


field of single atom is rather small [9]. Different
situation arises for coherent interaction of rela-
tivistic particles with atoms of crystal lattice. In
this case, due to the coherent effect the dependence
of the radiation cross-section on the particle’s
charge sign can be substantially amplified in com-
parison with analogous dependence of the radia-
tion cross-section in an amorphous medium. The
attention to this fact was paid in [10] during con-
sideration of contribution of the second Born ap-
proximation into coherent radiation cross-section
of relativistic electrons in the field of atomic plane
of the crystal. It was demonstrated that in con-
sidered case the relative contribution of the second
Born approximation into coherent radiation cross-
section is determined by the parameter
Ze*R
* ea?0*’ M)

where Zle| is the charge of the nucleus of crystal
lattice atom, R is the screening radius of the
atomic potential, a is the average distance between
atoms in the crystal plane, ¢ is the energy of the
particle and 6 is the angle of the electron beam
incidence to one of the atomic planes in the crystal.
In this case the Born expansion of the radiation
cross-section is valid if o, < 1. The parameter o,
represents by the order of value the ratio of the
squared critical angle of plane channeling 6, =
\/Ze*R/ea® [11] to the squared angle of incidence 6
of the beam to the plane
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Ot ~ 9—; (2)
This parameter determines the dependence of the
coherent radiation cross-section on the particle’s
charge sign. The parameter o, rapidly increases
with 6 decrease. Under ap ~ 1 the account of ef-
fects of channeling and above-barrier motion of
particles in respect to the crystal atomic plane is
necessary [3,11,12].

The results obtained in [10] were related to the
range of small frequencies of radiated photons,
for which the recoil effect under radiation is neg-
ligible. In this paper some results of investigation
of the second Born approximation contribution
into the cross-section of the coherent radiation of
relativistic electrons and positrons in crystal with

account of the recoil effect under radiation are
presented. The corresponding formulae for the
cross-section of radiation of electrons in non-
uniform external field of arbitrary structure are
obtained in the paper. Dependence of the cross-
section of coherent radiation on the sign of the
particle charge under interaction with the atomic
plane is considered on the base of these formulae.

2. Differential cross-section of the radiation process

The cross-section of the bremsstrahlung of
electrons and positrons in an external field is de-
termined by the relation [9]
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where e is the electron charge, ¢, p and ¢, are the
energy and the momentum of the initial and final
particles, @ and k are the frequency and the wave
vector of the radiated wave, d(¢ —¢ — w) is the
delta-function that determines the energy conser-
vation under radiation, and M is the matrix ele-
ment of the radiation process. The line above [M|*
means the averaging over polarization of initial
particles and summation over polarization of final
particles. According to the rules of diagram tech-
nique [9] the squared matrix element in (3) can be
written with the account of the contribution of the

second Born approximation in the form

2 2472 x d3q
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(2m)

(4)
where U, is the Fourier component of the potential
energy of the electron (positron) in an external
field, g, = (0, g) is the four-momentum transferred
to the external field (it is assumed that the external
field is stationary), g, = py — P, — ku, P> P),» Ky are
the four-momenta of initial and final electrons and
the photon, M| and M, are the matrix elements
which determine contributions of the first and
the second Born approximations. Discriminating in
the propagators in M; and M, the dependence on
longitudinal and transverse components of trans-
ferred momenta ¢ and ¢ in an explicit form, one
can write M; and M, in the form
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where e, is the photon polarization vector, p —

puy", 7, are the Dirac matrices, v and v are the
initial and final velocities of the electron, ¢, =
gu — ¢y The values b, 6, and 1, in M, and M, are
determined by the relations

Ug Tg’ gﬁz I 2p’
4
Ty = 8| +nig+@a (7)

where 7# = p//p’ is the unit vector along the mo-
mentum p’ direction, and 7, are the components
of this vector orthogonal to the p.

