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This paper reports a method to solve ordinary 
fourth-order differential equations in the form of 
ordinary power series and, for the case of regu-
lar special points, in the form of generalized power 
series. An algorithm has been constructed and a pro-
gram has been developed in the MAPLE environ-
ment (Waterloo, Ontario, Canada) in order to solve 
the fourth-order differential equations. All types of 
solutions depending on the roots of the governing 
equation have been considered. The examples of 
solutions to the fourth-order differential equations 
are given; they have been compared with the results 
available in the literature that demonstrate excel-
lent agreement with the calculations reported here, 
which confirms the effectiveness of the developed 
programs. A special feature of this work is that the 
accuracy of the results is controlled by the number 
of terms in the power series and the number of sym-
bols (up to 20) in decimal mantissa in numerical cal-
culations. Therefore, almost any accuracy allowed 
for a given electronic computing machine or computer 
is achievable. The proposed symbolic-numerical me- 
thod and the work program could be successfully used 
for solving eigenvalue problems, in which controlled 
accuracy is very important as the eigenfunctions 
are extremely (exponentially) sensitive to the accu-
racy of eigenvalues found. The developed algorithm 
could be implemented in other known computer algeb-
ra packages such as REDUCE (Santa Monica, CA), 
MATHEMATICA (USA), MAXIMA (USA), and others.  
The program for solving ordinary fourth-order diffe-
rential equations could be used to construct Green’s 
functions of boundary problems, to solve differen-
tial equations with private derivatives, a system of 
Hamilton’s differential equations, and other problems 
related to mathematical physics
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1. Introduction

Most  differential  equations  and  systems  of  differential 
equations  found  in  mathematics,  physics,  and  other  natural 
sciences are not  integrated in an explicit  form [1]. Typically, 
there are no universal numerical methods for finding solutions 
to  them [2, 3].  These  equations  include,  specifically,  Schro-
dinger’s  stationary  equation  (when  solving  its  eigenvalue 
problem), the system of differential equations of Hamilton.

An important role for the mathematical models in differ-
ent  fields of physics,  in particular,  in classical and quantum 
mechanics, in applied mathematics, in technology belongs to 
eigenvalue problems [4]. These problems arise when investi-
gating stability, as well as the critical and bifurcation regimes 
of complex physical systems [5].

It  should  be  noted  that  the  relevance  of  the  theory  of 
solving the fourth-order differential equations is due to that 
there  are  a  number  of  physical  states  whose  consideration 

involves  the  fourth-order  differential  equations.  Those  are 
the  plate  bending  theory,  elasticity  theory,  torsion  theory 
of  anisotropic  rods,  shell  theory,  and  so  on.  These  physical 
states  were  analyzed  in  work [1].  The  relevance  of  solving, 
specifically,  ordinary  fourth-order  differential  equations  was 
discussed in detail in paper [6]. The relevance of solving ordi-
nary differential equations of any order, the relevance of their 
research methods, as well as the area of their applicability in 
various  fields  of  technical  sciences  were  discussed  in  detail 
in work [7]. The relevance of exploring ordinary differential 
equations is confirmed by the fact that every year there are in-
ternational conferences on differential equations in the world.

2. Literature review and problem statement

Ordinary differential equations, both linear and non-linear, 
are  widely  used  in  various  fields  of  science  and  technology.  
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However, most equations do not produce solutions in an 
explicit analytical way. For example, the solutions to such 
simple-looking equations as y′(x) = y2–x, y′(x) = x2+y2 are 
not expressed as the ultimate combination of elementary and 
algebraic functions and their integrals. In addition, the cum-
bersome formula that yields a solution in the explicit form is 
often not useful at all as it does not provide a constructive 
technique to derive a solution, which was very well analyzed 
in works [1, 6, 7]. Therefore, in the theory of differential 
equations, various approximate analytical methods have been 
developed and advanced, in particular the methods of pertur-
bation theory [8, 9], averaging methods, and direct numerical 
methods [2, 3, 8–11] to solve them.

