## 01;05

# Кинетика дислокационных ансамблей в деформируемых облученных материалах

## © Н.В. Камышанченко, В.В. Красильников, И.М. Неклюдов, А.А. Пархоменко

#### Харьковский физико-технический институт

#### Поступило в Редакцию 30 апреля 1997 г.

Предложена модель развития процессов пластической деформации облученного материала, связанная с кинетикой дислокационных ансамблей, взаимодействующих с дефектами различной природы. Показано, что без учета динамических псевдорелятивистских эффектов невозможно адекватно описывать явление радиационного охрупчивания реакторных материалов.

Радиационное упрочнение материалов можно связывать с образованием кривых растяжения "зуба текучести" и площадки Чернова– Людерса [1,2], свидетельствующих о пластической нестабильности в материалах.

В данной работе нами рассмотрено развитие процессов пластической нестабильности с учетом зависимости функции распределения дислокаций в ансамбле по скоростям. Предметом описания являются подвижные дислокации, которые взаимодействуют с фиксированными препятствиями различной природы, но не задерживаются (не "зависают") на них, например движутся в режиме каналирования. Эта ситуация возможна при деформации облученного материала, когда ансамбли дислокаций "перерезают" препятствия в виде малых кластеров, петель и микропор. Ясно, что такая ситуация может иметь место как при наличии широкого спектра скоростей (энергий) дислокаций, так и при различных механизмах взаимодействия дислокаций с препятствиями.

Процессы развития пластической деформации будем исследовать на основе кинетического уравнения для функции распределения дислокаций, взамодействующих с некоторыми фиксированными препятствиями,  $n(\mathbf{r}, \mathbf{v}, t)$  по координатам  $\mathbf{r}$ , их скоростям  $\mathbf{v}$  и времени t:

$$\frac{\partial n}{\partial t} + \mathbf{v}\frac{\partial n}{\partial \mathbf{r}} + \mathbf{a}\frac{\partial n}{\partial \mathbf{v}} = \frac{|\mathbf{v}|^m}{A}\frac{1}{4\pi}\int d\Omega_v \cdot \left(n(\mathbf{r},\,\mathbf{v}',t) - n(\mathbf{r},\,\mathbf{v},t)\right),\qquad(1)$$

 $4^{*}$ 

51

где  $d\Omega_{\mathbf{v}}$  — элемент телесного угла в пространстве скоростей; **a** — ускорение дислокации, сообщаемое ей, например, внешним напряжением  $\sigma$ . Здесь частота столкновений с препятствиями для дислокации, движущейся со скоростью **v**, равна  $\frac{|\mathbf{v}|^m}{A}$  (в дальнейшем будем считать, что m < -1), где A — постоянная величина, учитывающая наличие стопоров различной природы и концентрации. В облученном материале величина A будет пропорциональна относительному радиационному упрочнению материала:  $A \sim \sigma_{ir}/\sigma_{nonir}$ .

Уравнение (1) справедливо в пространственно однородном случае, т. е. когда фунция распределения ансамбля дислокаций практически не меняется на длине порядка расстояния между препятствиями:  $\Delta = n_1 - n_2 \ll d$  (d — среднее расстояние между стопорами).

К уравнению (1) добавим начальное условие  $n(\mathbf{v}, 0; \mathbf{v}_0) = \delta(\mathbf{v} - \mathbf{v}_0)$ , означающее, что в момент времени t = 0 все дислокации имеют скорость, близкую к  $\mathbf{v}_0$ .

Введем параметр  $\rho^*(\mathbf{v}_0, t; m) = \rho_{act}/\rho_{tot}$ , где  $\rho_{act}$  — плотность дислокаций, прошедших "сквозь" препятствия,  $\rho_{tot}$  — полная плотность дислокаций. Параметр  $\rho^*(\mathbf{v}_0, t; m)$  обозначает относительную долю дислокаций в ансамбле, прошедших "сквозь" препятствия. Из физического смысла функции распределения  $n(\mathbf{v}, t; \mathbf{v}_0)$  как плотности вероятности дислокаций, движущихся со скоростью **v**, можно установить интегральное уравнение вида:

$$n(\mathbf{v}, \mathbf{t}; \mathbf{v}_0) = \rho^*(\mathbf{v}_0, t; m) \delta(\mathbf{a}t + \mathbf{v}_0 - \mathbf{v}) - \int_0^t dt' \frac{\partial}{\partial t'} \rho^*(\mathbf{v}_0, t'; m)$$
$$\frac{1}{4\pi} \int d\Omega_{\mathbf{w}} n(\mathbf{v}, t - t'; \mathbf{w} | \mathbf{a}t' + \mathbf{v}_0 |), \qquad (2)$$

