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A b s t r a c t . We briefly review  different w ell-posed boundary -value  problem s for m ixed-type equations and 
th e ir  app lications in  tran son ic  gas dynam ics. We presen t baro trop ic  re la tions for p lane-para lle l flow of a 
com pressible gas th a t  leads to  m ixed-type m odel equations on th e  hodog raph  plane. We also discuss th e  
question  on th e  existence of tran son ic  solu tions of profile flow problem s, w hich is closely re la ted  to  D irichlet 
problem s in  m ixed-type dom ains.

Mixed-type elliptic-hyperbolic equations naturally arise in gas dynamics. The first, equation of such 
type appeared in Chaplygin’s paper [6] on gas jets in 1902. This equation has the form
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and is called the Chaplygin equation. Here, the function K(y)  is positive for y > 0 and negative for y < 0; 
therefore, the equation is elliptic for y > 0 and hyperbolic for y < 0.

The first boundary-value problem for a mixed-type equation was considered by Tricomi without any 
connection with applications [32]. Consider the Tricomi equation

d2u d2u 
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which corresponds to the case where K(y) = y, in a domain D  bounded by a smooth arc a with endpoints 
A(0,0) and £>(1,0) (this arc lies in the half-plane y > 0 outside these endpoints) and two characteristics 
A C  and B C  of this equation (see Fig. 1).

The Tricomi problem T  is to find a solution u G C(D)  of this equation, which takes given values on 
a and AC: v\ Ac =  <p. Under certain assumptions on the partial derivatives d u /d x  and du/dy ,  the 
smoothness of the function ip on a and To, and properties of the arc a, Tricomi proved tha t this problem 
has a unique solution.

The first investigations of Tricomi showed tha t boundary-value problems for mixed-type equations are 
very difficult to study. In particular, the proof of the existence of a solution is based on sophisticated



methods of fractional differentiation, special functions, and one-dimensional singular equations, which 
were not well developed at tha t time.

In the 1930s, the Swedish mathematician Gellerstedt extended Tricomi’s results to the case of the 
equation
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where m  is a nonnegative integer number.
Beginning in the 1940s, problems for mixed-type equations had become the focus of many scientists 

(M. V. Keldysh, M. A. Lavrentiev, A. V. Bitsadze, K. I. Babenko, K. Friedrichs, K. Moravec, L. Bers, 
and others).

The topicality of these studies was stipulated by needs of high-speed aerodynamics. The first investiga
tions in transonic dynamics tha t led to new boundary-value problems were made by Frankl and Guderley. 
In this connection, we emphasize the exceptional importance of the above-mentioned paper of Chaplygin, 
which was weakly understood for a long time. Only when the compressibility of air had been taken 
into account in aviation problems because of the high speeds in the 1930s, did this paper become the 
foundation of many works in gas dynamics.

As is known, a steady, plane-parallel flow of inviscid fluid (liquid or gas) is described by the continuity 
equation

and the Euler equations

d(pvi) d(pv2) =  0
dx\ dx2
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where the velocity vector v = (v \ ,v 2 ), the density p, and the pressure p are functions of x \  and X2 - If the
fluid is isentropic, we also have the equation of state S(p, p) =  0.

Assume tha t the fluid is barotropic, i.e., the equation of state S(p, p) =  0 can be uniquely solved with 
respect to p and determines a smooth, strictly increasing function p = g(p).

We fix one of the antiderivatives of g'(p)/p  by setting Q'(p) =  g'(p)/p. Obviously, the function Q(p),
called the enthalpy, monotonically increases in the variable p.

In the case of an ideal gas, we have

g{p) = Ap7, Q(p) = - ^ - p 7“ 1,
7 - 1

where A  >  0 and 7  > 1 are some constants.
Barotropic motions satisfy the Thompson theorem, which states tha t the circulation of a vector field 

v along a “fluid” contour consisting of particles and moving together with them is constant in time. 
Therefore, if there are no vortices at the initial instant, then this circulation vanishes and the Green 
formula implies the equation

dv2 _  dvi_ _  „ 
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which expresses the fact tha t v is a potential field. Hence,
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and the Euler equations imply the Bernoulli relation
2

Y  + Q(p) = C ’ (!)

where C  is a constant. This formula relates the speed r = \v\ with the density p.
Therefore, the pair of Euler equations is equivalent to the potentiality equation and the Bernoulli 

equation. Since the function Q strictly increases, the Bernoulli relation can be solved with respect to



p; thus, we obtain the monotonically decreasing function p =  p(r), 0 < r < vq. Finally, we obtain the 
following quasilinear, first-order system describing the motion:

9 r ,, lx n 9 r .. .. . dv 2 dv\ , .

