
Suppression of density effect in the polarization bremsstrahlung for 
relativistic charged particles crossing a thin target

N. Kamyshanchenko, N. Nasonov *, G. Pokhil
Laboratory o f  Radiation Physics, Belgorod State University, 12 Studencheskaya St., 308007 Belgorod, Russia

Abstract

The peculiarities of polarization bremsstrahlung emitted when a relativistic charged particle penetrates a thin layer of 
an amorphous medium are considered. In particular, suppression of the density effect, which otherwise limits the 
emission, is predicted. The physical nature of this suppression is analogous to that taking place in ionization energy 
losses of a relativistic particle crossing a thin target. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

When a fast, charged particle moves through a 
medium, polarization bremsstrahlung occurs due 
to the excitation of electrons in the medium by the 
electromagnetic field of the fast particle [1]. In the 
case of a condensed medium, the projectile field is 
screened due to polarization of the medium. This 
effect (the density effect) causes moderation of 
relativistic particle ionization energy losses (Fermi 
effect [2]). An analogous effect has been predicted 
for the polarization bremsstrahlung of relativistic
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particles moving through an unbounded medium 

[3’4]-It is well known that the Fermi effect is sup
pressed in the case of a relativistic particle crossing 
a sufficiently thin target [5]. The physical reason 
for such suppression is very simple. The particle’s 
field in vacuum in front of the target is trans
formed to the screened field inside the target over 
the emission formation length /coh «  y2/co [6] 
(y =  (1 — v is the particle’s velocity, c =  1).
Therefore, the structure of the particle field does 
not change essentially in the frequency range 
where the inequality /COh L  is valid (L is the 
thickness of the target).

One can expect suppression of the density effect 
to occur as well in polarization bremsstrahlung of 
a relativistic particle crossing a thin layer of me
dium. This work is devoted to the detailed analysis
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of this phenomenon. It is shown that the emission 
is formed in the case under consideration by the 
scattering of both virtual photons associated with 
the fast particle and real transition radiation 
photons emitted from the /«-surface of the target. 
Detailed analysis shows that the contribution of 
transition radiation completely compensates the 
suppression of ordinary polarization bremsstrah
lung caused by the density effect.

It should be noted that the role of the density 
effect in atomic K-shell excitation by relativistic 
electrons crossing a thin layer of condensed me
dium has been studied in detail in [7]. Since the 
nature of the effects considered in [7] and our pa
per is the same and consists in the preservation of 
the structure of a fast particle’s vacuum field in a 
sufficiently thin target, the results obtained in these 
papers are similar to each other.

2. General expressions

Let us consider the structure of the electro
magnetic field emitted by a relativistic particle 
moving with the constant velocity v along the axis 
ex, which is normal to a plate of amorphous me
dium with thickness L. To find the Fourier trans
form of the electric field

Emk =  ( 2 n ) j  dtd3rE(r, t) exp(io>£ — ikr)

by means of the Maxwell equations, it is necessary 
to determine the induced current density for the 
medium electrons. We use the following simple 
expression in this paper:

j =  A{r,t)h, hm
r r, ra 1 ap ) i

( l )

which is generally accepted within the framework 
of X-ray scattering theory [8]. The formula (1) is 
valid in the frequency range /  (I is the
mean ionization potential of an atom, and m is the 
electron mass). These relations allow us to con
sider atomic electrons as free ones during the

emission process and to neglect the Compton shift 
of the frequency of emitted photons. It is very 
important that the electron coordinates ra/J are 
approximately constant during the process of rel
ativistic particle interaction with an atom. In for
mula (1), A is the electromagnetic vector potential 
and a is an index for individual atoms, while is 
the index for electrons in a given atom of atomic 
number Z.

