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Abstract We prove a sufficient condition for the stability of a stationary solution to a system
of nonlinear partial differential equations of the diffusion model describing the growth of
malignant tumors. We also numerically simulate stable and unstable scenarios involving the
interaction between tumor and immune cells.

1 Introduction

Cancer is a generic term for a group of diseases and figures as a leading cause of death
globally. Responsible for one in every six deaths, it lays a significant burden on healthcare
systems and continues to be among the major health problems worldwide [1]. One defining
characteristic in cancer diseases is the appearence of abnormal cells that hijack control checks
and proliferates abnormally, which leads to a neoplasm that can occur in almost any part of
the body [2,3].

Increasing knowledge of cancer evolution has improved the understanding of anticancer
treatment resistance. A better characterization of cancer evolution and subsequent use of this
knowledge for personalized treatment would increase the chance to overcome cancer treat-
ment resistance. On this matter, mathematical oncology has surfaced as an area that compre-
hends both ellaboration and application of model-based approaches to describe cancer-related
phenomena and help improve personalized treatment [4–6]. Currently, there are many math-
ematical models of tumor growth displayed by ordinary and partial differential equations
[7–9]. Exact and numerical methods have been developed for solving the initial and initial
boundary value problems generated by these models [10], as well as methods for studying

a e-mail: amar_debbouche@yahoo.fr (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-020-01070-8&domain=pdf
http://orcid.org/0000-0003-4321-9515
https://orcid.org/0000-0002-7722-6927
https://orcid.org/0000-0002-4308-8909
https://orcid.org/0000-0002-4365-7948
mailto:amar_debbouche@yahoo.fr


  131 Page 2 of 18 Eur. Phys. J. Plus         (2021) 136:131 

the qualitative properties of such models. The latter, in particular, include studies on stability
of a stationary state. Below, in the description of the models, we essentially use the results
of [11] and the literature review given there.

The first mathematical tumor growth models were Cauchy problem for a system of ordinary
differential equations. The models took into account tumor cells, normal cells, dead cells,
nutrition, various inhibitory substances, immune system response [12]. Later, a tumor was
considered as a system with distributed parameters in advection–diffusion–reaction models
[13–26]. Tissue formed by three types of cells is considered incompressible; therefore, their
total concentration is assumed to be constant. The growth rate of tumor tissue based on the
second Newton’s law is determined through the excess internal pressure arising during the
generation of new cells. Models taking into account not only diffusional tumor growth but
also tumor invasion by blood vessels were presented in the works [13–15]. The cells of a
healthy organism are mortal, and apoptosis is the end of the life cycle. In turn, the main
feature of tumor cells is the absence of apoptosis [22–26].

Since tumor cells look similar to healthy ones, it is difficult for the immune system to
recognize them [23,27,28]. An increase in the number of tumor cells is accompanied by
their association and leads to the formation of various spatial structures (spheroids, tubes,
threads, disks, etc.) [22–26]. Internal cells of the emerging structure begin to die due to
lack of nutrition, external tumor cells continue to multiply, pushing healthy ones away from
themselves. In the process of tumor growth, both tumor cells and all the dead cells are not
removed from the body, forming a solid tumor [25,26]. A solid tumor is a nucleus of dead
cells surrounded by a layer of continuously multiplying tumor cells [22,26]. The tumor
becomes autonomous and its cells begin penetrate into surrounding tissues, destroying them
and creating new growth points.

Overall, these remarking characteristics show how different the proliferation of early
tumor cells or the tissue invasion of specialized ones can be. Such distinctness reinforces the
importance of approaching such phenomena with mathematical and physical tools, exploring
their dynamics and analyzing possible interesting scenarios [29,30]. This paper is devoted
to the stability of a stationary solution to a system of partial differential equation modeling
tumor growth. Section 2 grounds the fundamental concepts regarding diffusing phenomena.
The main model is presented in Sect. 3, with the stability of a stationary solution being derived
in Sect. 4. Additionally, in Sect. 5 the stability of a solution pertaining to a simplified model
is verified. Finally, Sect. 6 applies the same approach to analyze another model of interest in
oncology dynamics, along with virtualizations provided by numerical simulations.

2 Preliminary and fundamental concepts

Bearing in mind that the present work proposes to investigate the solution and the stability of
the stationary problem of the diffusion equation toward oncological processes, this section
points out some preliminary and fundamental concepts that address the issue of the uniqueness
of the solution for the nonhomogeneous diffusion equation.

Theorem 1 Consider the nonhomogeneous diffusion equation

∂u(x, t)

∂t
− D2 ∂2u(x, t)

∂x2 = f (x, t) (1)

and

u(x, 0) = φ(x)
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satisfying any of the well-known Dirichlet, Neumann or Robin boundary conditions and
where u and f are functions of two arguments (x, t) with 0 < x < L and t > 0 and D ∈ �
is a constant, namely, the diffusion coefficient.

