ON ASYMPTOTICS OF A PIECEWISE ANALYTIC FUNCTION SATISFYING CONTACT CONDITIONS

N. A. Zhura and A. P. Soldatov

UDC 517.9

Abstract

We examine a piecewise analytic function that is defined in sectors of a disk whose real and imaginary parts obey contact conditions on adjacent boundary parts. Under the assumption of the power behavior, the sharp asymptotics of this function is established at the center of the disk.

Keywords: analytic function, contact conjugation condition, power logarithmic asymptotics

Let the unit disk be divided into n open sectors S_{1}, \ldots, S_{n} of angle $2 \pi / n$, with $n \geq 4$ an even number, which are enumerated counterclockwise. The radial segments, presenting the lateral sides of sectors, are oriented from $z=0$ to the unit circle; their union is denoted by L. Given two positive numbers ν_{1} and ν_{2}, compose the piecewise analytic function

$$
\chi(z)= \begin{cases}\nu_{1}, & z \in S_{1} \cup S_{3} \cup \cdots \cup S_{n-1}, \tag{1}\\ \nu_{2}, & z \in S_{2} \cup S_{4} \cup \cdots \cup S_{n} .\end{cases}
$$

Examine a piecewise analytic function $\phi(z)$ in $S=S_{1} \cup \cdots \cup S_{n}$ whose restriction ϕ_{j} to the sector S_{j} is continuous on $\bar{S}_{j} \backslash 0$. In particular, the pair of its boundary values $\phi^{ \pm}$is defined on the oriented curve L. Let these boundary values be subject to the so-called contact conditions

$$
\begin{equation*}
\operatorname{Re}\left(\phi^{+}-\phi^{-}\right)=0, \quad \operatorname{Im}\left[(\chi \phi)^{+}-(\chi \phi)^{-}\right]=c, \tag{2}
\end{equation*}
$$

where c is a constant function on each segment of L. Moreover, we assume that $\phi(z)$ satisfies the estimate

$$
\begin{equation*}
|\phi(z)|=O\left(|z|^{\lambda}\right) \quad \text { as } z \rightarrow 0 \tag{3}
\end{equation*}
$$

for some $\lambda \in \mathbb{R}$. Note that, in the case of $\lambda>0$, the piecewise constant function c must be equal to zero.
The question arises: What is the sharp asymptotics of $\phi(z)$ at $z=0$? For $n=6$, this question is closely connected with effective conductivity (see [1]) in a regular two-component system of regular triangles. Similar problems arise in many other applications, for example, in the inverse problem of scattering theory which is connected with the matrix Riemann problem [2]. In this article we solve the problem in the framework of the nonlocal Riemann problem studied in [3, 4].

To this end, we rewrite the statement (1), (2) of the problem in the form of the boundary conditions of the Riemann problem. Denote by $\partial^{0} S_{j}$ and $\partial^{1} S_{j}$ the lateral sides of S_{j} assuming that the rotation from $\partial^{0} S_{j}$ to $\partial^{1} S_{j}$ inside of the sector is realized counterclockwise. All lateral sides are enumerated similarly as follows:

$$
\begin{array}{ccccccc}
\partial^{1} S_{1} & \partial^{0} S_{2} & \partial^{1} S_{2} & \partial^{0} S_{2} & \ldots & \partial^{1} S_{n} & \partial^{0} S_{1} \tag{4}\\
\Gamma_{1} & \Gamma_{2} & \Gamma_{3} & \Gamma_{4} & \ldots & \Gamma_{2 n-1} & \Gamma_{2 n} ;
\end{array}
$$

in this case the segments $L_{1}=\Gamma_{1}=\Gamma_{2}, L_{2}=\Gamma_{3}=\Gamma_{4}, \ldots, L_{n}=\Gamma_{2 n-1}=\Gamma_{2 n}$ constitute L. The segment Γ_{j} is parametrized by the linear equation $\gamma_{j}(s)=\gamma_{j}^{\prime}(0) s, 0 \leq s \leq 1$, where $\left|\gamma_{j}^{\prime}(0)\right|=1$. Using these parametrizations, we can assume that the boundary values $\phi^{ \pm}$are defined on the segment $(0,1]$ of the real axis. More exactly, we put

$$
\phi_{\gamma, 1}=\phi_{1}^{-} \circ \gamma_{1}, \phi_{\gamma, 2}=\phi_{1}^{+} \circ \gamma_{2}, \phi_{\gamma, 3}=\phi_{2}^{-} \circ \gamma_{3}, \ldots, \phi_{\gamma, 2 n}=\phi_{1}^{+} \circ \gamma_{2 n}
$$