Substitution of expressions (1) into the Maxwell 
equations permits us to obtain the following 
equation for the transverse component of the 
electrical field E^k =  exkExk-

0k2 -  m2)EAk + f  d 3£' ] T  -  k )E ^k,
J i'-\x = \

icoe co
t  exexkà \ kx 2tt2 \ v

G
2n2m

£  exp[i(Æ' -  k){ra +  raP)], (2)

where is the polarization vector, ke,k =  0.
The function G(k' — k) describes both reflecting 

and scattering properties of the target. Consider
ing the polarization bremsstrahlung as being due 
to the scattering of the total electromagnetic field 
associated with a penetrating fast particle con
sisting of the primary projectile field and the gen
erated transition radiation field on the fluctuations 
of the target electron density, one may separate the 
average and random quantities in Eq. (2),

Exk =  Em. +  Eik,
G(k/ - k )  =  G{k - k )  +  G(k' -  k),

4e2«oG =< G ) -F{k' -  k)ô{k\ -  A:,,)

sin (^  -  kx)L/2
K  — hr (3)

Here, the brackets (•) mean averaging over the 
coordinates ra and ra/J, n0 is the atomic density of 
the medium , F(k' — k) is the atomic formfactor, 
and k\\ is the k  component parallel to the target 
surface. The equations for Ê k and Ê k are
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(,k2 -  0)2)Em +  [  d3k'^2eM eA'k'(G(k' -  k)EX'k:
J  X=\

+  (G(k' -  k)ÊÀ'k')) =  ,

(k2 - œ 2)ÊÀk +  f  d ik ! ' ^ e ike i!t;(G(k - k ) É Xt!
J ) ! = \

+  G(k' -  k)E,m  +  G(k' -  k)ÉM

-  (G(k'-  k)ÊÀ,k,)) =  0. (4)

X-ray scattering in an amorphous medium is a 
weak process ( G « G ) .  Therefore, the random 
component of the field ÊXk is smaller than the av
erage component in the case under consideration, 
when the thickness of the target is smaller than X- 
ray extinction length. This circumstance allows us 
to neglect the “nonlinear” terms in (4) propor
tional to GÊxic-

Considering Eqs. (4) separately inside and 
outside the target, one should take into account 
the inequality kxL «  >  1 that is practically
valid in the X-ray region. This permits simplifica
tion of the coefficient (sin(^ — kx)L/2)/(k'x — kx) to 
nô {k'x — kx) in formula (3). The final equation for 
Ëxic inside the target is

icoe
(k2 -  m2£(m))Exk =  ^ e xeÀkô(kx -co /v ) ,  (5)

where £(<a) =  1 — col/co2 and co0 =  (4nZn0e2/m )1̂ 2 
is the plasma frequency of the medium.

It is easy to see that Eq. (5) and the analogous 
equation for the field EXk outside the target fol
lowing from (5) in the limit co0 —> 0 coincide with 
the ordinary equations of X-ray transition radia
tion theory [6]. The well-known solution for E^ 
inside the target takes the form

icoe
In2

1
k2 — <a2s(<a) 

1

5(kx -  co/v)

k 2 — co1 k 1 — o)2e(o))

x exp ^  {^Jco2e{co) - k j

<5 (kx -  ^ m 2£(m) -  kj^j 

where k =  k\\ +  exm/v, with exk\\ =  0.

(6)

The equation for the polarization bremsstrah- 
lung field Exk following from (4) is given by

( k 2  -  c o 2 £ ( c o ) ) E m  =  -  f  d ^ k ' ^ e ^ e x k '  G { k '  - k ) E X'k : ,

^ k' = \
(7)

inside the target, and

0k2 -  co2)Ekk =  0, (8)

outside the target.
The expression (6) for EXk is used in formula (7). 

It is important to note that the exact expression for 
G =  G — G must be used in (7) in order to avoid 
singularities in final results.

