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We calculate the stopping power for planar channeled ions by use of the method of an in-
homogeneous dielectric function. In an inverse inhomogencous dielectric function, the density
gradient effect appears. Such an effect contributes to the week dependence of the stopping power
on impact parameter from the channel wall. We also derive not only the stopping power formula
for the system that the electron density has an axial symmetry, but also the formula in which
higher order terms of the inverse dielectric function are taken into account, using the mecthod of
decoupling.

1. Introduction

In 1964, the quantum mechanical analysis of the stopping power due to the dielectric func
tion's method was performed by Lindhard and Winter under the system of free electron gas'. By
introducing the local density approximation (LDA) to the above formula, various kind of
theoretical calculations of the stopping power were performed’. LDA was phenomenologically
proposed in order to analyze the inhomogeneous electronic systems from the statistical point of
view'. The dielectric theory of inhomogeneous many-electron systems is a new and challenging
field*”. Lundqvist® and Lozovik et.al.” reviewed the framework of the general theory on dielec-
tric function for inhomogeneous many-electron systems. The framework of the general theory of

the dielectric function £ is expressed as follows
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where uc(r3 - rz) =e¢’/|r, —r,| is Coulomb interaction between electrons. H is a polarization
operator and is also expressed by the following equation
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In the above, p; and © are tile j-th element of density matrix and Heaviside step function,
respectively. E; and E; are Fermi energy and the cigen energy of the j-th electron. n denotes the
positive infinitesimal.

In 1986, under the high frequency response, we derived the first order analytical formulae
of dielectric and inverse dielectric functions, € and €', in inhomogeneous systems of many
electrons, and showed the theoretical interpretation of LDA® € and €' in inhomogeneous system
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Here, n(r)) is ale electron density, and r, and r, are position vectors of elrctron and projectile,
respectively. In eqs.(3) and (4), w, is the plasma frequency which is defined due to the electron

density n and mass m as follows
dre’n(r)
o) =——— )
As a convenience, we express a complex variable (= w+in) as o in eqs.(3) and (4).

@

Therefore, £and &' are complex and have real and imaginary parts.

In 1988, we also derived the general formula for stopping power for a system in which the
electron distribution is possible to be treated to change one-dimensionally’. An arbitrary function of
electron density is included in our formula. Our formula was successfully applied to analyze the
stopping power at the surface'’. In 1993, we also showed that eq.(3) is derived not only from the
quantum mechanical standpoint of view, but also from the classical one''.

In this work, using our general formula, we calculate the stopping power for planar
channeled ions, and showed the week dependence of the stopping power on impact parameter from
the channel wall'?, we also derive the stopping power formula for the system that the clectron

density has the axial symmetry, and derive the fundamental formula in which higher order
contributions are taken into account by use of the method of decoupling.

2. Stopping Power for Planar Channeling

The definition of the stopping power due to electromagnetism is given by

: 14
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where Ze, V and b are the charge, the velocity and the impact parameter of projectile, &' is the
dynamical polaization potential in which a bare Coulomb field v, is subtracted. &' is represented as
the following equation
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In eq. (7), & is the dynamical polarization potential which is expressed by use of € in 1, -@
space as follows
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In the above, p™ is the number density of projectile in r - @ space. If we take the classical

straight path of projectile, p™ becomes
1 Tz
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The formula for stopping power S(b) for the system, in which the electron density n(x) is
possible to be treated to change one-dimensionally and perpendicularly to the projection of an

incident ion, is given as follows’ (10)
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Here we take the propagating direction of the projectile as z-axis. b and x arc the impact
parameter of the projectile from the channel wall and the position coordinate along x-axis,
respectively. ¢ and ¢, are a wave number and a maximum one corresponding to the Fourier
components over y-axis. P(- - ) indicates the principal value.

Fujii et.al. successfully applied our formula to analyze the position-dependent stopping
power at, surfaces of NaCl-type crystals’’. In planar channeling case, we use the following
Moliére electron dendity

Z,B
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where B=0,3/a,. and o.=1/(2LN )-a,., L and N, are the Thomas-Fermi screening length,
the half distance between planar plane and the density of lattice atom, respectively.