In this notation, (2) can be rewritten as

$$
\begin{equation*}
\operatorname{Re} A \phi_{\gamma}=f \tag{5}
\end{equation*}
$$

where the matrix A is block-diagonal, i.e., $A=\operatorname{diag}\left(a_{1}, a_{2}, a_{1}, a_{2}, \ldots, a_{1}, a_{2}\right)$ with the diagonal blocks

$$
a_{1}=\left(\begin{array}{cc}
1 & -1 \\
i \nu_{1} & -i \nu_{2},
\end{array}\right), \quad a_{2}=\left(\begin{array}{cc}
1 & -1 \\
i \nu_{2} & -i \nu_{1},
\end{array}\right),
$$

and similarly $f=\left(f_{1}, \ldots, f_{n}\right)$ with $f_{j}=\left(0,\left.c\right|_{L_{j}}\right)$.
In accord with (4), Γ_{1} and $\Gamma_{2 n}$ are the lateral sides of S_{1} and the former segment is oriented negatively and the latter positively. Similarly, Γ_{3} is oriented negatively and Γ_{2} positively relative to S_{2}, and so on. In view of this, the signature of the orientation is as follows: $\sigma=\left(\sigma_{j}\right)_{1}^{2 n}$, with $\sigma_{j}=1$ for an even j and $\sigma_{j}=-1$ for an odd j. Let the matrix A^{σ} be obtained from A by the complex conjugation of j th column if $\sigma_{j}=-1$ and by preservation of this column if $\sigma_{j}=1$. In this case the matrix $B=\left(A^{\sigma}\right)^{-1} A^{-\sigma}$ takes the block-diagonal form $B=\operatorname{diag}\left(b_{1}, b_{2}, b_{1}, b_{2}, \ldots, b_{1}, b_{2}\right)$, where

$$
b_{1}=\left(\begin{array}{cc}
1 & -1 \\
-i \nu_{1} & -i \nu_{2}
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & -1 \\
i \nu_{1} & i \nu_{2},
\end{array}\right)=\frac{1}{\nu_{1}+\nu_{2}}\left(\begin{array}{cc}
-\nu_{1}+\nu_{2} & -2 \nu_{2} \\
-2 \nu_{1} & \nu_{1}-\nu_{2}
\end{array}\right)
$$

and b_{2} is defined similarly by the rearrangement of ν_{1} and ν_{2}. Putting $s=\left(\nu_{1}+\nu_{2}\right) / 2, \delta=\left(\nu_{1}-\nu_{2}\right) / 2$, we can write

$$
b_{1}=-\frac{1}{s}\left(\begin{array}{cc}
\delta & \nu_{2} \tag{6}\\
\nu_{1} & -\delta
\end{array}\right), \quad b_{2}=-\frac{1}{s}\left(\begin{array}{cc}
-\delta & \nu_{1} \\
\nu_{2} & \delta
\end{array}\right) .
$$

The diagonal block of the end symbol [3] relating to the boundary conditions (5) on the lateral sides of the sectors S_{1}, \ldots, S_{n} is the $(2 n \times 2 n)$-matrix

$$
\begin{equation*}
X(\zeta)=B+z(\zeta) T_{\alpha}, \quad z(\zeta)=e^{\pi i \zeta / n} \tag{7}
\end{equation*}
$$

where $T_{\alpha}=\left(\delta_{\alpha i, j}\right)_{1}^{2 n}$ is the permutation matrix