We introduce the following quantities:

1 - M 2
c = V ¥ U ) ,  m  = — , k  = — 2— • (3)c pz

The first of them expresses the propagation speed of small perturbations (for fixed density p) and is called 
the (local) speed of sound. The dimensionless quantity M  is called the Mach number and K  is called the 
Chaplygin coefficient. Obviously, these quantities are functions of p (or r =  |t>|).

If the function 1 — M 2(p) changes its sign at a unique point p*, then the subsonic and supersonic 
domains are determined by the inequalities p(x,y) < p* and p (x ,y ) > p*, respectively.

By the Bernoulli relation, we have

q! ( o)  C2r dr =  — dp =  dp (4)
p p

and, hence,

p dr
Therefore, the quantity pr =  p|t>| (the mass flux) increases in the subsonic domain and decreases in the 
supersonic domain. The use of nozzles to obtain supersonic flows is based on this property. Consider a 
flow in a symmetric pipe having a narrowing (the Laval nozzle). Let the flow have sufficiently high speed 
at — oo. The narrowing of the tube leads to the increasing of the speed. Having attained the value of the 
speed of sound, the speed of the flow continues to increase along the expanding part of the tube.

Let the function 1 —M 2(p) (or, equivalently, the Chaplygin coefficient K (p )) change its sign at a unique 
critical point p*. Taking the Bernoulli equation into account, we obtain

K(p) =  2 [p V (p )C]) G = 92 + Q  (5)

and hence
G(p) < C  for p < p*, G(p) > C  for p > p*. (6)

In particular, the point p* is unique if the function G monotonically increases. For an ideal gas, we have
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In the case where the function g{p) is piecewise smooth, the functions c, M, and K  are piecewise 
continuous and inequalities (6), determining the point p* have sense even if p* is a point of discontinuity 
for cj.

Consider the situation where on some interval pi <  p < P2, the function G is constant. By the 
definitions of Q and G, this is equivalent to the relation

9"{P) , 9'{P) _  n , _  _—~------ 1 =  U, pi < p < p2-z p
The general solution of this differential equation is

g(p) =  a — , p i < p < p 2,
p

where B  > 0 (by the condition cj > 0).



Fig. 2

The model corresponding to functions g of such type is called the Chaplygin gas. In this case, by (5), 
the function K(p)  is constant on the given interval:

G{p) = Ci, pi < p < p2■

The adiabat-approximation method is based on this fact. It consists of the change of the graph of the 
function g by the broken line composed of parts of hyperbolas g(p) = A  — B / p with different constants A  
and B  (see Fig. 2).

These broken lines compose the graph of a piecewise-smooth function po for which the function ii'o(p) 
is piecewise constant and changes sign at the point p*. This approximative model of gas was proposed 
by Poritsky [22] and Lavrent’ev and Bitsadze [16]. In particular, in the case of a two-section broken line, 
the Chaplygin coefficient has the form ii'o(p) =  sgn(p — p*).

Consider system (2). We can introduce the potential p  and the stream function ip by the formulas 
grad p  = v and grad 0 =  (—pV2 ,pvi) and reduce the problem to a single equation for p  or 0. The 
functions p  and ip are connected by the relations

dp  1 dip dp  1 dip
dx  i p d x -2 ’ dx -2 p dx i '

Substituting v = grad p  into the system, we obtain the following equation for the potential p:

dJ L  ( ,,È L \ + J L  ( ,,0L \P-d x i  V  d x i )  d x 2 \  d x 2 JP- 0.

Taking (4) into account, we obtain

d[p{r)] =
dxi
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Therefore, the previous equation can be written in the form of the classical gas-dynamic equation:

c2 -
dp  
dx  1

d2p
d x 2
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This equation is quasilinear; its discriminant equals

_  (  dLp V
\ d x i j

c2 -
dp  
dx 2

dp dp  
dx  1 d x -2

= c4( 1 -  M 2).



Therefore, the equation (and the previous first-order system for the potential ip and the stream function 
ip) is elliptic in the subsonic domain and hyperbolic in the supersonic domain, i.e., it is an equation of 
mixed type. We emphasize tha t c is considered as a function of r =  | gradt£>|.