As regards direct numerical methods for solving ordinary 
differential equations, there are a large number of machine 
programs that reliably find solutions to such equations with 
great accuracy, and most of these programs employ an algo-
rithmic language.

In recent decades, the so-called hybrid methods involv-
ing different computer algebra systems have shown promises 
for modern areas related to solving problems in mathematical 
physics. When the preliminary algebraic (analytical) trans-
formations are combined with the derivation of basic formu-
lae in the form of explicit expressions, subsequent numerical 
calculations are performed if necessary.

An important class of equations for which the algorithmic 
solution procedure has been developed is composed of linear 
homogeneous differential equations of the second order with 
rational coefficients-functions. Such an algorithm resembles 
an algorithm for calculating uncertain integrals with a solu-
tion built by using rational operations, algebraic functions, 
defined by the polynomial equations of demonstrative func-
tions and integrals. It should be noted that until now no al-
gorithmic procedure for solving differential equations above 
the second order has been developed.

Solutions to the differential equation by using computer 
algebra systems were also analyzed in work [12]. An Euler- 
type equation was investigated and several algorithms were 
developed to obtain approximate solutions to such equations, 
with an assessment of the accuracy of approximate solutions.  
It is worth noting that Euler’s equations, through a known 
simple replacement, are reduced to linear differential equa-
tions with constant coefficients and make it possible to de-
rive a general solution in an analytical form.

Study [12] presented two algorithms for solving ordi-
nary linear differential equations of the second order. One 
algorithm converts the assigned differential equation into 
an equation with constant coefficients, and the second algo-
rithm represents the original differential equation in the form  
of a product of two simple differential expressions (a facto-
rization method).

Paper [13] also reported an algorithm for solving linear 
differential equations of arbitrary orders with polynomial 
coef ficients (that is, differential equations of a certain class), for 
which the task of constructing all rational solutions is solved.

Ordinary differential equations arise to find solutions to 
differential equations with partial derivatives when using  
a Fourier method. In this case, the so-called linearization pro-
cedure is often applied, first considered in work [14], which 
leads to ordinary differential equations.

Subsequent studies [15–20] developed the above heu-
ristic methods for exploring differential equations by using 
computer algebra. Algebraic substitutions are employed to 
solve a differential equation in [15]. Functional substitutions 

are used to solve a differential equation and the original dif-
ferential equations of a special kind are considered in [16]. 
Cylindrical coordinates are applied to solve a differential 
equation by using algebraic substitutions in [17].

The authors of work [18] developed an algorithm for con-
structing asymptotic approximations (of arbitrary order) by 
building the asymptotes of Lagrange multipliers in the form 
of expansion into the integer powers of a small parameter. 
The computational procedure of the algorithm involves solv-
ing the linear problem of optimal management, integrating 
the systems of linear differential equations, as well as finding 
solutions to nondegenerate linear algebraic systems.

Paper [19] proposed methods for solving an external 
problem for the Laplace equation. The primary method is to 
set an artificial integral boundary condition with iterative re-
finement. It was shown that the iterative methods converge 
at the speed of geometric progression. The applicability of 
the methods for solving external problems was confirmed 
by computational experiments for the two-dimensional and 
three-dimensional cases.

The seven-stage Runge-Kutta methods of the sixth-order 
order were used to solve a differential equation in [21, 22].

In work [23], the Runge-Kutta method is used to exa-
mine the solutions to the initial problems for the ordinary 
fourth-order differential equations.

In works [21–23], when solving differential equations, 
the first attempts were made to represent solutions analyti-
cally in the form of power polynomials based on the numeri-
cal solution to a differential equation. Particularly notewor-
thy is paper [21] in which a three-stage method, which is 
designated as RKFD of the fourth order, and the three-stage 
RKFD method of the fifth order were built on the basis of the 
conditions of order. The authors reported numerical results 
to demonstrate the effectiveness of the new RKFD methods 
by comparing them with other methods described in the 
scientific literature, such as Runge-Kutta-Nystrom (RKN) 
and Runge-Kutta (RK), after converting the problem into 
a system of ordinary linear differentials of the second order.