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & \ldots & 2 n-2 & 2 n-1 & 2 n \\
2 n & 3 & 2 & \ldots & 2 n-1 & 2 n-2 & 1
\end{array}\right)
$$

defined by the lateral sides of the sectors S_{j} in (4).
The results of [3] as applied to the problem (1)-(3) are stated as follows.
Theorem 1. In every strip $\lambda_{1}<\operatorname{Re} \zeta<\lambda_{2}$, the function $\operatorname{det} X(\zeta)$ has finitely many zeros. Let Δ be the projection of the set of these zeros onto the real axis and let the condition (3) with $\lambda \notin \Delta$ hold. Let also the point $\delta \in \Delta$ be such that $\delta>\lambda$ and $\Delta \cap(\lambda, \delta)=\varnothing$. Assume that $\zeta_{1}, \ldots, \zeta_{n}$ are the zeros of the function det $X(\zeta)$ on the line $\operatorname{Re} \zeta=\delta$ and r_{1}, \ldots, r_{n} are the orders of poles of the matrix function $X^{-1}(\zeta)$ at these points, respectively. Then, for $\delta \neq 0$, at every sector S_{i} the function $\phi(z)$ is representable as

$$
\begin{equation*}
\phi(z)=\sum_{j=1}^{n} \sum_{k=0}^{r_{j}-1} c_{j k}(\log z)^{k} z^{\zeta_{j}}+O\left(|z|^{\delta+\varepsilon}\right) \tag{8}
\end{equation*}
$$

with some $c_{j k} \in \mathbb{C}$ and $\varepsilon>0$.
If $\delta=0$ and $0 \notin\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ then we should replace the last summand in this decomposition with $c+O\left(|z|^{\varepsilon}\right), c \in \mathbb{C}$. Finally, assume that $\delta=0$ and, for instance, $\zeta_{1}=0$. Then (8) is valid, where r_{1} is substituted for $r_{1}-1$.

In accord with this theorem, we need to describe the zeros of det X and the orders of the poles of X^{-1}. It is convenient to introduce the notation

$$
\begin{equation*}
\delta=\frac{\nu_{1}-\nu_{2}}{2}, \quad s=\frac{\nu_{1}+\nu_{2}}{2}, \quad \nu=\sqrt{\nu_{1} \nu_{2}}, \quad q=\frac{\nu}{s} \tag{9}
\end{equation*}
$$

part of which has been already used in (6).

Lemma 1. All zeros of $\operatorname{det} X(\zeta)$ are simple and can be described by the inequalities

$$
\begin{equation*}
\zeta= \pm \frac{\cos ^{-1}\left(1-2 q^{2} \sin ^{2} k \theta\right)}{2 \theta}+\frac{\pi s}{\theta}, \quad k=0,1, \ldots, \frac{n}{2}-1, s=0, \pm 1, \pm 2, \ldots \tag{10}
\end{equation*}
$$

where $\theta=2 \pi / n$.
Proof. Given the class of entire $\left(n_{j} \times n_{j}\right)$-matrix-functions $X_{j}(\zeta), j=1,2$, for convenience, introduce the following equivalence relation: $X_{1} \sim X_{2}$ whenever there exist entire ($n_{1} \times n_{1}$)-matrix-functions $Y(\zeta)$ and $Z(\zeta)$ such that the product of their determinants is constant and does not vanish and

$$
Y X_{1} Z=\operatorname{diag}\left(1, X_{2}\right),
$$

where, for definiteness, $n_{1} \geq n_{2}$ and the symbol 1 stands for the identity $\left(\left(n_{1}-n_{2}\right) \times\left(n_{1}-n_{2}\right)\right)$-matrix (for $n_{1}=n_{2}$, the right-hand side of this relation is replaced with X_{2}).

