy, — u in LZ(Q; C*0,T])
anduy, (X,:)— u(X,-)in C*[0, T'] for almost all x € Q. Fix an arbitrary £ € [0, T] and set t:=T/N,,.
For every N, € N, there exist ne{l,..., Ny} such that r € ((n —1)t,nt]. Thus,

o (uy, (X,-))(t)=esssupH (uy, (x,5))=esssup H (uy, (X,5))

s€[0,1] s€[0,nt]

= max H(upy,(X,s))=max H(uy, (X,5))+R(t,un,, 1)
s€[0,n71] s€[0,1]

where |R(t,uy,, , )| <Ct* with a constant C, which is independent on N,, and ¢. The passage to
the limit in (36) then yields (42).



In view of (41) and (42), it only remains to prove that
Yol (u)(t) =/ (yqu)(t) for almost all [0, T] 43)

where u is the limit of {uy, }. In order to do that, it is necessary to establish some additional
regularity properties of the function u.

Lemma 2.10 .
For every 6>0, there exists « € (0, 1) such that u € C*»*2((Q), where Q is an arbitrary domain in
Q7 such that Q CQp and dist(Q, {(x, 1) e BTz =0})>4.

Proof

The assertion of the lemma follows (not quite immediately) from techniques of [7, II1.10]. To
apply them, the a.e. boundedness of solutions should be proved. Let us take an arbitrary number
k>|gll ;e (riny and multiply (38) by (u —k)T. After integration over {2 and taking into account that
—2 o V- Vulu—k)*< [rn((g —k)T)?|V-v|ds because Vu(u—k) T =V(u—k)T(u—k)" ae. inQ,
we obtain

li _ 1\ h2 / 2
2dt/g((u k)T dx+ Q|V(u k)T|“dx

1
Z—/m(u—k)erSJr—/, (g—k)T)?V-v|ds<O
l" 2 1—~1n

because # is a nondecreasing function in ¢ and the integral over " is equal to zero. This implies
then the a.e. boundedness of u in 27 because of the a.e. boundedness of ug. Finally, the assertion
of the lemma follows from Theorem III.10.1 of [7]. O

For every 6>0, introduce the following operator:

0, t<9d
A 5(v) (1) = esssup H (v(s)), =0
O<s<t

where ve L°(0, T). Since u is continuous in Qx [6, T, it holds:
Yool s(u)(t) = s(you)(r) forall 1€[0,7] (44)

Note that o7 (v)(f)=|v|| L=, for every nonnegative function ve L>(0,T), and .o/5(v)(1)=
lzsvllLes(0,r), where xs: R— {0,1} is the characteristic function of the interval (J, T'). It is clear
that o7 (v)(f) 2.7 5(v)(t). On the other hand, due to the *-weak semi-continuity of the norm in
L™, o/ (v)(t)<liminfs_ ¢ ./ s(v)(¢). This means that

o (v)(t)=lim .o/ s(v)(t) 45)
0—0
for almost all 7 €[0, T'] and for every nonnegative function v € L*(0, T).
Since the function u is bounded, relation (45) enables us to conclude that
o s(u) — o (u) in LP(Qr), p<oo

(46)
oL s(you) = o (you) in LP(I'r), p<oo



Lemma 2.11
There exists a constant C, such that

-7 )l oo 0,75 11 (02)) < Cx
for every 6>0.

