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Abstract
Mechanisms of the resistivity, ρ, of single crystal samples oriented along the [100] (No 1),
[010] (No 2) and [001] (No 3) axes of anisotropic semiconductor p-CdSb doped with 2 at.% of
Ni are investigated. In zero magnetic field the Mott type variable-range hopping (VRH)
conductivity is observed in No 2 and the Shklovskii–Efros type in No 1 and No 3 at T � 2.5 K.
The magnetoresistance (MR) of the samples obeys the law ln ρ ∼ B2 up to B ∼ 6 T. However,
the temperature dependence of MR gives evidence for the Mott-VRH conductivity in No 1 at
T � 4.2 K and the nearest-neighbor hopping conductivity in No 2 between T = 3 and 4.2 K
and in No 3 between 1.5 and 4.2 K. From the experimental data the values of the localization
radius and dielectric permittivity and details of their critical behavior near the metal–insulator
transition, as well as the widths and the values of the density of the localized states, the acceptor
energies, their concentrations and the anisotropy coefficients, are obtained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Crystalline semiconductors doped with transition-metal ele-
ments can be divided into (i) compounds with microscopically
homogeneous magnetization or semimagnetic semiconductors
and (ii) diluted magnetic systems containing nanosize mag-
netic particles (clusters) and strongly inhomogeneous distribu-
tion of magnetization. Both groups of the materials exhibit
spin-dependent electron transport [1].

Recently, magnetic properties of cadmium antimonide
doped with Ni (p-CdSb:Ni) have been investigated [2]. The
special interest in this compound is related to the strongly
anisotropic transport properties of CdSb, which is a group II–V
p-type semiconductor with orthorhombic crystal structure and
the energy gap Eg ∼ 0.56 eV at 0 K [3]. Undoped CdSb
has non-degenerate charge carriers and activated conductivity
governed by acceptor bands with energies ∼ 3 and 6 meV.
Fe and Ni substituting for Sb in the lattice act as acceptors
in CdSb. Doping with Ag induces in CdSb a metal–
insulator transition (MIT) by removing the energy difference
between the shallow acceptor states and the valence band [3].
Investigations of the Shubnikov–de Haas effect in heavily
doped p-CdSb have yielded the values of the hole effective

masses, mi = 0.16, 0.35 and 0.19 (in units of free electron
mass, m0) in the crystallographic directions [100], [010]
and [001], respectively [4]. On the metallic side of the
MIT anisotropic quantum interference effects such as weak
localization and anomalous magnetoresistance (MR) have been
observed [5], whereas on the insulating side of the MIT
anisotropic hopping conductivity was found [6].

Limited solubility of Ni in CdSb stimulates formation
of a eutectic composition CdSb + NiSb at ∼2 mol% of
NiSb, containing needle-like NiSb inclusions of length l ∼
30–40 μm and diameter d ∼ 1–1.5 μm [7]. On the
other hand, at smaller doping level nanosize Ni-rich Ni1−x Sbx

ferromagnetic (FM) clusters are formed [2]. The clusters have
a broad size distribution, high aspect ratio l/d and orientations
distributed along a preferred direction. The presence of
these clusters leads to considerable anisotropy of the magnetic
properties of p-CdSb:Ni, as well as to a frustrated ground state
and spin freezing below room temperature [2]. This makes p-
CdSb:Ni a promising group (ii) material mentioned above.

Generally, galvanomagnetic properties of diluted mag-
netic semiconductors with itinerant electrons are investigated
much better than those with localized charge carriers and hop-
ping charge transfer. Moreover, investigations of the hopping
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Figure 1. The temperature dependence of the resistivity of
p-CdSb:Ni. Inset: plots of ln ρ versus T −1. For convenience the data
for No 2 and No 3 are shifted by +0.5 and +2.5 units along the
vertical axis. The straight lines are linear fits.

conductivity in such compounds demonstrating anisotropic
transport and magnetic behavior are lacking in the literature.
On the other hand, in the group (ii) compounds one may ex-
pect new interesting features of hopping transport connected to
inhomogeneous magnetization. The point is that hopping con-
duction mechanisms are determined strongly by the degree of
internal microscopic disorder, whereas magnetic nanoclusters
with broad size distribution bring to a system additional disor-
der of a magnetic nature, being sensitive to external magnetic
field.

In this work we investigate the resistivity and MR of CdSb
doped with Ni. Special attention is paid to the mechanisms
of low-temperature charge transfer. Information about critical
behavior of the microscopic parameters near the MIT and
properties of localized charge carriers are obtained.

