




Table 2
Cohesive energies and lattice parameters for different phases within DFT calculation. 
Cohesive energies forTi phases were calculated w.r.t a-Ti phase. In parentheses DFT 
results of Ref. |45]

Phase Ef (meV/atom) fl (A) c/o
a-Ti 0(0 ) 2.g37 (2.947) 1.584 (1.583)
/)-Ti 111 (108) 3.255 (3.261) -

fcc-Ti 58 (58) 4.111 (4.124) -

a>-Ti -6 (-5 ) 4.575 (4.590) 0.619 (o.6ig)
Diamond - 3.573 -

TiC (225) - 4.330 -

Table 3
Elastic constants (C,, in GPa) for Ti, diamond and TiC (2 2 5). The experimental values 
for a-Ti are measured at 4 K [46], for diamond and TiC (225) at 298 K [47J.

c „ c ,2 Cm C 3 3 C 1 3

a-Ti
GGA 176 86 45 191 76
GGAa 172 82 45 190 75
Exp.b 176 87 51 191 68
co-Ti
GGA 201 82 56 251 52
GGA-" 194 81 54 245 54
fi-Ti
GGA 87 116 41 87 116
GGAS 95 110 42 95 110
fcc-Ti
GGA 134 96 61 134 96
GGA1 136 92 61 136 92
diamond
GGA 1053 130 566 1053 130
Exp.d 1076 125 576 1076 125
TiC (225)
GGA 513 119 170 513 119
GGA-FP-LMTO ' 470 97 167 470 97
Exp.' 515 106 179 515 106

* Ref. |45J. 
h Ref. |46|. 
c Ref. 148). 
" Ref. [471. 
c Ref. |49|. 
'  Ref. |36|.

[38]. Such choice of main parameters ensures energy convergence 
to 2 meV/atom. For determination of carbon energy in octahedral 
site, simulation cell of 48 a-Ti atoms was used. The size of the cell 
was enough to keep specified accuracy for energy.

The structural relaxation was stopped when all forces acting on 
the atoms were converged to within 3 meV/A. Method and PAW 
potentials were checked by computation of lattice and elastic con
stants of a-Ti, /(-Ti, ft-Ti, fcc-Ti, diamond and carbide TiC (2 2 5). Re
sults of calculation in comparison with experiment and another 
theoretical results are in Tables 2 and 3. The difference between 
DFT and experiment is less than 1% for lattice constants and 10% 
for elastic moduli.

The number of independent elastic constants is determined by 
the crystal symmetry [39]. For an orthorhombic there are nine, 
for trigonal material there are six. for hexagonal there are five 
and for cubic there are three independent elastic constants [40]. 
They were deduced by applying small strains to the equilibrium 
lattice and determining the resulting change in the total energy. 
For each applied strain, the total energy of the system has been cal
culated for nine different small distortions (<> = ±0.005n, n = 0-4) 
used in distortion matrices. Relaxation of the internal degrees of 
freedom was carried out for all applied deformations. The elastic 
constants were computed by fitting the energies against the distor
tion parameter by the Taylor expansion, limited to second-order.

The components of the distortion matrices for trigonal and ortho
rhombic crystals can be found in Refs. [41,42] and for hexagonal 
and cubic crystals in Refs. [43,44],

3.1. Computation of diffraction patterns

The spots on electron diffraction patterns represent those nodes 
of reciprocal lattice which intersect with Ewald sphere. The radius 
of Ewald sphere for electron beam is very large [50] and as good 
approximation we replaced it by plane. The plane is given by direc
tion in real space parallel to electron beam and normal to the 
plane.

The intensity of spots is proportional to |Fwn|2, where F/,k/ is 
structure factor which was calculated by the following way:

Fhki = Yj,exp[2ni(hxi + ky, + fz,)]. (1)
i

where/ is atom factor, values of which reported in Ref. [50]; h, k, I 
are Miller indexes for each node of reciprocal lattice; x, y, z are re
duced coordinates of atoms in real space vectors of lattice. We used 
area of spots tip show their intensity. The radius r of spot was calcu
lated as r=  \Jn\Fhu\2.