There is a method of linearization of this equation going back to Chaplygin. In this method, one uses 
the transformation x  —> v realized by the velocity vector v = grad ip as a change of variables for this 
equation. In other words, the variables v\ and V2  on the so-called hodograph plane are assumed to be 
independent and the variables x \  and X2  on the physical plane are considered as functions of v\ and V2 - 
Relative to ip, this yields the Legendre transformation. The vector ( x \ , x 2 ) is the gradient grad% of a 
certain function x(t>i, V2 )- Relative to the inverse Legendre transformation, the equation considered turns 
into the linear equation

, 2 2 ^ X  o 92tp 2 2 ^ X  n
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The main obstruction in using the hodograph method is the possible ambiguity of the inverse trans
formation v —> x. In the subsonic domain of the hodograph plane this transformation admits isolated
singularities (branching points); in the hyperbolic part, “folds” along certain curves may appear.

It is convenient to use the polar coordinates v\ = r cos 9, V2  = r sin 9 instead of the Cartesian coordinates 
v\, V2  and proceed with the system for the potential ip and the stream function ip. Taking it in the form

<1
d(p H— dip = (v\ — iv2){dx\ + idx2)

P
or

c_^  (  i
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we obtain the following relations for the first-order partial derivatives:

d(x\  +  1x 2 ) e~%e f  dip ^  i cfyA d(x\  +  1x 2 ) e~%e /  dip ^  i dip
dr r \  dr p d r )  dO r \ d 0  p dO

Equating the mixed second-order derivatives, we obtain

. / dip i d i p \  I  f  dip i d i p \  ip'  dip
1 \  d r  ^  p d r )  r x d O ^ p d O J  p2 d d ’

where p is considered as a function of r.
Separating the real and imaginary parts and taking (4) into account, we obtain the system

dip p T^9ip dip P
dr r dO ’ dr r dO

for the functions ip and ip of the variables r and 6 on the hodograph plane.
The change of variables

p
x = 9, y = — J - d r  (7)

p*
transforms this system to the canonical form

dy yajd x ’ dy dx
dip - . dip dip dip 
l T = K (y) 7 H ’ 7 T  = - 7 n ’

where K(y)  is the Chaplygin function, which changes sign at the point y = 0 of the y axis. Eliminating 
ip, we obtain the Chaplygin equation for the stream function u = ip in the variables x  and y.



As was noted above, if the adiabat (the graph of the function g(p)) consists of two parts of hyperbolas of 
the form 7 (p) =  A — B /p  with the common point p*, then the Chaplygin coefficient equals K (y ) =  sgny. 
In this case, the Chaplygin equation becomes the Lavrent’ev-Bitsadze equation

d2u d2u 
^ V g ~ ; + g - I  = 0-

Along with the well-known Tricomi equation, it is a model equation of mixed type.
We have assumed above tha t there exists a unique p* satisfying property (6). If the function G = 

g'/ 2 +  Q is not monotone, then there can exist several points p* at which the function G{p) — C  changes 
sign. In this case, the Chaplygin function K ( y ) changes its sign, for example, at the points y = 0 and 
y = 1. Boundary-value problems for the equation

, . d2u d2u

v i v - 1)w  + W = '
which simulates the situation of this type, were initially studied by Nakhushev [19].

Now we consider the Tricomi problem for the Chaplygin equation. It is closely related with the theory of 
transonic gas flows (see [9]). Frankl [11] also proved the uniqueness theorem for solutions of this problem 
under the condition 3(K ')2 > 2K K "  for the Chaplygin coefficient.

As was noted by Friedrichs, FrankPs proof can be represented in terms of the “energy integral.” We 
briefly present this method. If u is a solution of the Chaplygin equation in a domain D, then

du du \  f  T,d 2u d2u \
a—  +  b—  + c u )  K  — r +  — j dxdy = 0

ox dy )  \  o x 1 oy1)
D

for any functions a, b, and c. Using the Green formula and the boundary conditions, we can represent the 
left-hand side as the integral over the boundary of a quadratic form of the variables d u /d x  and du/dy. 
Therefore, the problem is reduced to the search for a, b, and c such tha t this quadratic form is positive 
definite. This method is called the a&c-method and is widely used by many authors for proving the 
uniqueness theorems for different boundary-value problems for equations of mixed type and for obtaining 
a priori estimates.

The complete investigation of the Tricomi problem and the so-called problem T* for the Lavrent’ev- 
Bitsadze equation was performed by Bitsadze [4]. The problem T* is a generalization of the Tricomi 
problem; the support of the Dirichlet data in the hyperbolic part consists of two segments, A N  and 
B B ',  of characteristics whose endpoints N  and B' lie on characteristics beginning at some point T (r, 0), 
0 < r  < 1 .

A solution of this problem is sought in the mixed domain D  bounded by a and the segments of 
characteristics A N ,  B B ',  T N , and T B '  (see Fig. 3). Thus, this problem is determined by the boundary 
condition u\a[jAA,uBB, = <p.