2. Experiment

Single crystals of CdSb doped with 2 at% of Ni were prepared
by the modified Bridgman method [2]. As observed by
x-ray diffraction, the ingots were of single phase material
with orthorhombic structure (space group D15

2h) and had the
same lattice parameters as undoped CdSb. For investigations,
rectangular prisms with the longest edge along the [100]
(No 1), [010] (No 2) and [001] (No 3) axes, respectively, were
cut from the ingots. The measurements of ρ(T ) were made
by recording the signal from two different pairs of potential
contacts on the samples placed in a He exchange gas Dewar,
where their temperature could be varied between 1.5 and 300 K
to an accuracy of 0.5%. MR measurements were made in
transversal field configurations with j ‖ [100] and B ‖ [001]
(No 1), j ‖ [010] and B ‖ [100] (No 2), j ‖ [001] and
B ‖ [010] (No 3) at temperatures between T = 1.5 and
300 K in pulsed magnetic fields up to B = 30 T. The magnetic
pulse length was 8 ms, the error in the strength of the field
was not larger than 5% and its inhomogeneity did not exceed

Figure 2. The dependence of the resistivity of p-CdSb:Ni on
magnetic field.

0.3%. Measurements of the low-field Hall coefficient, R,
at 77 K in fields below 0.1 T gave the Hall concentrations
p77 = (eR77)

−1 = 3.56 × 1016 cm−3, 2.73 × 1016 cm−3 and
2.10 × 1016 cm−3 for No 1, 2 and 3, respectively.

As shown in figure 1 the values of ρ(T ) decrease smoothly
below 300 K until a minimum is attained at ∼30 K followed
by strong increase of ρ with further decreasing of T . The data
of ρ(B) in figure 2 show large positive MR, increasing with
B and decreasing with increasing T at liquid He temperatures
(approximately above the break in the ρ(B) axis), whereas
at higher T (below this break) the dependence of ρ on B is
weakened. In addition, MR decreases with increasing T up
to ∼30 K and then starts to increase, in agreement with the
behavior of ρ(T ) at B = 0 shown in figure 1.

As can be seen from the inset to figure 1, the slopes
of the plots of ln ρ versus T −1 exhibit two intervals of
activated behavior characterized by different slopes between
∼5 and 20 K and below ∼5 K, which suggests the
conductivity determined mainly by activation of the holes from
shallow acceptor states to the valence band and the hopping
conductivity over the states of the impurity band, respectively.
The behavior of MR in figure 2, including a strong increase
with B below ∼4.2 K followed by a weaker one above T ∼
10 K, satisfies this conjecture, too (see below).

3. Theoretical background

The resistivity of a semiconductor in the interval of thermal
activation of charge carriers from shallow impurity levels to
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the conduction or valence band satisfies the law

ρ(T ) = ρ0 exp[EA/(kT )], (1)

where ρ0 is the prefactor and EA is the activation energy [8].
On the other hand, the hopping conductivity in three-
dimensional (3D) doped crystalline semiconductors can be
realized via different mechanisms given by a universal equation

ρ(T ) = DT m exp[(T0/T )p], (2)

where D is a constant, T0 is a characteristic temperature
and m = p for hydrogenic wavefunctions of the localized
electrons, a case which is most expectable for doped
crystalline semiconductors with shallow impurities at low
temperatures [8] (although in other materials and temperature
intervals the values of m may differ from p as discussed
in detail in [9]). The case of p = 1 corresponds to the
regime of nearest-neighbor hopping (NNH) conductivity and
p = 1/4 and 1/2 to the Mott [10] and the Shklovskii–Efros
(SE) [8] types of variable-range hopping (VRH) conductivity,
respectively. Generally, the VRH conductivity sets in when
the internal microscopic disorder is high enough to make
tunneling between the nearest sites energetically unfavorable.
Because at low T hopping of the electrons takes place only
within a limited energy interval or the Mott’s optimum energy
stripe �ε (T ) around the Fermi level, μ [10], the type of the
VRH charge transfer depends on the relations between �ε (T )
(decreasing with T ), the width W of the impurity band or
density of the localized state (DOS), g(ε), and the width � of
the parabolic Coulomb gap, which exists around μ due to the
Coulomb interaction between the charge carriers in disordered
materials [8]. The general result is that for � < �ε(T ) < W
and weak dependence of g(ε) the Mott-VRH conductivity sets
in, whereas for �ε(T ) < � the VRH conductivity is of the
SE type [8, 10]. Hence, the temperature interval where one
out of the two types of VRH conductivity dominates depends
on the relation between � and W , both being sensitive to
the degree of disorder: the higher ratio of �/W favors the
SE-VRH conductivity at higher T , whereas the lower �/W
stimulates the Mott-VRH, shifting the onset of the SE-VRH
conductivity to lower T .