где w — единичный вектор ( $|\mathbf{w}| = 1$ ) произвольного направления. В уравнении (2) первое слагаемое представляет собой долю дислокаций, прошедших сквозь препятствия и за время t приобретших скорость  $at + \mathbf{v}_0$ . Второе слагаемое учитывает долю дислокаций, скорость которых приобрела произвольное направление  $\mathbf{w}$  в результате столкновений с препятствиями. Эти направления выбывают из плотности вероятности  $n(\mathbf{v}, t; \mathbf{v}_0)$ , о чем говорит знак "–" перед вторым слагамым. Из кинетического уравнения (1) с помощью уравнения (2) получим уравнение

Письма в ЖТФ, 1997, том 23, № 18



для  $\rho^*$ :

$$\frac{\partial \rho^*(\mathbf{v}_0, t; m)}{\partial t} + \frac{|\mathbf{a}t + \mathbf{v}_0|^m}{2A} \rho^*(\mathbf{v}_0, t; m) = 0.$$
(3)

Считая, что направление начальной скорости  $v_0$  совпадает с вектором приложенной нагрузки  $\sigma$ , найдем

$$\rho^*(\mathbf{v}_0, t; m) = \exp\left(\frac{|\mathbf{v}_0|^{m+1} - (|\mathbf{a}|t + |\mathbf{v}_0|)^{m+1}}{2|\mathbf{a}|A(m+1)}\right)$$
(4)

при  $m \neq -1$ . Для m < -1 асимптотика решения (4) имеет вид

$$q = \lim_{t \to \infty} \rho^*(\mathbf{v}_0, t; m+1) = \exp\left(\frac{|\mathbf{v}_0|^{m+1}}{2A|\mathbf{a}(m+1)|}\right).$$
 (5)

Это есть доля дислокаций, имеющих начальную скорость  $v_0 \parallel \sigma$ , которые проходят сквозь препятствия. При  $|v_0| \to \infty$  (или возрастании |a|) эта доля стремится к единице, т.е. при больших скоростях (энергиях) дислокации "проскакивают" препятствия без остановок.

На рисунке представлена зависимость доли дислокаций, преодолевающих препятствия в динамическом режиме, от скорости дислокаций

Письма в ЖТФ, 1997, том 23, № 18

для четырех случаев:  $q_1$  соответствует исходному материалу  $(A_1 = 1)$ ,  $q_2$ ,  $q_3$ ,  $q_4$  — облученным материалам  $(A_2 = 4, A_3 = 8, A_4 = 20)$ . По оси абсцисс отложена величина  $s = v_0/c$ , c — скорость звука. Согласно полученным нами, а также проанализированным данным других авторов [3], относительное увеличение напряжения течения материала в 4–20 раз наблюдается в большинстве модельных и реакторных материалов уже при дозах  $10^{-2}, \ldots, 10^{-1}$  смещений на атом. Кроме того, видно, что при прочих равных условиях в облученных материалах доля дислокаций, в динамическом режиме преодолевающих препятствия (согласно [4], критерием динамического или "псевдорелятивистского" режима является достижение дислокациями скоростей ~ 0.1 скорости звука), становится уже существенной.

Согласно данным рисунка, в облученных материалах динамический (псвевдорелятивистский) режим деформации достигается при более низких скоростях дислокаций.

Представленная в работе модель, по нашему мнению, может иметь прямое отношение, например, к проблеме хрупкости облученных материалов корпусных реакторов, так как процессы деформации и разрушения корпусных сталей сопровождаются динамическими процессами в условиях динамического каналирования.

## Список литературы

- Неклюдов И.М., Камышанченко Н.В. // Структура и радиационная повреждаемость конструкционных материалов. М., Металлургия, 1966. Ч. 3. С. 5– 49.
- [2] Волобуев А.В., Ожигов Л.С., Пархоменко А.А. // ВАНТ. Сер.: ФРП и РМ. 1996. Вып. 1 (64). С. 3–7.
- [3] Зеленский В.Ф., Неклюдов И.М., Ожигов Л.С. и др. Некоторые проблемы физики радиационных повреждений материалов. Киев: Наук. думка, 1979. 280 с.
- [4] Попов Л.Е. Математическое моделирование пластической деформации. Томск: Изд-во Томского ун-та, 1992. 260 с.

Письма в ЖТФ, 1997, том 23, № 18