

УДК 591.111.7:594.382.4

Нгуен Тхи Ле На

ВЛИЯНИЕ ОСМОТИЧЕСКОЙ НАГРУЗКИ НА МОРФОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ГЕМОЦИТОВ ДВУСТВОРЧАТЫХ МОЛЛЮСКОВ

Hryeн Тхи Ле На, преподаватель Вьетнамский национальный университет, Ханой, Вьетнам *E-mail: betterday2804@gmail.com*

Аннотация

И сследованы реакции гемоцитов некоторых представителей двыстворчатых моллюсков на осмотическую нагрузку. Осуществлено определение морфометрических показателей гемоцитов, инкубированных в растворах разной осмотичности. Выявлены различия в использовании мембранного резерва гемоцитами разных типов.

Ключевые слова: моллюски, гемоциты, осмотическое давление.

UDC 591.111.7:594.382.4

Nguen Thi Le Na

THE FUNCTIONAL PARAMETERS
AND STRUCTURE OF THE SURFACE
OF LYMPHOCYTES IN PATIENTS
WITH LYMPHOBLASTIC LEUKEMIA
IN BOTH ACUTE STAGE AND
REMISSION

Nguen Thi Le Na

VNU University of Science, 334 Nguyễn Trãi - Thanh Xuân - Hà Nội - Việt Nam E-mail: betterday2804@gmail.com

Abstract

Harea and volume definition of haemocytes, in dif-ferent osmotic solutions is carried out. Distinctions in use membrane re-serve definition of haemocytes different types are revealed.

 $K_{eywords:}$ mollusks, haemocytes, osmotic pressure.

В современной науке пристальное внимание уделяется вопросам, связанным с механизмами возникновения иммунных реакций в ответ на введение того или иного антигена. Рядом работ отечественных и зарубежных ученых [1-3] рассмотрено и показано разнообразие форм и многообразие функций, выполняемых гемоцитами (форменными элементами гемолимфы) брюхоногих. Изучена морфология клеточных элементов гемолимфы отдельных моллюсков [4-5].

Ведущая роль в защитных реакциях моллюсков принадлежит клеткам гемолимфы. Известно, что существуют различные морфотипы клеток гемолимфы, которые обладают определенной степенью подвижности по особым путям циркуляции и участвуют в инкапсуляции чужеродных объектов [6-7]. Однако информации о мембранных реакциях этих гемоцитов моллюсков на различные условия среды в доступной литературе не обнаружено.

В связи с вышесказанным целью данной работы является изучение влияния осмотической нагрузки на морфологические параметры гемоцитов Anodonta cignea и Dreissena polymorpha.

Материалы и методы исследования

Исследования проведены в течение 2011-2013 годов на базе кафедры анатомии и физиологии живых организмов ФГАОУ ВПО «Белгородский государственный национальный исследовательский университет». В экспериментах были использованы животные, принадлежащие виду беззубка обыкновенная (Anodonta cignea) и дрейссена речная (Dreissena polymorpha).

Гемолимфу получали по стандартной методике [8-10]. Были проведены исследования с применением световой микроскопии (Nikon Eclipse Ti-E). Препараты фотографировали, по снимкам проводили измерения клеток, ядер, гранул и включений по длинной и короткой осям с помощью анализатора изображений «ВидеоТест» (ООО «Микроскоп Сервис», г. Санкт-Петербург).

Эффективность использования резерва клеточной поверхности гемоцитов оцени-

вали в растворах NaCl 1,9 г/л (гипотонический раствор) и 5,7 г/л (гипертонический раствор). Инкубацию проводили в течение 1 минуты. Далее изучали прижизненные особенности клеток, их морфометрические показатели с помощью оптического инвертированного микроскопа Nikon Digital Eclipse Ti-E. Получали фотографии в режиме реального времени и проводили линейные измерения, применяя анализатор изображений «Видео-Тест».

Полученные данные обрабатывали с использованием методов вариационной статистики.

Результаты исследования и их обсуждение

В результате исследования при помощи светового микроскопа удается выделить 3 типа гемоцитов, которые отличаются друг от друга по морфологическим особенностям, размеру и количеству гранул.

В результате инкубирования гемолимфы *Anodonta cignea* с растворами различной осмотичности были получены следующие данные (табл. 1).

В гипертоническом растворе, размер клеток уменьшается по сравнению с их размером в изотоническом растворе. Теоретически гипертонический раствор содержат хлорида натрия меньше чем его концентрация внутри мембран клеток. Вода выходит из клетки в среду. Но практически, размер гемоцитов несущественно изменяется в гипертоническом растворе относительно нормального раствора. Напротив, размер гемоцитов Anodonta cignea достигает максимальных значений в гипотоническом растворе. При этом, размер их ядер практически не изменяется в разных средах.