The characteristic temperature in the case of the Mott- and
SE-VRH conductivity mechanisms can be written as

T0M = βM/[kg(μ)a3], T0SE = βSEe2/(kκa) (3)

respectively, where κ is the dielectric permittivity, βM = 21,
βSE = 2.8 and a = (a1a2a3)

1/3 is the mean localization
radius [8]. Here ai (i = 1, 2 and 3) scales the exponential
decay of the anisotropic impurity wavefunctions (which takes
place in p-CdSb as well—see the introduction) in the i th
direction, where the anisotropy of ai is connected to that
of mi as follows: for NA � NC (far from MIT) ai =
a0i ≡ h̄(2mi EA)−1/2 and for NA → NC (close to the MIT)
ai = a0i(1 − NA/NC)ν , where NA and NC are the impurity
concentration (acceptor concentration in the case of p-CdSb)
and the critical concentration of MIT, respectively, and ν is
the critical exponent of the correlation length [8, 10, 11]. One

can also introduce the mean parameter a0 ≡ (a01a02a03)
1/3 to

obtain a general expression

a = a0(1 − NA/NC)ν, (4)

the same as in an isotropic material [11].
To find the regime of hopping conductivity at B = 0 it is

convenient to rewrite equation (2) as

ln[Ea/(kT ) + m] = ln p + p ln T0 + p ln(1/T ), (5)

where Ea ≡ d ln ρ/d(kT )−1 is the local activation energy [8],
so that for a certain conductivity mechanism the left-hand side
of equation (5) would be a linear function of ln(1/T ) and p
would be given by the slope of the plot ln[Ea/(kT )+m] versus
ln(1/T ).

In weak fields with magnetic length λ � a0 quadratic
dependence of ln ρ on B has been predicted for all the
mechanisms of the hopping conductivity considered above.
The positive MR is connected to shrinkage of the impurity
wavefunctions in the direction perpendicular to B [8, 12].
On the other hand, the dependence of ln ρ(B) on temperature
is different for each hopping regime. Namely, for the NNH
conductivity we get

ln[ρ(B)/ρ(0)] j = C j B2, (6)

where the prefactor

C j = te2ap2
j/(h̄

2 NA) (7)

does not depend on T . Here t = 0.036 [8] and

p j = [m2
j/(mkml)]1/6 (8)

is the anisotropy coefficient [6], with j, k, l = 1, 2, 3 ( j �=
k �= l) and j = 3, 1, 2 for No 1, No 2 and No 3, respectively,
corresponding to the direction of the magnetic field along the
[001], [100] and [010] axes, respectively. In equation (7)
p j reflects the different elasticity of the anisotropic acceptor
wavefunctions to magnetic shrinkage at different directions of
B [6, 8].

As in the case of the NNH conductivity [6], it can be
shown that for the Mott-VRH conductivity in low fields one
gets an expression similar to equation (6), but with C j replaced
by A(M)

j (T ) = A(M)

0 j T −3/4, where

A(M)

0 j = t1e2a4T 3/4
0M p2

j/h̄2 (9)

and t1 = 5/2016 [8] with the meanings and the values of p j

and j the same as in equations (6)–(8). Finally, for the SE-
VRH conductivity in low fields, instead of C j in equation (6)
we have A(SE)

j (T ) = A(SE)

0 j T −3/2, where A(SE)

0 j is given by an
expression similar to equation (9) but with t2 = 0.0015 and T0SE

instead of t1 and T0M, respectively [12].
Finally, it is worth mentioning at this point that damping of

the quantum interference of hopping electrons in the magnetic
field leads to the negative magnetoresistance (NMR) in the
VRH conductivity regime of doped semiconductors [13].
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Table 1. The values of the prefactor (ρ0) and the activation energy
(EA) in the acceptor freeze-out interval and the prefactor constant
(D) and the characteristic temperature of the VRH conductivity (T0)
in the hopping conductivity interval at B = 0.

Sample No
ρ0

(	 cm)
EA

(meV)
D
(	 cm K−p) T0 (K)

1 0.0378 2.45 0.491a 18.7a

2 0.0475 2.50 0.0928b 3180b

3 0.0111 2.85 0.477a 51.3a

a p = 1/2 (SE-VRH regime).
b p = 1/4 (Mott-VRH regime).