The matrix element of the radiation process
depends on the momentum transferred to the ex-
ternal field g in an explicit form. The cross-section
itself can be also expressed directly through the
transferred momentum (and also through the an-
gle 9 between the vectors k and D). Such presen-
tation is especially convenient in the range of small
values of the transferred momentum g, < m, be-
cause it is possible to make an expansion in the
matrix element by the powers of g, in this case.
Transformation to the new variables is described
in [1,3]. The differential cross-section in this case
takes the form

4 (R
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where 6 = wm?/2¢¢’. The variable y is connected to
9 by the relation
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g and g, are the components of g, parallel and
orthogonal to the momentum p of the incident
particle. From the fact that the value a in the
radical in (9) must be positive one can conclude
that

g =0+g1 /2. (10)

Note that Eq. (9) determines the possible values of
the radiation angle ¥ under given values of g and

g1
There exists the following relation for the values
Ty, 04 and 74 in (6):

Ty + 0, =1+ 4, (11)

where 4, = (0/2e¢))¢* + (k.g/¢). Tt is also easy to
see that
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Substituting these relations into (6), we obtain
after expanding of M, by the parameters A4,/o,
and 4, /0, the following expression for M>:
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where Q; is the spinor structure of M,
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In deriving Eq. (13) we have used the symmetry of
M, relatively to the exchange ¢ <> ¢’ and we have
neglected the terms of the order of m?/¢%.

After summing over polarizations of final par-
ticles and averaging over polarization of initial
particle we obtain with accuracy to terms of order
of m?/&? the following equations for the values

M, |*, and MM in (3):

!
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where p/ - p=¢e— pp.

Substituting these equations into (3), we obtain
after the integration over y and expansion on g, /
m the following expression for the cross-section of
the radiation with account of the second Born
approximation:

Nt (g1 j&)% _uu b
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where
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Let us consider some particular cases of the Eq.
(16). If the condition 6 < q), is satisfied, where
g, are the characteristic values of the longitudinal
component of the momentum ¢ in (16), we can
neglect the dependence of U, and U, ; on g in
(16). After integration over g we obtain that
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where

For o <« ¢ Eq. (17) corresponds to the product of
the radiation probability dw/dw and the cross-
section of elastic scattering of the particle in the
external field do, with account of contribution of
the second Born approximation,

1 &g 4.4
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For the Coulomb field of the nucleus with charge
Zle| last equation transforms to the form

4Zze4d9{ e 7rZeZQ9
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where the scattering angle ¥ ~ g, /p. The last re-
sult coincides with the corresponding result of the
paper [13] obtained by different method. For ar-
bitrary external field the formula for do, was
obtained in [14,15].

So in the range of frequencies @ ~ ¢ the theo-
rem about factorization of the radiation cross-
section, according to which

do ~ dw(g,)doa(g.), (19)

is justified with an accuracy to the correction
which determines the contribution of the second
Born approximation.

3. The cross-section for radiation of relativistic
electrons and positrons in the field of atomic plane
in a crystal

Now consider the coherent radiation of elec-
trons and positrons in the field of continuous po-
tential of one of the atomic planes in a crystal
under incidence of the beam under small angle 6 to
this plane. The continuous potential of the plane is
determined by the equation [11,12]

1 N
v =77 / =3l 7, (20)
where u(¥ — #,) is the potential of the single atom
of the crystal plane located in the point #,, L, and
L, are the linear dimensions of the plane and x is



the coordinate, orthogonal to the atomic plane of
the crystal (summation in (20) is made over all
atoms of the crystal plane). Taking the atomic
potential in the form of the screened Coulomb
potential

Z
u(r) = ﬂefr/R,
r

we find the expression for the Fourier component
of the continuous potential of the plane,

U, = (21)°6(g.)0(g,) — g, (21)

yz
where @, and a; are the distances between atoms in
the plane along the axes y and z, and

4nZ|e|
Z/lg = —§2 n R*Z .
Substituting the Fourier component (21) into (16),

we obtain the following expression for the radia-
tion cross-section:
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Here we have used the fact that in the case under
consideration g ~ 6g,. The value g, here covers
the range g, = 6/6. Under o <« ¢ the Eq. (22)
transforms to the corresponding result of the
paper [10].