Выявлено, что при многократном отборе гемолимфы у одной особи Anodonta cignea, наблюдается увеличение численности гемоцитов первого и третьего типов. Это характеризует данные типы клеток как защитные элементы внутренней среды моллюска.

Таблица 1

Морфометрические параметры гемоцитов Anodonta cignea в растворах различной осмотичности

Table 1

Morfometric parameters of haemocytes Anodonta cignea surface under conditions of different osmolarity

Типы клеток	Линейные размеры клеток по длинной оси, мкм	Линейные размеры клеток по короткой оси, мкм	Линейные размеры ядра по длинной оси, мкм	Линейные размеры ядра по короткой оси, мкм		
Гипотонический раствор						
Тип 1	8,84±0,78	7,55±0,78	2,41±0,45	2,13±0,19		
Тип 2	8,44±0,46	8,07±0,83	4,35±0,91	3,87±0,45		
Тип 3	13,21±1,32	10,15±1,26	2,34±0,81	2,52±0,75		
Гипертонический раствор						
Тип 1	7,15±0,44	6,37±0,46	2,33±0,36	2,07±0,32		
Тип 2	6,53±0,43	6,53±0,79	4,21±0,34	3,69±0,66		
Тип 3	8,54±0,78	6,93±0,47	2,68±0,39	2,02±0,37		
Изотонический раствор						
Тип 1	7,84±0,66	7,1±0,63	2,37±0,35	2,19±0,34		
Тип 2	7,42±0,90	6,55±0,93	4,15±0,82	3,69±0,77		
Тип 3	8,95±0,69	8,03±0,70	2,76±0,40	2,38±0,20		

Установлено что гемоциты у Anodonta cignea, сохраняют жизнеспособность во влажной камере на протяжении 4-8 часов (в зависимости от объема пробы и физиологического состояния особи).

У Dreissena polymorpha идентифицировано 3 типа клеток, которые отличаются друг от друга по морфологическим особенностям и их размеру и количеству гранул. При сравнении морфометрических параметров гемоцитов Dreissena polymorpha и Anodonta cignea выявлено, что размеры у Dreissena polymorpha меньше.

В результате инкубирования гемолимфы Dreissena polymorpha с растворами различной осмотичности были получены следующие данные (табл. 2).

Результаты исследования подтверждают точку зрения, что при нарушении изотоничности клеток вода осуществляет пассивный транспорт через мембрану и клеточные объемы претерпевают изменения. Для сохранения оптимального уровня обмена веществ очень важно, чтобы объем клетки и ее ионный состав оставались относительно постоянными. Регуляция объема при этом зависит от транспорта воды и от осмотической резистентности гемоцитов, пути поддержания которой универсальны в клетках животных.

Таблица 2

Морфометрические параметры гемоцитов Dreissena polymorpha в растворах различной осмотичности

Table 2

Morfometric parameters of haemocytes Dreissena polymorpha surface under conditions of different osmolarity

Типы клеток	Линейные размеры клеток по длинной оси, мкм	Линейные размеры клеток по короткой оси, мкм	Линейные размеры ядра по длинной оси, мкм	Линейные размеры ядра по короткой оси, мкм		
Гипотонический раствор						
Тип 1	6,70±0,79	5,74±0,13	2,20±0,31	2,01±0,45		
Тип 2	8,02±0,79	7,48±0,83	3,21±0,47	3,07±0,52		
Тип 3	10,15±0,78	8,47±1,17	2,84±0,37	2,49±0,63		
Гипертонический раствор						
Тип 1	5,52±0,56	4,80±0,57	2,19±0,47	1,79±0,46		
Тип 2	5,33±0,93	4,98±0,86	2,84±0,58	2,47±0,65		
Тип 3	8,35±1,28	6,33±0,91	2,81±0,41	2,39±0,33		
Изотонический раствор						
Тип 1	5,92±1,16	5,1±0,96	1,97±0,35	1,75±0,31		
Тип 2	6,61±0,63	6,15±0,63	2,85±0,57	2,58±0,49		
Тип 3	8,75±1,27	7,17±0,76	2,74±0,29	2,60±0,40		

Заключение

В результате проведенных исследований осуществлено определение морфометрических параметров гемоцитов, инкубирован-

ных в растворах разной осмотичности. Наибольшие изменения размеров отмечены для гемоцитов первого типы у представителей исследованных видов.