It has been predicted that for non-interacting electrons NMR
dominates in low fields of B < B0, where B0 ≈ 1.3B∗ and

B∗ = 4h̄c

a2e

(
T

T0M

)3/8

, (10)

if both field effects, on the quantum interference and on the
impurity wavefunctions (leading to PMR—see above), are
taken into account simultaneously. In the opposite case of
B > B0 MR is positive and at B = B0 it changes sign [14].

4. Analysis of the experimental data

4.1. Resistivity in zero magnetic field

The activation energy EA connected to thermal excitation of
the holes to the valence band can be obtained by fitting of the
plots of ln ρ versus T −1 with equation (1) between ∼5 and
20 K (the straight lines in the inset of figure 1) provided that
the prefactor ρ0 depends only weakly on T . The values of EA

are collected in table 1. However, neglecting the temperature
dependence of ρ0 only approximate values of EA can be found
due to temperature dependence of the hole mobility.

Analysis of the hopping conductivity can be done as
follows. At first, putting m = 1/2 we obtain with equation (6)
the values of p close to 1/2 in No 1 and No 3, which is
characteristic of the SE-VRH conductivity regime below the
temperature Tv ≈ 2.5 K (see the top panel of figure 3).
However, in No 2 the situation is quite different: putting
m = 1/4 we find with equation (6) that p ≈ 1/4 between
Tv ≈ 2.5 K and T ′ ≈ 1.8 K, whereas below T ′ the left-
hand side of equation (6) exhibits a systematic decrease, which
takes place at m = 0 as well. The behavior of the local
activation energy in the interval of (Tv , T ′) is typical of the
Mott-VRH conductivity. On the other hand, the decrease of
the left-hand side of equation (6) below T ′ is attributable to
an intermediate region between the Mott- and the SE-VRH
conductivity regimes (similar to the descending branch above
Tv which corresponds to the intermediate interval between
the band conduction and the hopping conduction), provided
that the onset temperature of the latter lies below ∼1.6 K.
We will return to this conjecture further in section 5. Next,
we plot ln (ρ/T 1/2) versus T −1/2 in the middle panel of
figure 3 for all samples and ln (ρ/T 1/4) versus T −1/4 in the
bottom panel of figure 3 for No 2. Comparing these plots,
one can find a broader linear interval of the low-temperature

Figure 3. Plots of ln(Ea/kT + m) versus ln(1/T ) (top panel),
ln(ρ/T −1/2) versus T −1/2 (middle panel) and ln (ρ/T −1/4) versus
T −1/4 (bottom panel). For convenience the data for No 2 on the top
panel are shifted along the vertical axis by +0.17 units. The lines are
linear fits.

data for No 1 and No 3 than for No 2 in the middle panel
of figure 3, as well as expansion of this interval for No 2
in the bottom panel of figure 3. According to equation (2)
this supports completely the identification of the hopping
conductivity regimes followed from the top panel of figure 3.
Hence, the SE-VRH conductivity is realized in No 1 and No 3
and the Mott-VRH conductivity in No 2, whereas no intervals
of the NNH conductivity are observed. The values of D, T0SE,
T0M are found from the plots in the middle and bottom panels
of figure 3 and are collected in table 1.

It is important to note at this point that at first glance the
interval of the hopping conduction above looks rather small
to identify the mechanisms of the hopping charge transfer in
zero magnetic field. However, this has been done based on the
analysis of the resistivity with two different methods including
those shown in the top panel of figure 3 and on the middle and
bottom panels of figure 3. Both methods yield unambiguous
conclusions on the mechanism of the hopping conductivity and
give the same VRH conduction regime for one and the same
sample.

Finally, we discuss the role of the prefactor in equation (2)
and the importance of its temperature dependence given by the
exponent m. Many authors in analysis of hopping conductivity
with equation (2) neglect this point by putting m = 0, which
is completely substantiated when ρ(T ) changes by several
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Figure 4. Plots of ln ρ versus B2. The lines are linear fits to the
experimental data.