Using S(b) given by eq.(10), we obtain the stopping power S(X) for planar channeling
given in eq.(12)

S(X)= (SGL- X)+S3L+ X)). (12)

1=-n

In the above, X is the distance from the midpoint of the planar channel. We take n = 5 in
performing numerical calculations.

In fig.l, for 3MeV He ions in the Au (111} channel, we show numerical results which is
nomalized at the midpoint of the planar channel (X = 0). S,S; and Sr denote the results for S
= Sp + Sn, Sp only and Robinson's phenomenological analysis, respectively. We use Sy which is
given as follows

S,(X)=S,+S,0(X).  o(X)= —~\/——2EO—)(V (X)-V,(0)). (13)
where V (X) denotes the planar continuum potential derived from Moliére model'’.

Deviations between S and Sy appear over the whole range of the planar channel, which
mean that contributions of Sy to S are effective in our case. At the well defined channeling
region, agreements between ours and Robinson's one are good. In such a region, Sy gives the
week dependence of the stopping power on impact. parameter, which is caused by contributions
due to distant collisions. Deviations appear as the projectile approches to the channel wall. If we
take into account of the random stopping power, it is rather reasonable that the rapid increase
appears in S than Sy at the neighborhood of the channel wall.

3. Stolming Power for Axial Case

In this chapter. we derive the formula pf stopping power for axial case in which the
electron density of the many-electron system has the axial symmetry. In this case, taking into
account that the functioh of electron density becomes n(r, ). we can obtaih the following
stopping power S(b) from egs.(4) and (6)~(9)

1(7 e)
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In the allove, b is the impact parameter from the string of lattice atoms. Performing tile
following integration in eq. (14)
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where J, is the Bessel function of the zeroth order, and g, , corresponds to the maximum
momentum transfer in two dimentional ¢, space perpendicular to the direction of z-component.

From eq.(4) and the gradient in cylindrical coordinate (r, ,6,z)
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and taking into account of the axial symmetry of electron density n, we have the following result
after performing Foulier transformation aver z-axis
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where K| is the modified Bessel function of the second kind. In eq. (17), ¢
of cylindrical coordinate.
In eq.(18), imaginary parts of (++-).,,.1, are expressed as follows

, s - - - areunit vectors
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Substituting egs. (18)~(20) to eq. (16), we can obtain S(b). Taking into account that S(b)
is dependent only on b, we express the stopping power as S. Therefore, we have

S=8,+85, ©2))
(Zey Vs +(0, )/ 7)’
Sy = 2 (b)l o (01 , (22)
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In eq. (23), F is defined by the following equation

d

If we take as ¢ ... +(®,(b)/ V) =(2mV / h)’ ineq. (22), we have
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which is corresponding to the usual Bethe formula. Also if we take as g, .. = © ineq. (24), we

obtain
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Then, eq.(23) reduces to the following equation
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In case of the high and nonrelativistic velocity region, we can approximate
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where y = 0.5772 1s Euler constant, and y = ¢’ = 1.7812. Therefore, we obtain the formula which
corresponds to such a velocity region under the boundary condition that a)lf (0)=0
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where £= 72 /12~-1/2=10,3225

In fig.2 and fig.3, we show numerical results of the stopping power for 10 and 50MeV H
ions as a function of b from the Au (100) string. Under the reasonable condition, S, is more
convenient than Sy, because numerical computing times are shorter in S, than in Sy, We confirm
that the simplified formula S, approaches to Sy as the incident energy of H becomes higher. In
comparison between Sy and Sy, Sy has the weeker dependence on b than S;. Such a dependence is
the same effect with the one-dimensional case which is coming from distant collisions, as is
already mentioned in chapter 2. It is an important point that as distances from the axial string
become larger than a few 4, Sy becomes more dominant, process than S;. Recently, Fujii et.a/,
performed experiments to analyze string effects of the position-dependent stopping power'. In
order to analyze such effects, it should be necessary to use the formula which is derived in this
chapter.