3. Spectral-angular distribution of the polarization 
bremsstrahlung

Eqs. (6) (8) allow the calculation of all char
acteristics of the polarization bremsstrahlung in 
the wave zone behind the target. Using the ordi
nary solutions of Eqs. (7) and (8) and the well 
known boundary conditions for electromagnetic 
field on the owï-surface of the target, one can ob
tain the following expression for E,k in vacuum 
behind the target:

uoe
Exk = 2^2 ««I,<5(£x -  y o j 2 - k j ) ,

;L dkx
< ! „ , = - exp j  l 2 _ (tMm)

exP ( * , § ) /  d > * W ) ( W >

6{k!x -  co/v)G{k -  k) 

1

1
k'2 — c o 2 e ( c o )  

1
k' — co2 k' — o)2e(o)) 

exp (o2e{(o) -k'^2 -  ^  Ç j

S [k’x — <a2 s(a>) — k1̂ (9)
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Here, elk =  k\\ +  ex/\k\\ +  ex\ and e2k =  k +  eu /  
\k +  eik\. To obtain the emission amplitude An, it is 
necessary to calculate the Fourier integral

E =  /  d3kËAkêknr, (10)

where n is the unit vector along the direction of the 
emitted photon. The integral (10) for the field E fRd 
in the wave zone can be calculated by the sta
tionary phase method. The result of the integra
tion is as follows:

7Rad : A 1 Ai (11)

where n =  tt\\ +  exnx with exii\\ =  0.
Using expressions (9) and (11) for the emission 

amplitude An, one can obtain the following final 
formula for the polarization bremsstrahlung 
spectral-angular distribution:

^  ! \ A  \2 \c0  7TT =  (\Al\ )dco d Q

2 2 =  e co 1 3 l̂ ll +  #|| I
d g |^ +  g | exkelk+gG{g)

A S ^ g x -  o)/v +  m^Jn2x -  ml/m2̂

+ B -ô [g x -  ^(o2e{(o) -  (&n + ^ ||)2 

+  co-\Jn2 -  m l/m2

A = -
m 2  /  v 2 y 2  +  m l  +  ( & n  + ^ n

B = 1
OJ2 / v 2 y 2  +  ( & | |  +  £ | |

1
CO 2 / v 2 y 2  +  m l  +  ( * n  +  £ | |  

x exp m2e(m) -  (Æy +  £||)2 -  m / v j l / l ^ j ,

(12)
where

k =  o)^/i|| +  exyjn2x -  a>l/ <a2̂  .

This formula shows that the polarization 
bremsstrahlung yield is formed by the scattering 
of two different fields. The term in square 
brackets in (12), proportional to the coefficient A, 
describes the amplitude of the ordinary polariza
tion bremsstrahlung arising due to the scattering 
of the equilibrium field of the primary particle 
moving in the medium with dielectric permeabil
ity s(co) =  1 — co\/co2. The second term, propor
tional to the coefficient B, corresponds to the 
contribution of the scattering of transition radi
ation field emitted from the /«-surface of the 
target. The aim of the further analysis is to study 
the separate contributions of these emission 
mechanisms to the total polarization bremsst
rahlung yield as well as the interference between 
them.

4. Discussion

To study the general result (12), let us rewrite it 
in the form

dTV dNm dNSTK dTVINT
03-, 7 ^ = ° )- ,  7 ^ + 0 1 -— —— +  co—— — , (13)

dojdQ dojdQ dmdQ dmdQ

where the first term corresponds to the ordinary 
polarization bremsstrahlung, the second describes 
the scattered transition radiation and the last term 
contains interference.

Taking into account the anisotropic character 
of the polarization bremsstrahlung spectral-an
gular distribution [4], let us define a two-dimen
sional angular variable 0  in accordance with the 
formula

I - - © 2
2 0 , ex0  =  0, © <C 1.