orders of magnitude, making the relatively weak power-law
temperature dependence of the prefactor unimportant with
respect to the much stronger exponential one. However, this
may not be so when the dependence ρ(T ) is not strong enough.
As can be seen in figure 1 (inset), in the interval of hopping
conductivity ρ(T ) varies only a few-fold, definitely within one
order of magnitude, and the temperature dependence of the
prefactor should be taken into account. To clarify this issue
we analyzed the same plots as in figure 3 but with m = 0,
yielding the following results: (i) from the plots of ln (Ea/kT )
versus ln(1/T ) the values of p = 0.44±0.02, 0.26±0.02 and
0.62±0.04 are obtained for No 1, No 2 and No 3, respectively,
and (ii) from the plots of ln ρ versus T −1/2 and ln ρ versus
T −1/4 the values of T0 = 8.7 K, 1590 K and 33.9 K are
obtained for No 1, No 2 and No 3, respectively. On one hand,
it can be seen that neglect of the temperature dependence of
the prefactor in equation (1) causes only small differences in
p following from the analysis of the local activation energy,
which cannot spoil the identification of the VRH conductivity
mechanisms above (in fact, even in the worst case of No 3
the value of p = 0.62 is much closer to 1/2 than to other
possible values in 3D doped crystalline semiconductors, 1/4
and 1 [8, 10]). On the other hand, the differences of T0 are
very large (up to twofold—cf table 1), which in turn would
lead to more serious errors in subsequent analysis involving
this parameter.

Figure 5. The dependences of Aex on T −3/4 (O) and of ln Aex on
ln T (�) for No 1. The lines are linear fits.

4.2. Resistivity in weak magnetic fields

As can be seen from figure 4 the plots of ln ρ versus B2 below
B ∼ 6 T can be approximated well with linear functions,
which is in agreement with equation (6). Slight deviations
from linearity are observed for No 1 and No 2 only in the
weakest fields. These deviations are attributable to a small
negative contribution to MR (see the end of section 3), which
will be verified in more detail in section 5. In No 3 the slope
of the plots is C (3)

ex = (6.41 ± 0.04) × 10−2T −2 between
1.6 and 4.2 K. The slope of the corresponding plots for No 2,
C (2)

ex = (4.49 ± 0.04) × 10−2T −2, does not vary between 3
and 4.2 K and it increases only slightly between 3 and 1.6 K.
In sample No 1 all the plots have different slopes varying
with T according to the function Aex(T ) = A(0)

ex T −3/4 with
A(0)

ex = (6.7 ± 0.1) × 10−2T −2 K3/4 as shown in figure 5.
Hence, from comparison of the behavior of the slopes

of the plots of ln ρ versus B2, C (2)
ex , C (3)

ex and Aex(T ) with
C j , A(M)

j (T ) and A(SE)
j (T ), predicted for the different hopping

regimes (see section 3, equations (7), (9) and remarks to
equation (9)), it follows that, in contrast to the case of B = 0, in
No 1 the Mott-VRH conductivity takes place between 1.6 and
4.2 K, in No 2 the NNH conductivity is observed between 3
and 4.2 K and in No 3 the NNH conductivity is realized within
the whole temperature interval between 1.6 and 4.2 K.

4.3. Determination of the microscopic parameters

The data at B = 0 and in weak fields obtained above
allow determination of a variety of microscopic parameters
for verification of the conclusions about the mechanisms of
hopping conductivity made above. This will be done in steps
(i)–(viii) below.

(i) With the expression

� ≈ 0.5k(TVSET0SE)
1/2 (11)

the width of the Coulomb gap for No 1 can be
determined [8]. Then from the equation � ≈ U ,
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Table 2. The acceptor concentration (NA), the localization radius (a), the dielectric permittivity (κ), the widths of the Coulomb gap (�) and
of the acceptor band (W ), the density of the localized states (g) and the experimental ( p j ) and the calculated ( p(cal)

j ) values of the anisotropy
coefficients at different orientations of the magnetic field ( j ).

Sample
No.

NA

(1016 cm−3) a (Å) κ
�
(meV)

W
(meV)

g
(1016 cm−3 meV−1) pj p(cal)

j j

1 3.61 196 127 0.30 0.50 5.94 0.839 0.839 3
2 3.37 180 108 0.18a 1.28 1.31 1.008 0.897 1
3 2.51 139 66 0.49 0.91 2.16 1.182 1.327 2

a Calculated.

where U = e2/(κ Rh) is the energy of the Coulomb
repulsion between the holes at the mean distance Rh ≈
2(4πp77/3)−1/3, the value of κ can be found. Here we use
the values of p77 (section 2), taking into account that the
shallow acceptor states at EA ∼ 2.4–2.8 meV above the
top of the valence band are completely ionized at 77 K.
The value of DOS outside the Coulomb gap, g0, can be
evaluated with the expression g0 = 3κ3�2/(πe6) [8].
Usually the DOS parameters in the Mott-VRH and the
SE-VRH models, g(μ) and g0, are close to each other in
doped semiconductors (see e.g. [15]), and so T0M can be
calculated with the first of equations (3) at g(μ) ≈ g0 ≡
g. Finally, with equation (9) we obtain for A(M)

03 = A(0)
ex

the anisotropy coefficient p3 ( j = 3 for No 1). The values
of �, κ , a, g and p3 for No 1 are collected in table 2.