4. Results and discussion

4.1. Formation energies ofTi-C phases in a-Ti and their crystal 
structure at OK

The formation energies of phases in metallic matrices depend 
on underling physics. In the case of a-Ti dispersed particles are 
forming from solid solution at low carbon concentrations. Flence: 
(i) for energy origin we use the energy of carbon atom in octahe
dral site; and (ii) to compare energetic favourability ofTi-C phases 
in a-Ti we use AE specific formation energy on one C atom. The A E 
allows to compare systems with the same numbers of Ti and C 
atoms independent from phases stoichiometry.

For an arbitrary Ti-C phase the specific formation energy in a-Ti
is

E(Ti,Ct j — xE(Tihcp) — yE(CK,)

where E(Ti*Cy) is energy of simulation cell with x + y atoms, E(Tihcp) 
is energy of Ti atom in a-Ti, E(C<lct) is difference between energy of 
48 Ti atoms supercell with 1 carbon atom and energy of the same 
supercell without carbon [51]. Dividing by the number of carbon 
atoms allows to consider, that Cod atoms always has close contact 
with Tihcp- Negative value of AE means that formation ofTi-C phase 
is favourable in a-Ti.

Using this equation we have calculated AE for fully relaxed 14 
Ti-C phases from first principles. We have considered phases 
known from experiment [17] and some hypothetical phases con
sistent with diffraction data [13]. The phases only with negative 
AE are summarised in Table 4. All phases in this table, except

Table 4
Lattice constants of supercells and formation energies of Ti-C phases at 0 K.

Phase u(A) c/o AE  (meV/atom-C)
j-Ti 17.621 1.584 _
TiC (225) 18.370 1.633 60
TijC (164) 18.373 1.607 230
Ti,C(166) 18.489 1.564 -360
Ti2C(227) 18.301 1.633 -395
Ti3C j(12 ) 18.401 1.623 -384
Ti,C ,(20) 36.748 1.630 385
TieCs (12) 18.414 1.632 273



trigonal Ti2C (1 64) can be obtained from the base cubic TiC (225) 
lattice by partial remove of carbon atoms with saving Ti sublattice 
[51J. From the Table 4 follows that maximum reduction of energy 
corresponds to Ti2C (227) and not TiC (225). Detailed description 
of trigonal Ti2C (166) and cubic Ti2C (227) can be found in Ref. 
[52|, monoclinic Ti3C2 (1 2) and Ti6C5 (12) in Ref. [53]. Ti2C (1 64) 
in Refs. [54,51 J. The Ti2C (164) can be obtained by filling half of 
octahedral sites in a-Ti such that there will be full and empty alter
nating (0001) carbon planes. The description of lattice structure of 
orthorhombic Ti3C2 (20) phase with 40 atoms in primitive cell can 
be found in Ref. [17]. As we know this phase was not considered 
earlier from first principles. One can see from Table 4 that Ti3C2 
(20) and Ti3C2 (12) have similar At', but there are no superstruc
ture reflexes (1/2 1/2 1/2) forTi3C2 (20) [53[. This difference in dif
fraction patterns can be important comparing with other phases.

Formation of phases with positive AE is gainless in a-Ti. For 
example, considered in Ref. [52] metastable tetragonal phase I'i2C 
(123) from our calculations has AE = 40 meV/atom-C. The exis
tence of trigonal Ti2C (152) was proposed in Ref. [55] but later 
in Ref. [56] was said about impossibility of such phase on the base 
of cubic lattice, because of partially matched crystal lattice sites. 
On the other hand structure with such space group can be con
structed, but our calculations showed unreality of it realisation in 
a-Ti with AE = 1,14 eV. Description of other Ti-C structures with 
positive AE: Ti2C2 (1 94). ThQ (194), Ti6C4 (1 94) are in Ref. [51].

Hugosson et al. [57] considered TiC) m phases, constructed 
from supercells with up to 32 atoms. Making larger supercells it 
is possible to obtain more structures but their consideration from 
first-principles will be very time consuming. We did not treat such 
structures in our study and leave them for further investigations 
with other methods.