Another important generalization of the Tricomi problem, the so-called problem M ,  was proposed 
by Frankl [12] in the connection with the study of transonic flows of gas jets. In this problem, the 
characteristic A C  (the support of the Dirichlet data in the hyperbolic part) is replaced by a curve T = A F  
lying inside the characteristic triangle (Fig. 4). In other words, we have the problem with the boundary 
condition w| ur =  in the domain bounded by the curves a and T and the arc of the characteristic B F .

Frankl [10] studied this problem for the Tricomi equation in the case where a is the normal contour 
(x — l ) 2/2  +  4y3/9  = 1/4, y > 0, and T in some neighborhood of its endpoint A  coincides with the 
characteristic AC  and weakly deviates from it in the whole.

As compared with the Tricomi problem, for this problem it is much more difficult to prove the uniqueness 
and the existence of a solution.

The first proof of the existence and uniqueness of a solution of this problem for the Lavrent’ev-Bitsadze 
equation was given by Bitsadze [4] under the assumption tha t the inequality dy{x — x 2 — y 2) — ydx > 0



holds on a. This substantial progress invited Frankl to call problem M  the Bitsadze problem (unpublished 
letter to Bitsadze). However, it is now usually called the generalized Tricomi problem.

For the Lavrent’ev-Bitsadze equation, Bitsadze considered the so-called generalized mixed problem, 
the problem M*, corresponding to the removal from characteristics in the problem T*. The support of the 
Dirichlet data in the hyperbolic part of this problem consists of two arcs To and Ti whose initial points 
lie on the characteristics AC  and BC,  respectively (see Fig. 5) and whose endpoints A \  and B \  lie on 
the characteristics beginning at some point T (r, 0), 0 < r  < 1. We search for the solution in the mixed 
domain D  bounded by the curves a, To, and Ti and segments of the corresponding characteristics. Thus, 
this problem is determined by the boundary condition w.|crur0uri =  <p. Bitsadze proved the existence and 
uniqueness of the solution of this problem in the class C 1(D) under some geometric conditions on a.

The general mixed problem for the Chaplygin equation was also investigated. In particular, Morawet.z 
[18] proved by the a&c-method the uniqueness of the solution of this problem in the case where the 
condition (x — r)dy — ydx > 0 holds on a.

Soldatov [25] proved the uniqueness of the solution of problem M  without any geometrical assumptions 
about the elliptic part a  of the boundary dD. We briefly discuss this proof.

A version of the a&c-met.hod proposed by Bitsadze consists of the reduction of problem M  to an elliptic 
problem in the domain D + = D  n {y > 0} and of the appropriate choice of a function F  analytic in D + 
such tha t the integrand in the relation

0 =  Im f F(z) [(f)'{z)] 2 dz
9D+

is positive definite. Here (f) is an analytic function whose real part is the solution of the considered 
homogeneous problem. Such a function F  can be constructed for an arbitrary curve a only under the 
assumption that F  has a sufficient number of poles on the boundary; the number of poles depends on the 
variation of the argument of the tangent to a. Therefore, if we know tha t there exists a sequence zn —> 0, 
zn G a, such that <j)'(zn) =  0, then we can allow F  to have poles in some of these points and then select 
this function appropriately.

On the other hand, if these points zn G a are isolated from 2 =  0, then we can select a subdomain Do 
in D  bounded by the envelope of level curves of the solution u(z) and the corresponding part of dD. For 
this subdomain, it is possible to choose a new function Fq such tha t the integrand in the relation

0 =  Im /  F0(z)(f)2(z)dz 
d D 0

is positive definite.
In [23], the idea of using level curves was successfully applied for the proof of the uniqueness of the 

solution of problem M  and of the general Chaplygin equation. This showed substantial progress in the 
investigation of this problem.



The condition for the elliptic part a of the boundary dD  in the general mixed problem M* for the 
Lavrent’ev-Bitsadze equation imposed by Bitsadze was weakened by Soldatov [26]. It consists of the 
requirement that the continuous branch of the argument of the tangent vector takes values in the interval 
[0,27r]. It can be proved tha t for an arbitrary curve a, the homogeneous problem M* has only a nonzero 
solution.

However, it is unknown whether the uniqueness theorem holds for an arbitrary curve a. A similar 
question is still open also for the general Chaplygin equation.

Some boundary-value problems for mixed-type equations related with direct problems for the Laval 
nozzle were considered by Kuz’min [15].