(ii) The parameters �, κ , a and g0 ≡ g for No 3 can be found
as in (i). Their values are given in table 2.

(iii) The values of a for No 1 and No 3 exceed by 2.1–2.9
times the Bohr radius, aB = h̄2κ0/(me2) = 66.8 Å,
where m = (m1m2m3)

1/3 = 0.20 and κ0 ≈ 25 is
the value of κ far from the MIT [16]. The values of κ

exceed that of κ0 by 2.6–5.1 times. Taking into account
equation (4) and a similar expression

κ = κ0(1 − NA/NC)−ζ (4′)

where ζ is the critical exponent of κ [11], the enhanced
values of a and κ are consistent with proximity to
the MIT, NA being relatively close to NC. Then with
equations (4) and (4′) one gets the relation

ς

ν
= ln

[
κ(No 1)/κ(No 3)

]
ln

[
a(No 1)/a(No 3)

] , (4′′)

yielding ζ/ν = 1.90. On the other hand, from
equations (4) and (4′) we have a pair of equa-
tions a0 = a(No 1)[κ0/κ(No 1)]ν/ζ and a0 =
a(No 3)[κ0/κ(No 3)]ν/ζ , giving the same value of the
mean localization radius a0 = 83.5 Å far from the MIT.
Finally, with the equation EA = h̄2/(2ma2

0) (see text
between equations (3) and (4) in section 3) we obtain
EA = 2.78 meV.

(iv) Suppose that the value of p2 is known. Then with
equation (7) at C2 = C (3)

ex ( j = 2 for No 3) the value
of NA for No 3 can be evaluated. It can be shown that
for a rectangular DOS having the Coulomb gap at the

Fermi level the width W of the DOS (or the width of the
acceptor band) is given by the equation

W = NA

2g0
+ 2

3
�, (12)

allowing evaluation of W for No 3.
(v) In No 2 the influence of the Coulomb gap is minimal

since only the Mott-VRH conductivity is realized at
B = 0. Therefore the DOS in the acceptor band can be
approximated with a rectangular shape without including
� and we get W ≈ kT 3/4

VM T 1/4
0M for this sample [8].

Then, using the relation p1 = (p2 p3)
−1 following from

equation (8) and the expression g(μ) ≈ NA/(2W ) valid
for this choice of the DOS, and solving equations (3)
and (7) with C1 = C (2)

ex (note that j = 1 for No 2), the
values of a and NA can be obtained. After NA is known,
the value of g(μ) ≡ g can be determined.

(vi) The value of ν can be calculated with the expression

ν = ln

[
1 − a0/a(No 3)

1 − a0/a(No 2)

]
×

{
ln

[
NA(No 3)

NA(No 2)

]}−1

(13)

following from equation (4). Then NC can be found with
the equations

NC = NA(No 2)[1 − a0/a(No 2)]−1/ν,

NC = NA(No 3)[1 − a0/a(No 3)]−1/ν .
(14)

Using the values of ν and the ratio ζ/ν obtained above
we get ζ and

κ(cal)(No 3) = κ0[1 − NA(No 3)/NC]−ζ . (15)

Steps (iv)–(vi) are repeated by variation of p2 until the
values of NC in equations (14) coincide and, additionally,
the condition κ(cal)(No 3) = κ(No 3) is satisfied. This
gives ν = 1.00, ζ = 1.90, NC = 6.275 × 1016 cm−3,
N1/3

C aB = 0.265, and yields the values of p1 and p2 in
table 2.

(vii) Knowing ν, ζ , a0 and κ0, one can evaluate NA for No 1
with any of the equations (4) and (4′) yielding the same
result. Then W can be obtained with equation (12)
(because in No 1 the effect of the Coulomb gap cannot be
neglected), using the data of g0 ≡ g and � determined in
step (i) (table 2).