There are works in which energies of formation of Ti-C phases 
was also calculated. But authors used other equation [57,52]:

_  E(Ti„Cy) — x£(Ti(np) —yE(Cg) ^
xty ’ '

where E(Cg) is energy of carbon atom in graphite structure. Also 
some authors used energy of C atom in vacuum instead of £(Cg) 
[54]. Applying such equation authors [57,52] get, that TiC (22 5) is 
the lowest energy phase. But this equation is not suitable for com
parison of favourability ofTi-C phases in a-Ti, because there are no 
graphite in CP titanium alloys. Also from dividing by x + y follows 
that carbon atoms can interact with Ti-C structures omitting a-Ti. 
This is not the case for dilute solid solution in CP alloys, in which 
carbon atoms are immersed in a-Ti.

More descriptive explanation of Ti2C (227) (and other phases 
with low AE) favourability in a-Ti can give examples in the form 
of chemical reactions. Consider the following reaction:
TiC(225) + Ti(hcp) ->Ti2C(227) (4)

The change of energy is E[Ti2C (227)]—£]TiC (225)]-£[Ti 
(hep)] » 0.335 eV. The flow of the reaction is energetically favour
able. Consider other:
2TiC(225) —► Ti2C(227)-t-C(oct). (5)

The change of energy is £[Ti2C (227)] + £[C ( oct)[ 2£[TiC] = 
-0.267 eV.

If TiC (225) is in contact with hep titanium, the process of Ti2C 
(227) formation is energetically favourable. Using Eq. (2) one can 
calculate energy changes for similar reactions, but if Ti2C (227) 
is in contact with graphite the most likely reaction is:
Ti2C(227) +C(g) —* 2TiC(225). (6 )
that are in agreement with theoretical works [57,52|, but there is no 
graphite in technically pure titanium, and in our study we did not 
taken into account (6) reaction.

The difference of primitive vectors for listed Ti-C phases does 
not allow direct comparison of lattice parameters. To overcome 
this difficulty we have considered all phases in hexagonal cell with 
big atom basis. We have used the following lattice vectors:

( \/0.75an, -0.5an, o ) ; (0, an, 0); (0.0, cn), (7)

where a and c are parameters of hexagonal cell, n is multiplier (for 
Ti3C2 (20) n = 12; for others n = 6 ). For all phases hexagonal vectors 
were estimated finding required combinations of primitive vectors 
and coordinate system rotates. The a and c parameters are summa
rised in Table 4. The obtained primitive vectors forTi3C2 (12), Ti6Cs 
(12) and T13C2 (20) phases have negligible discrepancies from (7). 
For these phases components of first two lattice vectors deviate 
by the order of 0.5% of a. That is why we provide here only a and 
c parameters.

4.2. Equilibrium between Ti-C precipitates and carbon solid solution

Considered Ti-C phases with negative AE are assumed below as 
prototypes for crystal structure ofTi-C precipitates. Table 4 con
tains energetically favourable Ti-C phases in hep Ti at 0 K. At 0 l< 
all carbon occupy the lowest energy state, which is Ti2C (227) 
phase according to our data. But in real cases it is important to 
know temperature dependence of phase formation. As tempera
ture rising above zero the influence of entropy contribution 
increasing and it must be taken into account. As a first approxima
tion, we consider only configuration entropy of carbon solid solu
tion, because it is the main contribution in the full entropy. We 
neglected the vibrational entropy, configuration entropy of C 
atoms in particles and configuration entropy of the whole particles 
in matrix.