(14)

Substituting (14) into (12) and (13) and writing 
#1 1 =  cox, one can obtain the following expression 
for the ordinary polarization bremsstrahlung dis
tribution:
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diVfB

■2- '2 ' d2x d 2x ' \ 0  +  x\\©  +  jc'I

dcod £2
2= Q (O'

x {exkexk+g){exkC2k+i

x
(y~2 +  CL>o/̂ 2 +  +  x f ) (y~2 +  ^o/^2 +  (0  +  ^O2)

(15)

where

£ =  09(x +  ^ ( 7- 2 + 4 + 6 > 2

A =  co(6> +  ^ ( 1 - ^  +  0 2

After averaging over atomic coordinates ra 
(they are assumed to be independent; see the for
mulae (2) and (3)) and electronic coordinates rap 
(we use the Fermi-Thomas atom model with ex
ponential screening), the expression for the corre
lator (G(g)G*(gf)) is given by

(G(g)G*(gf)) = ZL e4«0 1
n2m2 (1 g2R2)( 1 

2 sin(g; -  gx)L/2
S'x ~ i

j2R2) 

<5(̂ 1 -^ ||)>

(16)

where n0 is the density of atoms, R the screening 
radius, and m is the electron mass. The incoherent 
contribution of atomic electrons to the polariza
tion bremsstrahlung is neglected in (16) (see [4]).

Substitution of expression (16) into formula 
(15) and summation over emitted photon polar
izations allow us to obtain the very simple formula

60-
d7VPB Z 2e6n0L

dead Q
In

1
C0lR2(l +(D2/y2(Dl)

- 2

(17)

which is valid within the range of emitted photon 
frequencies cd and observation angles 0  satisfying 
the requirement

cozRz0 z <  1. (18)

The result (17) coincides with that obtained in 
the previous work [4] (on condition (18)) devoted

to the study of a relativistic particle polarization 
bremsstrahlung in an unbounded medium.

In accordance with (17), the emission yield 
saturates in the frequency range co <C yco0 because 
of the polarization of medium electrons.

We should remember that the observation an
gle 0  must be much larger than the characteristic 
emission angle for relativistic particles 
<9em «  \/y~2 +  cl)q/co2 in order to separate the po
larization bremsstrahlung from the more intensive 
transition radiation and ordinary bremsstrahlung. 
On the other hand, within the experimentally most 
interesting frequency range cd ^  ycoo, where the 
discussed density effect takes place, the condition 
(18) reduces to the limitation 0 2 <  l / y 2colR2. 
Therefore, the range of permissible observation 
angles is determined by the inequalities

,,—2 cot .
- - £ «  0 2

CD1

1
y2colR2

(19)

The last inequality shows that an experiment 
requires electron beams with sufficiently high 
particle energy, of the order of a hundred MeV.

The influence of density effect on the polarization 
bremsstrahlung spectrum is illustrated in Fig. 1.

Fig. 1. The influence of density effect on ordinary polarization 
bremsstrahlung in an infinite medium (x =  co/ycoo)- codNFB/  
dw d2& = N 0F PB, N0 = Z2Q6n0L /nm 2, co0R =  5 x 10“3. 1: with
out taking the density effect into account; 2: taking into account 
the density effect.
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Let us consider the second term in the formula 
(13) describing the scattered transition radiation. 
Calculations analogous to those done above allow 
us to obtain, on the same conditions, the following 
expression for an emission spectral-angular den
sity:

CO
d N STR

d co d 2Q
Z2Q6n0L

1 + 2
CD

y2co2
In 1

2 2 f c o (5
CO2

- 2  . 

(20)

In contrast to the wide spectrum (17) formed by 
the scattering of the spectrally wide projectile field, 
the spectrum (20) is concentrated within the nar
row frequency range cd ^  ycDo corresponding to the 
transition radiation spectrum. The shape of the 
spectrum (20) is shown in Fig. 2.

In accordance with (20), the scattered transition 
radiation yield is proportional to the target 
thickness L. This result is the consequence of the 
applied perturbative approach to the solution of 
the general equation (4). Therefore, the value of L 
must be nominally much smaller than the distance 
over which the transition radiation wave changes 
substantially due to scattering.