(viii) With NC and ζ found in (iv)–(vi) and κ0 and NA in
No 2 evaluated in (v), the value of κ can be obtained
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from equation (4′). Then from the expression g0 =
3κ3�2/(πe6) [8] at g0 ≈ g(μ) in (v) the value of
� can be calculated. The parameters κ and � for
No 2 are given in table 2. Finally, from the second of
equations (3) we evaluate T0SE and from equation (11)
TVSE ≈ 4�2/(T0SEk2) ≈ 0.7 K in No 2. The parameters
NA, K and W for all samples are obtained in (iv)–(vii).
The values of g(μ) ≡ g and a found for No 2 in step (v)
are given in table 2.

5. Discussion

The relations of the obtained microscopic parameters in
table 2, a(No 1) > a(No 2) > a(No 3) and κ(No 1) >

κ(No 2) > κ(No 3), are in line with the corresponding relation
NA(No 1) > NA(No 2) > NA(No 3), where the values of NA

are relatively close to NC. Such dependence agrees well with
the proximity of the acceptor system in p-CdSb:Ni to the MIT,
and the critical exponents found in steps (iv)–(vi) are close to
their theoretical values ν = 1 and ζ = 2 [11]. The value
of the product N1/3

C aB = 0.265 obtained in section 4.3 after

steps (iv)–(vi) agrees well with the Mott criterion N1/3
C aB ≈

0.25 [10] for the critical concentration at the MIT, and the value
of the shallow acceptor energy EA ≈ 2.78 meV evaluated with
a0 found in step (iii) agrees reasonably with the corresponding
data within the temperature interval of the acceptor freeze-out
in figure 1 (table 1).

Next, the anisotropy coefficients satisfying the condition
p2 > p1 > p3, as may be expected for p-CdSb, can be
compared with those calculated with equation (8) using the
data of mi cited in section 1 (see table 2), and yielding
coincidence of p3 and p(cal)

3 and a difference of ∼11% between
the other two pairs. At this point, we must note that p3 was
determined in section 4.3 in a most direct way in step (i),
whereas p1 and p2 were obtained with a less direct procedure,
(iv)–(vi), which may contain additional sources of errors. On
the other hand, the valence band of CdSb is non-parabolic [4],
and, strictly speaking, we should compare our data of p j with
those evaluated using the values of mi at the top on the valence
band, which differ somewhat from those determined at the
Fermi energy from the Shubnikov–de Haas effect [4]. Taking
this into account the difference between the experimental and
the calculated values of p1 and p2 does not look too large.
Hence, the anisotropy of hopping conductivity in p-CdSb:Ni
is well described by the anisotropy of the hole effective mass,
which occurs in undoped p-CdSb as well [6].

The relations between the values of � and W (concerning
the role of the ratio of �/W in the VRH conduction
mechanism see section 3) agree with the types of VRH
conductivity observed at B = 0 in each sample. Indeed, in
No 1 and No 3 the Coulomb gap has about half the width of the
acceptor band stimulating the SE-VRH conductivity regime,
whereas the ratio of �/W ∼ 0.1 in No 2 is more favorable for
the Mott-VRH conductivity in the same temperature interval,
so that the onset of the conductivity over the states of the
Coulomb gap in No 2, estimated at the end of section 4.3
(TVSE ≈ 0.7 K), lies outside the temperature interval down to
∼1.6 K used in the measurements of ρ(T ). This supports our

conjecture that the decrease of the left-hand side of equation (6)
with decreasing T between ∼1.8 and 1.6 K may mean the
existence of an intermediate interval between the Mott- and
the SE-VRH conductivity regimes (see section 4.1 and the top
panel of figure 3, where T = 1.6 K corresponds to the right
edge of the abscissa axis). At this point we must underline
that observation of the Mott- or the SE-VRH conductivity in
different directions of p-CdSb:Ni at B = 0 is not connected
immediately to the intrinsic anisotropy of p-CdSb, but mostly
to correlation between � and W , which eventually depends on
internal microscopic disorder being different in all samples cut
from different parts of the ingot.

Above we have supposed that slight deviations of the plots
in the top and middle panels of figure 4 from linearity in the
weakest fields may be due to the negative contribution to MR,
connected to the quantum interference of hopping electrons
(see section 4.2). As mentioned in section 3, such NMR is
expected to be important at B < B0, where B0 ≈ 1.3B∗ and
B∗ is given by equation (10). A scale of B0 can be estimated
for No 2, taking T = Tv ≈ 2.5 K and the values of T0M and
a from tables 1 and 2, respectively. This yields B0 ≈ 0.7 T,
which is in agreement with the fields where deviations from
linearity of the plots in figure 4 are observed. Therefore, a
contribution of interference effects to MR can be important
only for B covering a negligible part of the field interval used
in our analysis.