Once temperature has become nonzero there are some proba
bility of phase formation different from Ti2C (227). Moreover 
T13C2 (12), T13C2 (20), Ti2C (227), Ti2C (166) phases have very 
close formation energies. This means, that at high temperatures, 
probabilities of precipitates formation with such structures will 
be very close. Also, due to low carbon concentration precipitates 
are forming independently from each other and there is equilib
rium only between precipitates and matrix. The above-mentioned 
comments is true not only for Ti-C but for all analogous systems. 
To describe probability of phases formation in dependence from 
temperature, we investigated simple model, based on the law of 
mass action. The model is based on several approximations: (i) 
the solid solution of impurity atoms is dilute, (ii) secondary phases 
(precipitates) interact only with matrix and not with each other, 
(iii) kinetic factors are neglected, and (iv) only the contribution 
of the configuration entropy of solid solution atoms is taken into 
account. The detailed description of model, including deducing of 
solution is in Appendix. The main obtained values are dc(j) - con
tribution of carbon atoms in j  phase (%) i.e. fraction of precipitates 
with j  structure, where j  isTi3C2 (20), Ti2C (22 7), etc. andxc - con
centration of carbon atoms in the form of solid solution (%). To de
scribe possible crystal structure of precipitates in a-Ti we have 
used carbon concentration of 0.3 at.56, which is usual for Grade 4 
titanium alloy. The temperature dependencies of dc(j) contribu
tions up to temperature of polymorphic transformation in titanium 
(1156 K) are shown in Fig. 1.

The Ti3C2 (20), Ti2C (227) and Ti2C (1 6 6 ) phases prevailing in 
the 200-800 K temperature interval. This means there are concur
rent existence mostly of three types of precipitates in such temper
ature interval. According to Gibbs phase rule in a two component 
system at fixed pressure only two phases can be in equilibrium 
in an interval of temperatures. But our model predict concurrent 
existence of four (and even more including phases with small con
tributions. see Fig. 1) phases. This is due to second approximation,
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Fig. 1. Temperature dependence of carbon contributions in Ti-C structures. Total 
carbon concentration is 0.3 aL%.
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Fig. 2. Temperature dependence of carbon concentration in solid solution in units 
of at%. Total carbon concentration is 0.3 a t*.

according to which there are only partial equilibrium in system; i.e 
there are equilibrium between phases and matrix and no equilib
rium between phases. Hence all phases, except Ti2C (227) are 
metastable. In real systems metastable phases can exist concur
rently and independently due to kinetic factors. So our model could 
predict contribution of metastable phases such as Ti3C2 (20), Ti2C 
(166) and others, see Table 4. The dependence (1) does not 
describe order-disorder transition, as we did not considered 
disordered Ti-C phases.

Another important characteristic is solubility of carbon at dif
ferent temperatures. Our model allows to predict it. Fig. 2 shows 
temperature dependence of xc concentration of carbon in solid 
solution. Due to configuration entropy contribution of carbon solid 
solution increases with the rise of temperature.

However, almost all phases have comparable AE energies and 
formation of precipitates will be influenced by interfaces. For 
example because Ti2C (164) structure is based on hep Ti sublattice 
it can have lower energy of Ti (hcp)/Ti-C interfaces in contrast to 
other structures based on fee Ti lattice. Investigation of influence 
of interfaces on the structure of precipitates is very hard from first 
principles. A more suitable method is molecular dynamics, which 
will also allows to study sizes and morphology ofTi-C precipitates. 
Obtained in this study energetic characteristics, lattice and elastic 
constants can be used for construction of Ti-C interatomic poten
tials. After which the proposed model can be improved by using 
data from molecular dynamics.

Table 5
Theoretical values of the elastic constants (c„ in GPa) ofTi-C phases.

Phase c „ Cn C44 Cm Cn C, 4 B
TijC (164) 335 59 18 253 44 -16 135
Ti2C (166) 199 108 112 200 109 10 139
TijC (227) 203 110 117 - - - 141
Ti.C, (20)' 337 83 132 331 98 - 174
TiC (225) 513 119 170 - - - 250

•’ For TijCj (2 0) there are also: C22 - 396, C2J = 84, C55 « 133, and Cr,r, = 116.

4.3. Elastic moduli and theoretical diffraction patterns ofTi-C phases

4.3.1. Elastic moduli
The Table 5 shows calculated elastic moduli of most favourable 

Ti-C phases in a-Ti. The elastic moduli provide information about 
the bonding characteristics between adjacent atomic planes, aniso
tropic character of the bonding, and structural stability. The nega
tive value of C13 is allowed, because mechanical stability of lattice 
is determined by the Born stability criteria [58]. The Born criteria 
requires that all of the eigenvalues of the elastic tensor be positive. 
All enlisted structures satisfy this criteria. Elastic moduli have cor
relations with ideal shear strengths [59] and allow to make quali
tative estimate of Ti-C particles influence on the strength 
characteristics of titanium alloys. Hence for material engineering 
the most appropriate structure for dispersed particles is 
Ti3C2(2 0), as probability of formation of TiC (225) particles is low.