In conclusion, we discuss the so-called transonic polemic [1], which launched in the 1950s between 
mathematicians and mechanicians (Guderley, Buseman, Frankl, Schaffer, and others) in connection with 
the problem on existing smooth transonic solutions of the streamline problem for arbitrary profiles.

Let a given domain on the hodograph plane v\, V2  have the form shown in Fig. 6, where A B  is an arc 
of the circle v\ +  vf =  r* with critical speed of sound r* corresponding to the value p*, the arcs T B \  and 
T A \  are characteristics (Mach lines), and the arcs A A \  and B B \  are not of characteristic directions.

In the polar coordinates v\ =  rcosd  and V2  = rs in0 , after substitution (7) this domain turns (for the 
function K (y) = sgn y) into the domain D  shown in Fig. 5.

The existence of a smooth solution of the streamline problem means tha t there exists a function ip 
vanishing on the whole boundary of the domain shown in Fig. 5 (i.e., on the arcs O B B \A \A O  and the 
segment OA) and having a singularity at the point E, which corresponds to the value of the complex 
potential v\ — iv 2  at 00.

Note that if the point T  moves toward the point B, then the length of the arc A \B \  tends to zero and 
the general mixed problems become the Dirichlet problem. This led Busemann [5] and Guderley [8] to the 
conclusion tha t the considered problem has a solution if there is a singularity at the point A  (although this 
has no physical meaning). Recent results concerning the Dirichlet problem for the Lavrent’ev-Bitsadze 
equation completely justify this point of view.

We consider this situation for the general mixed problem (M*). Let a domain D  be bounded by arcs 
<7 C {y > 0} and T C {y < 0} with endpoints A  and B. By the main result of Bitsadze, the Dirichlet 
problem tt| ur =  <fi for the Lavrent’ev-Bitsadze equation in the class C (D )n C 1(D) is overdetermined. The 
Dirichlet data ip must be disengaged on the arc T*, which is the common part of T and the characteristic 
angle with vertex at the point T (r, 0), 0 < r  <  1. In Bitsadze’s posing of the problem, the point T  is 
chosen in the segment [0,1] such that the arc T* contains a point with the minimum ordinate (see Fig. 5). 
In effect, this restriction can be eliminated and a point 0 < r  < 1 can be chosen arbitrarily (perhaps 
arbitrarily close to the endpoints A  and B).

If we reject the continuity of the solution u in the whole closed domain and allow it to have a power 
singularity of sufficiently small order at the point B, then the problem becomes uniquely solvable [28,



29]. The proof of the existence theorem requires the theory of singular integro-differential operators in 
the class of functions with condensing singularities on the endpoints of the segment [0,1] (see [27]).

It seems sufficiently paradoxical tha t if we allow the solution to have a singularity at a unique point B  of 
the boundary, then we must impose additional boundary data on the entire boundary arc T*; this fact does 
not hold in the theory of elliptic boundary-value problems. The reason is that the considered Dirichlet 
problem is reduced to a nonlocal elliptic problem in the domain D + , whose behavior substantially differs 
from the behavior of local problems.

Note that in the model case where a and 7  are arcs of a circle and a hyperbola, respectively, it is 
possible to obtain a direct proof of the existence and uniqueness of the Dirichlet problem in the class

u{z) = 0(1)
1 - z

z = x  +  iy G D +,

where e > 0 is sufficiently small (see [30]). The fact is that, in this case, an integro-differential equation 
on the segment [0, 1 ], to which the initial problem can be equivalently reduced, can be transformed to a 
convolution equation on the whole axis (in the sense of Hormander) and the invertibility of this equation 
is determined by the condition tha t the Fourier image of its kernel does not vanish.

Note tha t the Dirichlet problem for mixed-type equations can also be posed for domains of other 
types [14]. Moreover, more general boundary conditions of Poincare type can be imposed on the boundary 
of a mixed domain. Such problems are well posed in appropriate weighted spaces (see [31]).

We have discussed boundary-value problems in connection with their gas-dynamic applications. How
ever, mixed-type equations play a significant role, for example, in the theory of bending of momentless 
thin shells (see [33]) and in different models of mathematical biology (see [20]).

For the Tricomi problem, important spectral-theoretic results were obtained [17, 21]. For the Lavrent’ev- 
Bitsadze, Tricomi, and Gellerstedt equation with spectral parameters, domains on the complex plane con
taining no points of spectra are described. The problem on the completeness of systems of eigenfunctions 
and joined functions of the Tricomi problem in some mixed domains is studied. Note that the existence of 
eigenvalues for this problem was proved by K al’menov [13]. A detailed bibliography is contained in [24].
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