Hence, the set of the microscopic parameters determined
from the resistivity data at B = 0 and in weak magnetic
fields, is consistent and supports the conclusions about the
hopping conductivity mechanisms made from the temperature
dependences of ρ and MR in sections 4.1 and 4.2, respectively.
On the other hand, one can see that the hopping conductivity
in p-CdSb:Ni contains features not common to conventional
(non-magnetic) doped semiconductors. Namely, the VRH
conductivity at B = 0 transforms into the NNH conductivity at
B �= 0 in No 2 and No 3 (or the type of the VRH conductivity
is changed in No 1), which is accompanied by an increase of
the onset temperature of the hopping conductivity from ∼2.5 K
in zero field up to at least 4.2 K in non-zero field (cf figures 3
and 5).

In conventional semiconductors the type of the hopping
conductivity is insensitive to magnetic field, whereas the
broadening of the temperature interval of the hopping
conductivity can be expected only in strong magnetic fields
B > B0, where B0 = h̄/(ea2

0) ≈ 10 T is the field where
the magnetic length λ reaches a0, and deviations from the
dependence of ln ρ ∼ B2 are observed. This leads to the
onset of the magnetic field dependence of EA, stimulating
the acceptor freeze-out with increasing field [8], which favors
hopping conductivity and has been observed in undoped p-
CdSb [6], but cannot take place in our case of low fields
B < 6 T in the interval of the quadratic dependence of MR [8].

Besides the charge and lattice disorders typical of
non-magnetic doped semiconductors, p-CdSb:Ni, belonging
to group (ii) of the diluted magnetic materials (see the
introduction), also possesses magnetic disorder due to strongly
inhomogeneous magnetization or the presence of small Ni-
rich clusters with FM ordering of internal spins and broad
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distribution of the cluster size [2]. In particular, this leads
to magnetic irreversibility or deviation of zero-field cooled
magnetic susceptibility, χZFC, from field cooled susceptibility,
χFC, in weak fields and the appearance of a broad maximum of
χZFC(T ), reflecting spin-freezing phenomena with onset near
room temperature [2]. Therefore, if the inhomogeneity of
the local magnetization, caused by randomly frozen-in cluster
moments, is significant within the average distance between
the acceptors, the interaction of the spins of the carriers
with local magnetic moments would be different already for
nearest sites. This would create an additional energy barrier
�E at B = 0 hindering tunneling of the carriers between
the nearest sites in favor of VRH conductivity. However,
in p-CdSb:Ni the magnetic disorder is damped already at
B ∼ 0.4 T by orienting magnetic moments of the clusters
along the field [2]. Therefore, �E is decreased in the field
stimulating the NNH conductivity. This mechanism should
be more significant at low temperatures, where the fraction
of the frozen-in spins is higher, i.e. in the interval of the
hopping conductivity, in agreement with the unusual sequence
of the hopping conductivity regimes observed in p-CdSb:Ni. In
addition, damping of magnetic disorder stimulates the hopping
conductivity in general, favoring tunneling of the electrons
between any sites, which increases its efficiency over the band
mechanism (activation of the holes into the valence band) at
higher temperatures. This may explain the expansion of the
interval of the hopping conductivity already in low fields.

6. Conclusions

We have investigated the resistivity and magnetoresistance of
p-CdSb doped with 2 at% Ni. The resistivity at B = 0
exhibits activated behavior with two temperature intervals,
one where the conductivity is governed by activation of holes
to the valence band at T between ∼5 and 20 K and the
other realized by hopping charge transfer at temperatures
below Tv ∼ 2.5 K. The variable-range hopping conductivity
of the Mott or the Shklovskii–Efros types is observed at
B = 0. In fields up to ∼6 T the resistivity obeys the
law ln ρ ∼ B2, whereas the temperature dependence of the
magnetoresistance gives evidence for variable-range hopping
conductivity of the Mott type or the nearest-neighbor hopping

conductivity. The values of the microscopic parameters
such as the localization radius, the dielectric permittivity, the
widths and the values of the density of the localized states,
the acceptor energies and concentrations and the anisotropy
coefficients, obtained from the analysis of the resistivity
and the magnetoresistance data, support identification of
the hopping regimes in the intervals of the magnetic field
concerned above. The tendency of transformation of the
dominating charge transfer from variable-range hopping to
nearest-neighbor hopping with increasing B can be attributed
to the intrinsic magnetic disorder in p-CdSb:Ni.
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