4.3.2. Theoretical diffraction patterns
Selected area electron diffraction (SAD), that can be performed 

inside a transmission electron microscope (TEM) is suitable tech
nique for determination of crystal structure of Ti-C particles. To 
provide possibility of comparison of theoretical and experimental 
results we calculated diffraction patterns of energetically favour
able Ti-C phases. Patterns for [001 j (relates to [111J in cubic rep
resentation) and (1 00|([T 1 0| in cubic representation) zone axes are 
on Figs. 3 and 4 respectively. The side of each square in the figures 
in reciprocal space is 1.57 A '. The spots in the squares are shown 
only for reciprocal vectors less than 0,71 A-1. Spots with diameter 
less than 10 3 A 1 are not shown3. It can be seen from Fig. 3 that for 
[111| cubic zone axis Ti2C (227) and TiC (225) has the same pat
terns. Also Ti3C2 (20) and TiC (225) has the same patterns for 
jî 1 0 cubic zone axis (see Fig. 4). Such similarities can lead to erro
neous interpretation of experimental data, because it can be difficult 
to see the same particle in several axes. Patterns of a-Ti and Ti2C 
(164) for [001] hexagonal zone axis (see Fig. 3). also have similar 
patterns, but as a-Ti has smaller lattice parameters then Ti2C 
(164) (see Table 4), it has bigger reciprocal vectors and it will be 
very easy experimentally to distinguish Ti2C (164) structure even 
on the background of a-Ti.

4.4. Comparison with experimental data

The majority of works in Table 1 devoted to studying the effects 
of ordering in Ti-C system, in which authors use methods of neu
tron powder diffraction for determining their structure. Neverthe
less superstructure peaks observed by authors are analogous to 
spots on diffraction patterns and it is possible to compare them. 
Such comparison allows to find all superstructure reflexes men
tioned in Ref. [23] on theoretical diffraction patterns indicating 
their reliability. Two separate reflexes on diffraction patterns of 
type ( 1 /2  1 /2 1 /2 ) and ( 1 /2 1 /2  1 /2 ) are the same in powder dif
fraction and that is why sets of peaks for Ti2C{227) and Ti2C (166)

3 This diameter has no relation to the sizes of nodes in reciprocal space
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are identical. Even in real SAD patterns such phases can have iden
tical diffraction spots [60] due to superposition from several 
particles.

As was mentioned earlier there are no systematic experimental 
investigation ofTi-C structure in CPTi. In several works [13,16,14] 
authors observed Ti-C particles in CP Ti, but there is very little 
information about structure of particles. By ТЕМ Bushnev et al. 
[13J propose existence of particles with Ti2C stoichiometry (they 
propose a model of lattice which is consistent with Ti2C (164) 
structure) stable up to 823 K. Ivanov et al. [14] determined

particles with TiC (225) structure by selected diffraction area in 
TEM in 1110| zone axis. Therefore they could observe particles with 
Ti3Qi (20) structure as their patterns in this zone are equal.

Also there are several works mainly on Ti-TiC composites, in 
which structure of dispersed Ti-C phases were established. Rang- 
anath et al. [61] prepare titanium-titanium carbide composites 
by a combustion-assisted synthesis route. They showed from ther
mochemical considerations that formation ofTi^C stmcture in the 
presence of excess titanium is more favourable than TiC (225) and 
proved this by electron probe microanalysis. They claimed that the



reaction (4) is more probable in present of additional moles of tita
nium, which is in agreement with our first-principle results. The 
exact value of profit is 0.335 eV at 0 K.