In work [20], numerical calculations were performed 
using the method of targeting in solving the problems of op-
timal control with switching. An algorithm has been worked 
out to ensure that Newton’s method is converged in problems 
of this kind. An analysis of the accuracy of the calculations 
has been carried out.

It should be noted that in all recent works [24, 25] the 
solutions to differential equations by approximate numerical 
methods were obtained without their specific analytical repre-
sentation; paper [25] even proposed an algorithm for numerical 
solving of ordinary differential equations of the highest order.

Our review reveals that one of the effective and construc-
tive methods for solving linear ordinary differential equa-
tions is to derive them in the form of power series [26]. There 
may be cases where function coefficients have singularities at 
some points (so-called special points) whose presence some-
times leads to features in the solutions themselves [1].

3. The aim and objectives of the study

The aim of this work is to find a solution to the linear ordi-
nary fourth-order differential equations in an analytical form.

To accomplish the aim, the following tasks have been set:
– to construct a method for solving a linear ordinary diffe-

rential equation of the fourth order in the form of a power series;
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– to consider all types of solutions to the fourth-order 
differential equations depending on the roots of the govern-
ing equation;

– to develop a computer program algorithm in the MAPLE 
environment to solve the fourth-order differential equations; 

– to provide examples of the solutions that would make 
it possible to evaluate the possibilities of the method for the 
analytical representation of solutions to the differential equa-
tion in the idea of power series.

4. The study materials and methods

The starting material of this study is the power series. 
Underlying the construction of a given method for solving 
a differential equation is the representation of the functional 
dependence of the function desired from the equation in the 
form of a power series. That would make it possible to find  
a solution to the differential equation analytically. It should 
be noted, however, that no solution has yet been obtained 
for the linear ordinary differential equations in an analytical 
form. By developing a software algorithm in the MAPLE ana-
lytical computing environment, one could obtain the result of 
computation depending on any number of terms in the power 
series. That makes it possible to obtain a solution [26] and be 
able to control it with any accuracy of computation in nu-
merical calculations [27, 28]. The accuracy of the calculations 
would depend only on a given electronic computing machine.

It should be noted that there may be cases where function 
coefficients have singularities at some points (so-called special 
points) whose presence sometimes leads to features in the solu-
tions themselves [1]. In the presence of special points, a given 
method employs generalized power series. However, each par-
ticular differential equation has to be theoretically investigated.

5. The results of studying the integration of the linear 
fourth-order differential equations 

5. 1. A general scheme of the method for solving a li-
near differential equation of the fourth order with the help 
of power series

We shall describe the basic provisions of the theory for find-
ing linearly independent solutions to a linear ordinary differen-
tial equation of the fourth order, which takes the following form:

y x P x y x P x y x

P x y x P x y x

IV( ) ( ) + ( )⋅ ¢¢¢ ( ) + ( )⋅ ¢¢ ( ) +

+ ( ) ¢( ) + ( )⋅ ( )
3 2

1 0 == 0.  (1)

If the functions-coefficients P3(x), P2(x), P1(x), P0(x) do 
not contain regular special points and are the holomorphic 
functions in the vicinity of point x = x0, that is, represented in 
the form of converging series:
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then four linearly independent solutions y1, y2, y3 and y4 can 
be represented by the following power series:
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The coefficients ck
( ),1  ck

( ),2  ck
( ),3  ck

( )4  are determined in the 
only way by the substitution of series (2) into equation (1) 
and by equating to zero the coefficients at different powers of 
an independent variable in the left-hand part of the derived 
equality (the method of uncertain coefficients).