Proof
Let us introduce a function ¢ defined on J€ such that g =7, on I" and ¢ =0 on dQ\1". Note that
g =0. Consider the problem

vy=Av—V-Vv (Qx(,T)), Z—U:—q (0Q), v(x,0)=u(x,9) 47
v

The solution of this problem is unique so that v=u in Q x (J, T'). Approximate problem (47) by
the following scheme. For every N € N, set t=(T —3)/N and consider the problem

=" = AV =1V V", xeQ

"t —%(17(5'1'“)—77(5-1—("—1)1)), xel
™ o, xedQ\I'
W0 (x) = u(x, )

Since Vu(-,8) € L*(Q) for almost all § € (0, T), this problem is absolutely similar to that given by
(15)—(17). Therefore, the function vy (X, ) and vy (X, £ ), the piecewise linear and piecewise constant
time interpolations of {v"(x)}, satisfy the same estimates as ux (X, ) and un (X, ). Application of
Lemmas 2.5 and 2.7 yields:

150N T o, 7. 111y ST W) | 0y I o i, gy ) B =1 C2
and the passage to the limit as N — oo implies the estimate

7 50l Loo 0, 7 111 (2)) SC

for almost all 5 (0,T) and, consequently, for all 6 because the definition of .o75 utilizes the
essential supremum. The equality o7 5(v) = .o/ 5(u) proves the Lemma. (|

Lemma 2.11 implies that every sequence J; that tends to zero as kK — oc has a subsequence
(denoted again by d;) such that .o/ 5, (1) converges weakly in L>(0,T; H(Q)). Owing to the first
relation of (46), the limit is equal to ./ (#). The uniqueness of the limit for all subsequences o/, (1)

implies that .o75(u) — .o/ (u) weakly in L0, T; H'(Q)) as 6 — 0. Therefore, yy.o 5(u) — yo.o (1)
weakly in L2(I'7). Finally, due to (44) and the second relation of (46), we conclude that

Yool 5(u) =y (u) in L*(I'7) (48)

The required relation (43) follows now from (44), (46), and (48). Thus, the solvability of
Problem A is proved.



2.3. Uniqueness of the solution

Let {ug, .}, k=1,2, be two solutions of Problem A. Denote &t =u| —us, §=n; —1,. Owing to

Hilpert’s inequality (see [4, Theorem II1.2.6]), it holds that

dii* (x, ) _di(x, )
- dr

g(x,-) a.e.in (0,7T)

for almost all xe I and for every measurable function ¢(x, -) € H,(i(X, -)), where

0, s<0
H,(s)=110,1], s=0
1, s>0
Multiply (8) by gm(x,t)=H"(i(x,t)), where
0, s<0
H}'(s)=1qms, 0<s<1/m
1, s>1/m
Since
/Vﬁ.vqdeZ/(H;")’(ﬁ)|w|2dx>o
Q Q
and

VI (8, 0)- 05,1 =V HI (5, 0) - H 05, 0)

Lemma 2.2 yields

1
/V~Vﬁ~He’”(ﬁ)dx:/v ﬁH;"(ﬁ)(V.v)ds——/V.VH;"(ﬁ).H;"(ﬁ)dx
Q l—‘lnul—‘out m Q

:/v H" (ii) [ﬁ—ng"(ﬁ)} (V-v)ds
Tinyout 2m

(49)

Note that H™ (i)[i — H™(ii)/2m]>0. In fact: if #>0, then &>H™(@)/m and H™(ii)>0; if i<0,

then A" (i) =0. Thus, the relation

/%Hem(ﬁ)dx—i—/ a—ﬁH;"(ﬁ)dsg—/, H™ (i) [ﬁ—iH;”(ﬁ)} (V-v)ds=0
Q Ot r ot rin 2m

holds for almost all € (0, T), since u;=us on '™ and

—/ H™ (@) [ﬁ—iH;"(ﬁ)} (V-v)ds<0
o 2m



due to our assumptions on V. The passage to the limit as m — 0 yields:

/g)aa—zqu+/rg—1zqu<0 ae.in (0,T)

where g € H,(ii) is a function such that H" (z) — g almost everywhere in I'y7. Using inequality

(49) implies:
d ~+ ~+
— atdx+ | T ds ) <0
dr o) T

This means that i+ =0 and 7" =0. By changing indices 1 and 2, we conclude that i =0 and 7 =0.
The theorem is proved.