Proceed with (7). Let T_{β} be the matrix of some permutation β. The product $B T_{\beta}$ is the matrix with the entries $\left(B T_{\beta}\right)_{i j}=B_{i, \beta-1 j}$. Hence, the right multiplication of B by T_{β} is equivalent to the permutation β^{-1} of its columns B_{1}, \ldots, B_{n}, i.e., the j th column coincides with $\left(B T_{\beta}\right)_{j}=B_{\beta-1 j}$. Moreover, $T_{\alpha} T_{\beta}=T_{\beta \circ \alpha}$. In particular, the permutation matrix of (7) meets the equality $T_{\alpha}^{2}=1$ and so $X \sim B T_{\alpha}+z \sim B T_{\alpha} T_{\beta}+z T_{\beta}$. Choose the cyclic permutation $1 \rightarrow 2 \rightarrow \cdots \rightarrow 2 n \rightarrow 1$ as β. If we rewrite T_{β} in the form of a block $(n \times n)$-matrix grouping the numbers $\{1,2\},\{3,4\}, \ldots,\{2 n-1,2 n\}$ then

$$
T_{\beta}=\left(\begin{array}{cccccc}
e_{1} & e_{2} & 0 & 0 & \cdots & 0 \\
0 & e_{1} & e_{2} & 0 & \cdots & 0 \\
0 & 0 & e_{1} & e_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
e_{2} & 0 & 0 & 0 & \cdots & e_{1}
\end{array}\right)
$$

with the (2×2)-matrices

$$
e_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Consider the matrix $B T_{\alpha} T_{\beta}=B T_{\beta \circ \alpha}$. As is easily seen, the permutation $(\beta \circ \alpha)^{-1}=\alpha^{-1} \circ \beta^{-1}=\alpha \circ \beta^{-1}$ leaves the odd numbers immovable and realizes the cyclic permutation $2 \rightarrow 2 n \rightarrow 2 n-2 \rightarrow \cdots \rightarrow 4 \rightarrow 2$ of even numbers. Hence, the columns of $\widetilde{B}=B T_{\alpha} T_{\beta}$ can be written as

$$
\widetilde{B}_{i}= \begin{cases}B_{i}, & i=1,3, \ldots, 2 n-1, \\ B_{2 n}, & i=2, \\ B_{i-2}, & i=4,6, \ldots, 2 n .\end{cases}
$$

Recalling the definition of B in (7) and using (6), we can rewrite \widetilde{B} in the similar ($n \times n$)-block form

$$
-s B T_{\alpha} T_{\beta}=\left(\begin{array}{cccccc}
c_{1} & d_{1} & 0 & 0 & \cdots & 0 \\
0 & c_{2} & d_{2} & 0 & \cdots & 0 \\
0 & 0 & c_{1} & d_{1} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
d_{2} & 0 & 0 & 0 & \cdots & c_{2}
\end{array}\right)
$$

with the (2×2)-matrices

$$
c_{1}=\left(\begin{array}{cc}
\delta & 0 \\
\nu_{1} & 0
\end{array}\right), \quad d_{1}=\left(\begin{array}{cc}
0 & \nu_{2} \\
0 & -\delta
\end{array}\right), \quad c_{2}=\left(\begin{array}{cc}
-\delta & 0 \\
\nu_{2} & 0
\end{array}\right), \quad d_{2}=\left(\begin{array}{cc}
0 & \nu_{1} \\
0 & \delta
\end{array}\right) .
$$

Therefore,

$$
X \sim-s B T_{\alpha} T_{\beta}-s z T_{\beta} \sim\left(\begin{array}{cccccc}
p_{1} & q_{1} & 0 & 0 & \cdots & 0 \tag{11}\\
0 & p_{2} & q_{2} & 0 & \cdots & 0 \\
0 & 0 & p_{1} & q_{1} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
q_{2} & 0 & 0 & 0 & \cdots & p_{2}
\end{array}\right)
$$

with the (2×2)-matrices

$$
\begin{array}{ll}
p_{1}=\left(\begin{array}{cc}
\delta & -s z \\
\nu_{1} & 0
\end{array}\right), & q_{1}=\left(\begin{array}{cc}
0 & \nu_{2} \\
-s z & -\delta
\end{array}\right), \\
p_{2}=\left(\begin{array}{cc}
-\delta & -s z \\
\nu_{2} & 0
\end{array}\right), & q_{2}=\left(\begin{array}{cc}
0 & \nu_{1} \\
-s z & \delta
\end{array}\right) .
\end{array}
$$