4. Tteration of Higher Order Terms

Under the high freuancy approximation, [] given in eq.(2) is expanded by 1/® as follows

[, ry,0) = Z m Tn(rl,rB) (@ «—w+i7), (31)
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If thire is no total current in the system of many electrons, odd power parts of l/o
disappear. In such a case, we can take into account of even power parts only in []. Then we have
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In eq. (33), performing that the term (Ej - E;)’ is replaced by the mean value ((Ey - E;)),
we obtain
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where o} = <(Ek ~ E_,)2> /', t=w;/®®. Such a kind replacement corresponds to the

decoupling usually used in Green's function. Therefore, we have []

[Tero= S Y B~ £, (1) (o O ~ B )~ O(E, ~ E). (35)
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By use of the expression of eq.(35), we can use the same sum-rule by which we derive the
basic equation of & shown in eq.(3)*’. Then, we have the following equations of ¢ and & in
which higher order terms are taken into account through @,
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As is wellknown, elementaly excitation energies are expressed through poles about @ in
¢"'. Therefore, by taking into account of the iteration of higher order terms, excitation energies are

given by h,jw’(r,,)+ @] in eq.(37) although they are given by hw,(r,) in eq.(4). Effects of
bound states of electrons are included in @, . In order to show the usefullness of eq.(37), we try
to calculate #°@; for the case of the free electron gas system. In the free electron gas system, the

mean value #°@; is defined and derived as follows

s
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where %/ m is the phase velocity of plasmon based on the classical model (as is
usually known", in case of quantum mechanics, we have S’ =3g; /5. In eq.(38), the terms
proportional to k* and k* correspond to the single electron excitation and the dispersion relation
of plasmon, respectively. Therefore, in case of the free electron gas, we can obtain, from egs.(37)
and (38), the exactly same energy expression'® of elementary excitation 1.

h4 2k2 h4k4
LR Pk (39)
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Then, from the mathematical standpoint of view, we show the usefullness of the
decoupling given in eq.(34), and also confirm that through ®, defined here, we can take into

account of binding effects of electrons in inhomogeneous many-electron systems.

5. Concluding Remarks

In this work, using basic equations of ¢ and &' given by egs.(3) and (4)*°, we derive
stopping power formula for planar channeling as one-dimensional case, which was successfully
used for the case of surface'. Numerical calculations of the stopping power for planar channeling
were performed for the case of 3McV He ions into the Au {111} channel. Comparisons between
theoretical and experimental results were also performed, and we obtained qualitative agree-
ments between them. The week dependence of the stopping power on impact parameter was

typically caused by distant collisions. Such kind effects are not taken into account in the uasual
Bethe-type theory.
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In two-dimensional case, the stopping power formula in inhomogeneous system was con-
structed under the condition of the cylidrical symmetry of electron density. We performed
numerical calculations for cases of 10 and 50MeV H ions in the Au, (100) string. As is same
with one-dimensional case, we also cinfirm important contributions of distant collisions.
Recently, Fujii et.al. performed experimrnts to analyze string effects of the position-dependent
stopping power'®. In order to analyze such effects, it should be necessary to use the formula
discussed here.

Using tile decoupling method in Green's function, we took into account of the iteration of
higher order contributions, and derived general formulae of the dielectric function and the
inverse dielectric function. Applying such formulae to the case of the free electron gas, we
obtained the exactly same dispersion relation of the free electron gas, in which terms of phase
velocity of plasmon and single electron excitations appear. From the mathematical standpoint of
view. we show the usefullness of the decoupling, and also confirm that through ®,, we can
generally take into account of binding effects of electrons in inhomogeneous many-electron
systems.
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Figure Captions
Fig.] Numerical calculations of the stopping power for planar channeling as a function of

X for 3MeV He ions in the Au {111} channel.

Fig.2 Numerical calculations of the stopping power as a function of b for 10MeV H ions
from the Au (100) string.

Fig.3 Numerical calculations of the stopping power as a function of b for 50 MeV H ions
from the Au (100) string.
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