If there are poles no higher than the fourth order at point 
x = x0, the form of solutions to (2) would be different depend-
ing on the roots of the governing equation [1]. It is known 
from the theory of ordinary differential equations [1] that in 
order for the equation in form (1) to have at least one parti-
cular solution in the vicinity of the special point x = x0 in the 
form of a generalized power series, for example:
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where ρ is some constant number, it is required that this 
equation should take the following form:
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that is, its pole should not exceed the fourth order. The indi-
cator ρ is determined from the so-called governing equation:
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Let ρ1, ρ2, ρ3, and ρ4 be the roots to equation (5). Then, 
if the roots of the governing equation ρ1, ρ2, ρ3, and ρ4 are 
different, and no two of them differ by an integer number, 
then each number ρ corresponds to a certain sequence of 
coefficients ck

( ),α  α = 1, 2, 3, 4, and there are four independent 
solutions that form the fundamental system:
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All coefficients ck
( ),α  α  = 1, 2, 3, 4 are found by the sub-

stitution of series (6) into a differential equation (4) and 
by equating the coefficients at the same power of va-
riable x (the method of uncertain coefficients). Coefficients 
ck

( ),α  α  = 1, 2, 3, 4 are assumed to equal unity.

5. 2. Solutions to the fourth-order differential equa-
tions depending on the roots of the governing equation

If of the four ρ values found, two or several roots differ by an 
integer number, they can be arranged as independent sequences:

ρ ρ ρ ρ ρ ρα α α β1 2 1 1 1, , , , , , , , − + −

in this case, the values in each sequence differed only by in-
teger numbers, and their physical parts would form a non-as-
cending sequence. Then only the first term of each sequence 
gives a solution in the form (3).

If the difference ρ1–ρ2 of any roots is equal to an integer 
positive number or zero, then one of the solutions takes the 
following form:

y x x x1 0
1( ) = −( )ρ
,

and is found according to (6), but the second solution takes 
the following form [1]:

y x A y x x x x x c x xk

k

k
2 1 0 0 0

0

2( ) = ⋅ ( )⋅ −( ) + −( ) −( )
=

¥

∑ln .
ρ

 (7)

A linearly independent solution y2(x) can be found either 
from a known Liouville-Ostrogradsky formula or from expres-
sion (7) by the method of uncertain coefficients. At the same 
time, for the case of ρ1–ρ2 = 0, the logarithmic term would be 
contained (A = 0) in the solution, and if the difference ρ1–ρ2 is 
a positive integer, the logarithmic term may be missing.

A general solution to differential equation (1) is deter-
mined from the following expression:

y x C y x C y x C y x C y x( ) = ⋅ ( ) + ⋅ ( ) + ⋅ ( ) + ⋅ ( )1 1 2 2 3 3 4 4 .  (8)

According to the above formulae (6), a program to calculate 
four linearly independent solutions to a linear ordinary differen-
tial equation of the fourth order (1) and its general solution (8) 
has been developed, using the computer system of algebraic 
computation MAPLE: the algorithm is represented below.

5. 3. An algorithm for finding solutions to a linear 
ordinary differential equation of the fourth order in an 
analytical form

Assume Pk(x), where k = 0, 1, 2, 3 are the coefficients-func-
tions of the assigned differential equation (1); k is the ma-
ximum degree of power of the power series used; x00 is the 
special point in an equation, if any.

The algorithm steps are as follows:
1. Introduce four coefficients-functions P3(x), P2(x), 

P1(x), P0(x), which determine the differential equation itself, 
as well as the desired maximum order of the power series n.

2. Designate the potencial parameter-flag:
– if potencial = 1, then the coefficients-functions of equa-

tion (1) do not contain features at point x0; 
– if potencial = 0, then the equation has a pole no higher 

than the fourth order at point x0.
3. Find four linearly independent solutions y1, y2, y3, 

and y4 from formulae (3) if the coefficients-functions P3(x), 

P2(x), P1(x), P0(x) do not contain regular special points and 
are the holomorphic functions in the vicinity of point x = x0.

4. If there are poles not higher than the fourth, the equa-
tion takes the form (4).

5. Find the roots ρ1, ρ2, ρ3 and ρ4 of governing equation (5).
6. If the roots of the governing equation ρ1, ρ2, ρ3, and ρ4 

are different, and no two of them differ by an integer or zero, 
then the coefficients ck

( ),α  α = 1, 2, 3, 4 are determined by the 
substitution of series (6) into equation (1).