3. NUMERICAL COMPUTATIONS

This section describes an approximation of Problem A and presents some numerical results. Note
that system (8)—(11) is nonlinear with respect to # and » because of conditions (6) and (10).
Therefore, fixed-point iteration techniques have to be applied to (8)—(11). Henceforth, equations
are formulated in a weak form in space, which assumes numerical treatment of them with the
Finite Element Method.

3.1. Time discretization

Consider the same time discretization of (13) as in Section 2.1. Suppose that the functions
w1 *~1, and V are already known at the time instants f,_1 = (n — 1)t and t, =n1, respectively.
To compute «” and #"*, use (19) to express #* in terms of u” and #"*~! and solve the following
weak-form problem:

/u”lpdx—f—r/[Vu"—u"V]ledx—f—/ u"lp|V~v|ds+/(H(u”)—n"_l)"'lpds
Q Q rout r

:/ u"—llpdx—f/, gW|V-v|ds (50)
Q l"ln

Since the term (H (u™)—#"~1)T is nonlinear in u”, Equation (50) cannot be solved directly,
and, therefore, fixed-point iteration techniques should be used here. First, note that

(H@") =y YT =h@")-(Hw") —n"") (51)
where
0 if Hw™")(x)<n" ™ (x)

htw={ .
1 if HW™y(x)>#"""(x)



To obtain a fixed-point iteration scheme for finding u”, choose a small ¢>0, and write (51) as

n +
("=~ = (H(u")% —17”_1)

:h(u")[H(u") u —<17”_1—H(u”) ¢ )} (52)
u+c u+4c

Lemma 2.4 shows that u”>0 ae. in Q. Therefore, (u"+c)~! is well defined. Substituting
Equation (52) into (50) yields:

h(u™)H ("
/u”lpdx—f—r/ vu"wdx+/ u”lp|V~v|ds—|—/ RWDHWT) iy, g
Q Q row r u'tc

:/ un_llﬂdx—‘[/v glﬂ|V~v|ds+/ uﬂvwdx+/h(u") <n"—1—CH(”"))wds (53)
Q rn Q r u'"+c

Compute functions ii* for k € N with % =u""" using the following equation:

h ~k—1 H ~k—1
/ﬁklpdx—i—r/ vakwdx+/ ﬁklp|V~v|ds+/ %ﬁklpm
9! [9) row r ut—t+c

:/u"—llpdx—f/v glﬂ|V~v|ds—|—/ A ~IVViydx
Q rm Q

~p—1
# ot (i1 v (54
r

ak—l4c¢

Note that Equation (54) is obtained from Equation (53) where each appearance of u” is replaced
either by ii* or by ii*~! so that the resulting Equation (54) becomes linear with respect to
ii*. Equation (54) generates a sequence {L?"}ZL:1 that stops when [ —a™~!|| 1oy is less
than a specified tolerance. Setting u” =™ completes the treatment of the nth time step when
solving (50).

3.2. Numerical results

The region Q is chosen as the cube (0,0.1)% with '™ laying in the plane x;=0; I°" in the
plane x1=0.1; and I'=QN{x3 =0}. The time-step length 7 is equal to 0.003, the number » in the
subsequent figures defines the time instants (f=n7). The initial concentration u of particles is a
discontinuous function that assumes constant values in two ellipsoids and is equal to zero outside
of them. Three different combinations of the choice of the mass flux ¢ and the velocity V are
considered.

Figure 3 demonstrates numerical results for a closed sensor, which means that V=0 in Q and
g=0on I'™, Since the initial distribution of the particles consists of two ellipsoids, the surface
concentration shows two peaks. They grow until the saturation value of # equal to 1 is reached.
Simultaneously, the particles spread out over I so that the trace u|r grows. This causes the rise of
the surface concentration around the peaks. The rise stops when the trace u|r goes down because
of further spreading out the particles.
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