Assigning $P=\operatorname{diag}\left(p_{1}, p_{2}, p_{1}, p_{2}, p_{1}, p_{2}\right)$ and $x_{j}=p_{j}^{-1} q_{j}$, we can thus write

$$
P^{-1} X \sim\left(\begin{array}{cccccc}
1 & x_{1} & 0 & 0 & \cdots & 0 \tag{12}\\
0 & 1 & x_{2} & 0 & \cdots & 0 \\
0 & 0 & 1 & x_{1} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
x_{2} & 0 & 0 & 0 & \cdots & 1
\end{array}\right) .
$$

Subtracting the first column multiplied by x_{1} on the right from the second on the right-hand side of this relation, we obtain the equivalent matrix

$$
P^{-1} X \sim\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & x_{2} & 0 & \cdots & 0 \\
0 & 0 & 1 & x_{1} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
x_{2} & -x_{2} x_{1} & 0 & 0 & \cdots & 1
\end{array}\right) .
$$

Subtracting the second column multiplied by x_{2} on the right from the third in the matrix obtained and continuing this process, we arrive at the relation $P^{-1} X \sim 1+Y$, where all elements of the block $(n \times n)$-matrix Y except for the elements of the last row vanish and the last row consists of the elements

$$
x_{2},-\left(x_{2} x_{1}\right),\left(x_{2} x_{1}\right) x_{2},-\left(x_{2} x_{1}\right)^{2},\left(x_{2} x_{1}\right)^{2} x_{2}, \ldots,-\left(x_{2} x_{1}\right)^{n / 2} .
$$

Thus,

$$
P^{-1} X \sim\left(\begin{array}{cc}
1_{2 n-2} & 0 \tag{13}\\
\cdots & 1-\left(x_{2} x_{1}\right)^{n / 2}
\end{array}\right)
$$

where 1_{k} designates the identity $(k \times k)$-matrix. It is immediate from (11) that

$$
p_{1} \sim\left(\begin{array}{cc}
-s z & \delta \\
0 & \nu_{1}
\end{array}\right) \sim\left(\begin{array}{cc}
-s z & 0 \\
0 & \nu_{1}
\end{array}\right), \quad p_{2} \sim\left(\begin{array}{cc}
-s z & 0 \\
0 & \nu_{2}
\end{array}\right) ;
$$

and so $P \sim \operatorname{diag}\left(1_{n}, z 1_{n}\right)$. Taking (13) into account, we infer

$$
\begin{equation*}
X \sim \operatorname{diag}\left(1_{n}, z 1_{n}\right) \operatorname{diag}\left[1_{2 n-2}, 1-\left(x_{2} x_{1}\right)^{n / 2}\right] \sim z \operatorname{diag}\left[1_{n-2}, 1-\left(x_{2} x_{1}\right)^{n / 2}\right] . \tag{14}
\end{equation*}
$$

In accord with (9) and (11), we derive that

$$
x_{1}=-\frac{1}{\nu_{1} z}\left(\begin{array}{cc}
s z^{2} & \delta z \\
\delta z & s
\end{array}\right), \quad x_{2}=-\frac{1}{\nu_{2} z}\left(\begin{array}{cc}
s z^{2} & -\delta z \\
-\delta z & s
\end{array}\right)
$$

and

$$
x=x_{2} x_{1}=\frac{1}{\nu^{2} z^{2}}\left(\begin{array}{cc}
s^{2} z^{4}-\delta^{2} z^{2} & \delta s z^{3}-s \delta z \tag{15}\\
-\delta s z^{3}+s \delta z & -\delta^{2} z^{2}+s^{2}
\end{array}\right) .
$$

We have

$$
x^{n / 2}-1=\prod_{k=0}^{n / 2-1}\left(x-\varepsilon_{k}\right), \quad \varepsilon_{k}=e^{4 \pi i k / n}
$$

In this case (14) yields

$$
\begin{equation*}
\operatorname{det} X \sim z^{n} \prod_{k=0}^{n / 2-1} \operatorname{det}\left(x-\varepsilon_{k}\right) \tag{16}
\end{equation*}
$$