7. If the four ρ values found are such that two or more 
differ by an integer, the linearly independent solutions are 
found from formula (7).

8. Find a general solution to equation (1) according to 
expression (7).

5. 4. Examples of finding solutions to the linear fourth- 
order differential equations in the form of power series

The method built and the algorithm developed allow us 
to find solutions to the fourth-order differential equations in 
the form of power series, in general, of an arbitrary power n, 
limited, however, by the capabilities of a particular computer. 
A given program was used to derive solutions to some differ-
ential equations.

Example 1.
The following equation:

y y y y yIV( ) + ¢¢¢ + ¢¢ + ¢ + =2 10 18 9 0 ,  (9)

is a homogeneous linear differential equation with constant 
coefficients. Its linearly independent solutions are equal to:

y x e x
1 ( ) = − ,  y x x e x

2 ( ) = ⋅ − ,  

y x x3 3( ) = sin ,  y x x4 3( ) = cos ,  (10)

because its characteristic equation:

λ λ λ λ4 3 22 10 18 9 0+ + + + = ,

has the roots λk = {±3i, –1, –1}.
Equation (9) has no special points. The following four 

linearly independent solutions to this equation were obtai-
ned using the developed program:
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The resulting solutions (11) are the linear combinations 
of precise solutions (10).

Example 2.
Solve an equation in which the curved axis of the beam 

y(x), loaded by a continuously distributed reaction from the 
base with an intensity equal to k·y(x) (for simplicity, taken to 
be k = 4), is determined by the following differential equation 
of the fourth order:

y x y xIV( ) .( ) + ( ) =4 0

In this equation, the coefficients-functions, equal to the 
function P3(x) = 0, P2(x) = 0, P1(x) = 0, P0(x) = 4, do not have 
special points. This equation also has no special points and 
also is a homogeneous linear equation with constant coeffi-
cients, so it has precise analytical solutions:

y x e xx
1 ( ) = sin ,  y x e xx

2 ( ) = cos ,

y x e xx
3 ( ) = − sin ,  y x e xx

4 ( ) = − cos ,

because its characteristic equation λ4+4 = 0 has the roots 
λk = {1±i, –1±i}. Our program has produced th following four 
linearly independent solutions:

y x x x x

x
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1
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19x ,

that exactly coincide with its analytical solution. The re-
sulting solutions are also the linear combinations of precise 
solutions yk(x), (k = 1, 2, 3, 4).

Example 3.
Consider the following equation:

x y x y xyIV4 2 0( ) + ¢¢ − ¢ = .

This equation has a special point x = x0 = 0, governing 
equation (5) has equal roots ρ1 = ρ2 = ρ3 = 2 and a simple root 
ρ4 = 0. The following linearly independent solutions have 
been obtained using the program:

y x x1
2( ) = ,

y x x x x2
2 2( ) = + ln ,

y x x x x x x3
2 2 2 22( ) = + +ln ln ,

y x4 1( ) = .

The resulting solutions are precise solutions to a given 
differential equation.

Example 4.
Consider the following equation:

x y x y x y xy yIV4 3 22 0( ) + ¢¢¢ + ¢¢ − ¢ + = .

A special point at x = x0 = 0. The governing equation has 
the roots ρ1 = ρ2 = ρ3 = ρ4 = 1. The following solutions were 
derived:

y x x1 ( ) = ,

y x x x x2 ( ) = +ln ,

y x x x x x x3
2 2( ) = + +ln ln ,

y x x x x x x x x4
3 23 2( ) = + + +ln ln ln .

The resulting solutions are the precise solutions to a given  
differential equation.

Example 5.
Consider the following equation:

xy yIV( ) + ¢¢¢ =5 0 .