In Ref. [25] formation of phase with Ti2C stoichiometry in the 
interface between TiC particles and Ti-6%A1-4%V (Grade-5 ot + /J) 
matrix was observed by means of neutron diffraction and low volt
age field emission gun scanning electron microscopy. Moreover, for 
the composite material processed at 1773 K, within half an hour of 
sintering, the complete transformation of TiC particles to Ti2C was 
observed. Though V and A1 can influence this transformation, more 
probably that interaction of TiC with Ti (hep) lead to formation of 
more energetically favourable in such conditions particles with 
Ti2C structure.

Vallauri et al. [62] suppose that in spite of all these observa
tions, the existence of a Ti2C phase in the Ti-C system remains 
questionable, primarily because TiC(1 x) can easily pick up oxygen 
to form titanium oxycarbides of various compositions. Such state
ment need additional checking.

Finally there is recent study of prepared by reactive arc-melting 
method Ti-TiC composites in which microstructural changes in the 
TiC particles by the combined effect of N and Fe elements were 
studied [60]. By means of SAD authors identify Ti2C structures in 
TiC (225) particles by clear spots in Ti alloy with 3% of Fe and by 
very diffused spots in Ti alloys: Ti with 3% Fe and 3% N; Ti with 
10% Fe; (all in at.%). Interaction of TiC (225) with a-Ti leads to 
Ti2C formation which is in agreement with our result. Authors 
could not determine symmetry group of Ti2C structure because 
their diffraction patterns are indistinguishable. But our calculation 
showed that Ti2C (227) is more favourable then trigonal Ti2C 
(166) by 35 meV/atom-C. Our theoretical diffraction patterns for 
Ti2C (227) are in good agreement with experimental one [60] for 
spots positions and also for spot sizes.

Some explanation can be given why several authors [63,6,15, 
64,65] did not found Ti-C particles in СР-Ti. Observation of coher
ent particles with transmission electron microscopy (ТЕМ) is pos
sible due to strain contrast. At the same time if particle is situated 
on the grain boundary, it became invisible on the background of 
grain boundary strain contrast with the use of ТЕМ.

5. Conclusions

We have presented new approach for calculating specific for
mation energies of dispersed phases in matrix material accounting 
underling physics. We have used PAW GGA plane-waved method 
to calculate specific formation energies of Ti-C phases in «-tita
nium and found that the most favourable phase at 0 K is Ti2C 
(227). This surprising result is due to the choice of energy refer
ence, which is the energy of carbon atom in octahedral site, the 
case for commercially pure a-Ti alloys. Further we have investi
gated model, based on specific formation energies and the law of 
mass action, to predict probabilities of Ti-C phases formation in 
dependence of temperature. According to the model, which con
sider configuration entropy of carbon solid solution, there are con
current existence of mostly Ti3C2 (20), Ti2C (227) and Ti2C (166) 
phases in 200-800 1< temperature interval. The discovered phases 
can serve as prototypes for crystal structure of dispersed particles 
in a-Ti alloys. Rough estimates have shown that for large enough 
particles (more than 40 nm) the influence of interfaces on bulk 
structure of particles can be neglected. Such methodology of con
sideration of Ti-C phases in hep titanium is made for the first time 
and can used for other impurities in many metallic matrices.

Calculation of elastic moduli have shown that carbon richer 
phases have higher moduli. Hence for material engineering the 
most appropriate structure for dispersed particles is T i^  (20) as 
elastic moduli have correlations with strengths characteristic.

Finally, we have computed diffraction patterns of favourable Ti-C 
phases, which can be used in experimental determination of Ti-C 
particles in a-Ti alloys by selected area diffraction in TEM.

The obtained results about Ti-C particles structure can be used 
for further investigation of thermostability of nanostructured 
titanium.
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Appendix A. Equations of phases equilibrium

To consider equilibrium between n Ti-C structures with carbon 
solid solution we used n following reactions:
Ti,(hcp) +yC(oct) -*TimC(j), (A.l)

where m = j. As atoms of Ti (hep) are bonded, we can treat them 
like agglomerates with x atoms. The set of Eq. (A.l) is correct until 
Ti-C particles are in contact with hep titanium. Because carbon 
atoms in dilute solid solution are isolated from each other we trea
ted them separately. Introduced in Section 4 the A£ parameter can 
be defined as energy change due to imaginative cluster TimC (/) for
mation from one carbon atom and m hep Ti atoms. It is obvious that 
Ti-C particles consists of more then thousands of atoms and there 
are no problems with fractional numbers of atoms, but for mathe
matical handling it is convenient to use TimC (j), For every Eq. 
(A.l) write down the law of mass action [19]:

0Т1тС(/)]
a[Tim(hcp)]a[C(oct)] ’ (A.2)

where a is activity of species. By definition a = yc, where c is concen
tration of species and y is coefficient of activity. To find y we use 
definition of chemical potential:

/I- /i0 + kBTIn(yc), (A.3)

where /i0 is chemical potential of reference state, kH is Boltzman 
constant. Because of small carbon concentrations, solid solution 
can be treated as regular, where y = 1 [19]. ForTim(hcp) and TimC 
(j) the energy reference is chosen such that at c = 1 must be fulfilled 
/i = /(«. Using (A.3) and the fact that coefficient of activity does not 
depend from concentration get y = 1. Because the coefficient of 
activity for all cases is equal to one, we can write the law of mass 
action for concentrations:

*(/) = Ti,„(hcp)] C(oct)] (A4)

The generation rate constant of TimC {j) cluster is: 

K(j) =A(j, T )e &Cf, (A.5)

where p= \/kBT, AC = A E-  7AS is change of Gibbs free energy at 
zero pressure and A(j,T) is pre-exponential factor. We take 
A(j.T) = 1 for all structures and temperatures.

Next, find dependence of C and Ti atoms contributions in Ti-C 
structures from temperature. Introduce symbols: n is the number 
of carbon states in studied system except carbon in octahedral 
sites, N is the number of Ti and C atoms. Nc is the number of C 
atoms, NTi is the number ofTi atoms, Nc(oct) is the number C atoms 
in octahedral sites. /Vr,(hep) is the number of Ti atoms in hep lat
tice, Nc(/) is the number C atoms in state j, Nn(j) is the number 
of Ti atoms in state j.

The numbers of atoms are related as follows:



(Nc(oct) f  Y^Nc(j) = Nc I16
' (A.6) 117

Nr,(hep) + ^ N r,(j) - Nr,
|18

To obtain relationships between concentrations we divided I19
(A.6) by N. Denote concentrations: [C(oct)] — Nc,̂ c,) is concentration |20
of С atoms in octahedral sites. [Ti(hcp)] — Wl|lwhcp- is concentration of 
Ti atoms in hep lattice, [ Tim(hcp)] — UV.jjgJJ is concentration of Ti |2i
clusters in hep lattice, xo = тр is total concentration of carbon .
atoms (0.3 at% for Grade 4 alloy), | TimC(/)] = *s concen- [23
tration of TimC (j) clusters. Using the law of mass action for concen
trations (A.4) derive n equations: I24

rrimCt/)|=^§[Ti(hCP,11C(0Ct)l' (A7)
Obtained system of Eqs. (A 6) and (A7) was solved self-consis- [28

tently in the range of temperatures from 100 К up to temperature 129
of allotropic transformation of ж-titanium to 0-titanium. Additional 
self-consistency loop was used to resolve dependence of the equi- |30
librium constant from entropy. [31

The equation for change of configuration entropy related to 
transition of one carbon atom from solid solution to ordered struc
ture is equal to entropy of formation of one vacancy. Skipping some |34
computations we have for entropy change:

(A.8) ,!5
\ rri(h cp )] [Tif h cp j|y  j3g

Here we assumed that Nn is much bigger than Nt and neglected |37
entropy of carbon atom in Ti-C cluster, entropy ofTi-C cluster in Ti |38
matrix and vibrational entropy. I35

It is convenient to represent results in the form of contributions ^
of carbon atoms in different structures and carbon concentration in 
solid solution. Define corresponding quantities: xc = 's [42

carbon concentration in solid solution. Multiplying and dividing by [43

N we have: xc -  The contributions ofTi and С atoms in
j  structure defined as follows:
* n < i ) = ̂  *04 = »  = “ • 145
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