It should be pointed out that, in the frequency 
range co <C yco0, where the ordinary polarization 
bremsstrahlung saturates due to the density effect,

Fig. 2. The spectral density of scattered transition radiation
(x = co/ycoo). codNSTR/dcod2Q = N0F STR.

the sum of the distributions (17) and (20) is given 
by the formula

co-
dN  

d co d 2Q
72̂ l n ( y

\co2R2
(21)

which coincides with the distribution (17) for the 
ordinary polarization bremsstrahlung without 
taking into account the density effect.

In accordance with the result (21) (the main 
result of this work), the density effect does not 
appear in the process of polarization bremsstrah
lung caused by a relativistic charged particle pen
etrating a thin target. To explain this result, it 
should be noted that, in the frequency range 
co <C yco0, the screened field of the penetrating 
particle is suppressed (see coefficient A in the 
general formula (12)). On the other hand, the 
transition radiation field becomes similar to 
the vacuum field (see coefficient B in formula (12)). 
Therefore, the main contribution to total emission 
yield determined by the scattered transition radi
ation becomes comparable to that due to the 
scattering of the vacuum field of the fast particle.

The formula (21) is valid in the case where the 
transition radiation field does not change essen
tially on the target thickness L. Since scattering in 
an amorphous medium is a weak process, the main 
process changing the transition radiation wave is a 
photoabsorption. Therefore, the considered phe
nomenon may be observed under the condition

ab? (22)
where /ab is the photoabsorption length.

Let us consider the last term in the general 
formula (13) describing the interference effect. 
After doing calculations similar to those done 
above, we come to

CD
dN™T 
do; d 2Q

Z2Q6noL 
nm2

2 _ c ^ _ \  sin<r(l + œ 2y2l œ 2) 
y2col )  a ( l +  œly2/œ 2)

+  cos <r(l +  coly2/co2) +  ^<r(l +  coly2/co2)

) « M i+ ® o T 2/® 2))
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Fig. 3. The contribution of the interference item to polarization 
bremsstrahlung spectral density (x =  co/yco0). co dTVINT/  
d<od2& =  NÿFlm . 1: 7 =  w0L/2y  =  0.1; 2: y  =  0.5; 3: y =  1.

- 2
CO

y2col
ci(o(\  +  coQy /o r ) )

2 o)^
 4— 4 ( c o s  awly2/ 0)2si(<r)a f w l

sin gcdq y /  co ci (a)) (23)

where a =  coL/2y2. The phase deviation and the 
difference between phase velocities of virtual pho
tons of the particle field and real photons of the 
transition radiation stipulate the oscillations in the 
spectrum (23) depending on the target thickness L. 
The interference effect contribution is illustrated in 
Fig. 3. It is easy to see that the relative contribu
tion of this effect is not large.

In accordance with Fig. 3, the influence of the 
interference effect decreases when increasing 
the thickness of the target because of increase of 
the phase shift between the different components 
of the total emission amplitude (see (12)), that is, 
the contribution of the transition radiation field 
and the particle’s field to the formation of the 
polarization bremsstrahlung yield. That is why the 
compensation of the reduction of the polarization 
bremsstrahlung yield due to the density effect de
creases when increasing the thickness L, as follows 
from Fig. 4, where the spectrum of the total 
emission calculated by (13) is compared with the 
spectrum of ordinary polarization bremsstrahlung 
without taking into account the density effect.

Fig. 4. The spectrum of a total polarization bremsstrahlung 
versus the target thickness L. 1: F PB without taking into account 
the density effect; 2: F PB +  F STK +  F WT for y  =  woL/2y =  0.1; 3: 
F f b + F s t r + F w t for y  = I.

5. Conclusion

Thus, the analysis carried out shows that the 
density effect does not take place in polarization 
bremsstrahlung of relativistic electrons crossing a 
thin layer of medium. The physical nature of the 
predicted phenomenon is connected with the con
tribution of transition radiation scattering to the 
total polarization bremsstrahlung yield, com
pletely compensating the decrease of ordinary 
polarization bremsstrahlung (arising due to the 
scattering of the field of the fast particle).

The thickness of the target must be smaller than 
a photoabsorption length in order to observe the 
predicted effect experimentally.
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