Eq. (22) demonstrates that for given value of
the angle @ the radiation spectrum wdo/dw pos-
sesses the maximum in the range of frequencies
satisfying the condition

2¢(e —w) 2R

With the particle energy growth the position of
this maximum moves to the region of high fre-

quencies. For ¢ ~ m*R/6 the maximum is located
in the region of frequencies for which the effect of
recoil under radiation is substantial.

According to (22) the correction leading to the
dependence of the cross-section of the coherent
radiation on the sign of the charge of the particle is
determined by the parameter (1) for @ ~ ¢ as well
as in the case w < ¢&. For ¢ ~ m?R /0 this parameter
takes the form

Ze

Oy~ ———— .
P m2a20

(24)

So in the range of energies under consideration
with the decrease of 6 the dependence of the cross-
section of the coherent radiation on the charge
sign of the particle becomes substantial in the
whole range of frequencies of radiated photons.

Eq. (22) demonstrates also that for all fre-
quencies the cross-section of radiation by posi-
trons turns out to be larger than the cross-section
of radiation by electrons. This result can be ex-
plained by the following way. The electron is at-
tracted to the plane and, in distinct to the positron,
spend less time in the region with large gradient of
the potential. Because of that the electron radiates
weaker than the positron, and this difference in-
creases with the decrease of the angle 0.

4. Conclusions

The results obtained demonstrate that the ra-
diation cross-section for relativistic electrons and
positrons in an external field with account of the
second Born approximation is determined by Eq.
(16) in whole region of frequencies of radiated
photons. The dependence of the contribution of
the second Born approximation into the radiation
cross-section on the energy of the emitted photon
for the case w ~ ¢ differs from the corresponding
dependence of the contribution of the first Born
approximation into the cross-section. This leads,
in particular, to the fact that the theorem about
factorization of the radiation cross-section is valid
for @ ~ ¢ only with accuracy to the contribution
of the second Born approximation into the cross-
section.



The account of the contribution of the second
Born approximation into radiation cross-section
leads to dependence of the cross-section on the
particle charge sign in whole region of frequencies
of radiated photons. For the radiation by relativ-
istic particle in the field of single atom this de-
pendence is rather small. Substantial increase of
the dependence of radiation cross-section on the
particle charge sign is possible for the radiation of
the particle in crystal. Such increase takes place,
for example, under incidence of the beam under
small angle 6 to one of crystallographic planes.
The dependence of the cross-section on the charge
sign in whole region of frequencies of emitted
photons is determined by the parameter (2). Un-
der decreasing the angle 0 this parameter rapidly
increases. Under 0 ~ 6, the account of effects con-
nected with the phenomenon of channeling is nec-
essary. This phenomenon could not be described
in the frameworks of Born approximation. Hence
Eq. (22) is valid for 8, < 6 <« 1.

Experimental studies of the radiation process by
relativistic electrons and positrons in crystals were
carried out in [16-20]. However, in these papers the
attention was paid mainly to the study of radiation
characteristics under conditions, when the chan-
neling of particles in crystal takes place. It was
demonstrated that in this case the radiation cross-
sections for electrons and positrons are substan-
tially differ from each other. Detailed experimental
investigation of the dependence of radiation cross-
section on the particle charge sign under conditions
of applicability of Eq. (22) has not been carried out
yet. There exist only some measurements of ori-
entation dependence of radiation cross-sections for
electrons and positrons under collimation of radi-
ation [16,17]. The results of those measurements
are in qualitatively agreement with basic predic-
tions of the Eq. (22).
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