By (15),

$$
x-\varepsilon=\frac{1}{\nu^{2} z^{2}}\left(\begin{array}{cc}
s^{2} z^{4}-a^{2} z^{2} & \delta s z\left(z^{2}-1\right) \\
-\delta s z\left(z^{2}-1\right) & s^{2}-a^{2} z^{2}
\end{array}\right), \quad a^{2}=\delta^{2}+\varepsilon_{k} \nu^{2},
$$

and simple calculations imply that

$$
\begin{equation*}
\operatorname{det}\left(x-\varepsilon_{k}\right)=\frac{\varepsilon_{k}}{\nu^{2} z^{2}}\left[s^{2} z^{4}-\left(\frac{\nu^{2}}{\varepsilon_{k}}+\nu^{2} \varepsilon_{k}+2 \delta^{2}\right) z^{2}+s^{2}\right]=\frac{\varepsilon_{k} h_{k}\left(z^{2}\right)}{q^{2} z^{2}} \tag{17}
\end{equation*}
$$

where

$$
h_{k}(t)=t^{2}-2\left(1-q^{2}+q^{2} \cos 2 k \theta\right) t+1=t^{2}-2\left(1-2 q^{2} \sin ^{2} k \theta\right) t+1,
$$

and we put $\theta=2 \pi / n$ for brevity. The roots of this polynomial are two complex conjugate roots

$$
1-2 q^{2} \sin ^{2} k \theta \pm 2 i q(\sin 2 k \theta) \sqrt{1-q^{2} \sin ^{2} k \theta}=e^{ \pm i \varphi_{k}}, \quad \varphi_{k}=\cos ^{-1}\left(1-2 q^{2} \sin ^{2} k \theta\right)
$$

Using the last relation together with (16) and (17), we finally obtain

$$
\operatorname{det} X \sim \prod_{k=0}^{n / 2-1}\left[\left(z^{2}-e^{i \varphi_{k}}\right)\left(z^{2}-e^{-i \varphi_{k}}\right)\right]
$$

Recalling that $z^{2}=e^{2 i \theta \zeta}$, we conclude that the zeros of det $X(\zeta)$ are simple and listed in (10).
Lemma 1 and Theorem 1 lead to the following result.
Theorem 2. Let $\delta>\lambda$ be a point of the form (10) nearest to λ. Then $\phi(z)$ in each sector S_{j} is representable as

$$
\begin{equation*}
\phi(z)=c z^{\delta}+O\left(|z|^{\delta+\varepsilon}\right), \quad c \neq 0 \tag{18}
\end{equation*}
$$

for $\delta \neq 0$ and as

$$
\begin{equation*}
\phi(z)=c_{0}+c_{1} \log z+O\left(|z|^{\varepsilon}\right), \quad\left|c_{0}\right|+\left|c_{1}\right| \neq 0 \tag{19}
\end{equation*}
$$

for $\delta=0$.
In conclusion, we examine the case of $\nu_{1}=\nu_{2}$. In this case $q=1$ and the points (10) are integers lying on the line. On the other hand, if $\nu_{1}=\nu_{2}$ and $c=0$, then (1) and (2) ensure the analyticity of $\phi(z)$ in the punctured unit disk and thereby $\phi(z)$ admits poles only which agrees with (18). If $-1<\lambda<0$ and $c \neq 0$ in (2) then $\phi(z)$ has the logarithmic decomposition (19).

References

1. Ovchinnikov Yu. N. and Luk'yanchuk I. A., "Conductivity and field and current distributions in a two-component system composed of regular triangles," JETP, 94, No. 1, 203-215 (2002).
2. Its A. R. and Sukhanov V. V., "A matrix Riemann problem on a system of rays and inverse problems of scattering theory," Soviet Math., Dokl., 32, 137-140 (1985).
3. Soldatov A. P., Boundary Value Problems in the Theory of Functions in Domains with Piecewise-Smooth Boundary. Parts I and II [in Russian], Tbilissk. Gos. Univ., Tbilisi (1991).
4. Soldatov A. P., "Generalized Riemann problem on a Riemann surface," Dokl. Math., 58, No. 2, $279-282$ (1998).
N. A. Zhura

Lebedey Physical Institute, Moscow, Russia
A. P. Soldatov

Belgorod State University, Belgorod, Russia
E-mail address: soldatov48@gmail.com