A special point at x = x0 = 0. Governing equation (5) has 
the roots ρ1 = 2, ρ2 = 1, ρ3 = 0, ρ4 = –2. Below are the derived 
linearly independent solutions:

y x x1
2( ) = ,  y x x2 ( ) = ,  y3 1= ,  y x x4

2( ) = − ,

that coincide with the solutions reported in work [11].
Example 6.
Consider the following equation:

x y x x y x y xIV2 4 2 0( ) .( ) + ¢¢¢( ) + ¢¢( ) =

This equation has a special point x = x0 = 0. In this case, 
the governing equation has the roots equal to ρ1 = ρ2 = 1, 
ρ3 = ρ4 = 0. Four linearly independent solutions have been 
obtained using the developed program:

y x x1 ( ) = ,

y x x x x2 ( ) = +ln ,

y x3 1( ) = ,

y x x4 1( ) = +ln ,

that are exactly the same as its analytical solution in [11].

6. Discussion of results of solving the linear ordinary 
fourth-order differential equations

This paper reports the developed method that makes it 
possible to find solutions to the linear ordinary fourth-order 
differential equations in the form of ordinary power series. 
Thus, four independent solutions have been obtained that 
constitute a fundamental system of solutions (6). In the 
case of regular special points, the solutions to differential 
equations are represented in the form of generalized power 
series. In the latest scientific research, numerical [6, 13, 20]  



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/4 ( 111 ) 2021

56

methods, as well as approximate methods [14, 22–24], are 
used to find solutions to differential equations. A special 
feature of the method for solving the linear ordinary fourth- 
order differential equations, proposed in this work, is to ob-
tain a solution analytically in the form of power series. That 
makes it possible to control the accuracy of the solution by 
the necessary number of terms in the power series derived.

An algorithm has been constructed taking into consider-
ation the number of roots of the governing equation, which 
makes it possible to find solutions to the linear ordinary 
fourth-order differential equations in the form of ordinary 
power series.

According to the proposed method and the above al-
gorithm, a program has been developed for computing four 
linearly independent solutions to a linear ordinary differen-
tial equation of the fourth order using the computer system 
of algebraic calculations Maple. A given program eliminates 
all possible limitations in this area of research and makes it 
possible, at the numerical representation of solutions to an 
equation, to use any number of decimals in the solution, de-
pending on the required accuracy of research.

The derived solutions to ordinary linear differential equa-
tions make it possible to establish the functional dependence 
of a solution to nonlinear differential equations and have the 
widest application potential for solving technical tasks. De-
pending on the functional type of solution, our results could 
be used in the theory of fluctuations, stability, the rigidity of 
technical devices and their structures, etc.

The advantage of a given method for obtaining solutions 
to ordinary linear differential equations, compared to the 
currently known numerical and approximate methods, is the 
accuracy of exploring a particular technical process, which is 
very important for the modern development of equipment.

In the future, based on the developed algorithm and the 
devised program, it is planned to build a Green’s function 
for differential equations of the fourth order, which contain 
regular special points. 

In conclusion, we note that the study reported in this 
paper has been conducted for those linear ordinary fourth- 
order differential equations that may contain the proper 
special points.

7. Conclusions

1. A method has been constructed for solving a linear 
ordinary differential equation of the fourth order in an ana-
lytical form. The functional dependence of the solution is 
represented in the form of power series.

2. We have considered all types of solutions to the fourth- 
order differential equations, depending on the roots of the go-
verning equation derived by the proposed solving method. The 
theoretical justification for each solution has been, depending 
on the heterogeneity of the differential equation.

3. An algorithm of computer software has been developed 
in the MAPLE environment for solving a linear ordinary 
differential equation of the fourth order whose functional 
dependence is represented in the form of a polynomial from 
power functions. The resulting solution provides for any ac-
curacy of numerical calculations depending on the number of 
terms of the power series taken in a given solution.

4. The given examples of the found solutions for hetero-
geneous differential equations depending on the functional 
form of their right-hand part have shown that in all the cases 
examined the solutions were in excellent agreement with 
those reported in the literature.
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