ЛИТЕРАТУРА:

- 1. Adema C.M., Harris R.A., Van Deutekom-Mulder E.C. A comparative study of hemocytes from six different snails: morphology and functional aspects. J. Inv. Path., 1992. 59: 24-32.
- 2. Adamowicz A., Bolaczek M. Blood cells morphology of the snail Helix aspersa maxima (Helicidae), 2003
- 3. Chang S. J., Tseng S. M., Chou H. Y. Morphological Characterization via Light and Electron Microscopy of the Hemocytes of two Cultured Bivalves: A Comparison Study between the Hard Clam (Meretrix lusoria) and Pacific Oyster (Crassostrea gigas). Zoological Studies, 2005. 44:144-153.
- 4. Cima, F., V. Matozzo, M. G. Marin & L. Ballarin. 2000. Haemocytes of the clam Tapes philippinarum (Adams and Reeve, 1850): morphofunctional characterisation. Fish Shellfish Immunol. 10:677-693.
- 5. Ruddell C. L. The fine structure of the granular amebocytes of the Pacific oyster, Crassostrea gigas. J. Invertebr. Pathol. 1971 18:269-275.
- 6. Donaghy L., Artigaud S., Sussarellu R., Lambert C., Le Goïc N., Hégaret H., Soudant P. Tolerance of bivalve mollusc hemocytes to variable oxygen availability: a mitochondrial origin. Aquatic Living Resources, 26, pp 257-261. 2013

- 7. Sminia T. Structure and function of blood and connective tissue cells of the freshwater pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z Zellfosch 1972 130:497-526.
- 8. Wen C. H., Kou G. H., Chen S. N. Light and electron microscopy of hemocytes of the hard clam, Meretrix lusuria (Roding). Comp. Biochem. Physiol. 1994 108:270-286.
- 9. Zbikowska E. Comparative quantitative studies of hemocytes of the snails: Helix pomatia L. and Lymnea stagnalis (L.) (Gastropoda: Pulmonata). Biol. Bull. Poznañ 1998 35:25-32.
- 10. Accorsi A., Bucci L., Eguileor M., Ottaviani E., Malagoli D., Comparative analysis of circulating hemocytes of the freshwater snail Pomacea canaliculata Fish and sell-fish immunology, 2013. 1-9.

REFERENCES:

- 1. Adema C.M., Harris R.A., Van Deutekom-Mulder E.C. A comparative study of hemocytes from six different snails: morphology and functional aspects. J. Inv. Path., 1992. 59: 24-32.
- 2. Adamowicz A., Bolaczek M. Blood cells morphology of the snail Helix aspersa maxima (Helicidae), 2003
- 3. Chang S. J., Tseng S. M., Chou H. Y. Morphological Characterization via Light and Electron Microscopy of the Hemocytes of two Cultured Bivalves: A Comparison Study between the Hard Clam (Meretrix lusoria) and Pacific Oyster (Crassostrea gigas). Zoological Studies, 2005. 44:144-153.
- 4. Cima, F., V. Matozzo, M. G. Marin & L. Ballarin. 2000. Haemocytes of the clam Tapes philippinarum (Adams and Reeve, 1850): morphofunctional characterisation. Fish Shellfish Immunol. 10:677-693.
- 5. Ruddell C. L. The fine structure of the granular amebocytes of the Pacific oyster, Crassostrea gigas. J. Invertebr. Pathol. 1971 18:269-275.
- 6. Donaghy L., Artigaud S., Sussarellu R., Lambert C., Le Goïc N., Hégaret H., Soudant P. Tolerance of bivalve mollusc hemocytes to variable oxygen availability: a mitochondrial origin. Aquatic Living Resources, 26, pp 257-261. 2013

- 7. Sminia T. Structure and function of blood and connective tissue cells of the freshwater pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z Zellfosch 1972 130:497-526.
- 8. Wen C. H., Kou G. H., Chen S. N. Light and electron microscopy of hemocytes of the hard clam, Meretrix lusuria (Roding). Comp. Biochem. Physiol. 1994 108:270-286.
- 9. Zbikowska E. Comparative quantitative studies of hemocytes of the snails: Helix pomatia L. and Lymnea stagnalis (L.) (Gastropoda: Pulmonata). Biol. Bull. Poznañ 1998 35:25-32.
- 10. Accorsi A., Bucci L., Eguileor M., Ottaviani E., Malagoli D., Comparative analysis of circulating hemocytes of the freshwater snail Pomacea canaliculata Fish and sellfish immunology, 2013. 1-9.