There is a unique solution u(x, t) of the partial differential equation (1).

Proof Let u1(x, t) and u2(x, t) be continuous functions in [0, L] × [0,+∞) that have con-
tinuous partial derivatives in [0, L] × [0,+∞) and are solutions of (1).
Suppose that u1(x, t) and u2(x, t) also satisfy in x = 0 and x = L the Dirichlet, Neumann
or Robin boundary conditions. In order to treat all possibilities in the same argument, it will
not be specified what condition is fixed on each end of the range.
We consider z(x, t) = u1(x, t) − u2(x, t) and define a function E(t) such that

E(t) =
L∫

0

z(x, t)2 dx .

One can note that

dE

dt
= E ′(t) = 2

L∫

0

z(x, t)zt (x, t) dx = 2D2

L∫

0

z(x, t)zxx (x, t) dx .

Integrating by parts the integral on the right-hand side of the last equality, one can obtain

E ′(t) = −2D2

L∫

0

zx (x, t)
2 dx + 2D2 [z(x, t), zx (x, t)]

x=L
x=0 .

Fixing at x = 0 and x = L any of the boundary conditions considered (even different types
at each end of the range), one obtains

[z(x, t), zx (x, t)]
x=L
x=0 ≤ 0,

so that E ′(t) = 0 for all t > 0. Therefore, E(t) ≤ E(0) = 0 allowing to conclude that
z(x, t) ≡ 0, for all t > 0.

Consequently, the solution obtained from (1) is unique. �	

3 Basic model and problem statement

We are not trying to modify the well-known models of oncological processes. Our goal is to
study the stability of a stationary solution in the diffusion model considered in [11]. We briefly
describe this model, following [11]. The model under consideration contains three kinds of
cells: tumor cells, normal cells and dead cells. Assume that there is no apoptosis in tumor
cells. In the absence of tumor cells, normal cells multiply according to the logistic law. During
growth, tumor cells, releasing toxic substances [23,25], have an inhibitory effect on normal
cells. In turn, dead cells provide inhibiting effect on normal and tumor cells. The spread of
tumor and normal cells in space occurs due to diffusion [22–26]. Dead cells are motionless.
Over time, only dead cells remain in the area of tumor cells in a solid tumor [23,26]. The tissue
of the resulting structure is considered to be low compressible. Therefore, the concentration
of normal cells in the absence of tumor and dead cells and the concentration of dead cells in
the absence of tumor and normal cells should be the same. Below, this limit concentration is
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assumed to be equal to one. The mathematical model is based on the fundamental principles
of mathematical population biology [12–20,31–39]. Let u1 be the linear density of tumor
cells, u2 be the linear density of normal cells and u3 be the linear density of dead cells. Tumor
growth occurs on a segment of length l. Taking into account the above notation, the system
of differential equations describing the dynamics of three types of cells has the form :

∂u1

∂t
= D1

∂2u1

∂x2 + μ1u1 − μ1u1u3 − γ1u1u3,

∂u2

∂t
= D2

∂2u2

∂x2 + μ2u2(1 − u2) − μ2u2u3 − γ2u1u2,

∂u3

∂t
= (γ2u1u2 + γ1u1u3 + γ3u2u3)(1 − u3). (2)

In the first equation, μ1u1 is the rate of self-growth of tumor cells, γ1u1u3 is the rate of
inhibition of tumor cells by dead cells, and μ1u1u3 is the rate of displacement of tumor cells
by dead cells. In the second equation, μ2u2(1 − u2) is the rate of change in the number of
normal cells, γ2u1u2 is the rate of inhibition of normal cells by tumor cells , γ2u2u3 is the
rate of inhibition of normal cells by dead cells, and μ2u2u3 is the rate of displacement of
normal cells by dead cells. In the third equation, the rate of increase in the density of dead
cells is proportional to (γ2u1u2 +γ1u1u3 +γ3u2u3)(1 −u3), and the factor (1 −u3) reflects
the fact that the more the functional space is occupied by dead cells, the slower it occurs. The
positive constants μ1, μ2, γ1, γ2, γ3 characterize the reaction rates, and D1 and D2 are the
diffusion coefficients of tumor cells and normal cells, respectively. The boundary conditions
have the form:

∂u1

∂x

∣∣∣∣
x=0

= 0,
∂u2

∂x

∣∣∣∣
x=0

= 0,
∂u3

∂x

∣∣∣∣
x=0

= 0, (3)

∂u1

∂x

∣∣∣∣
x=l

= 0,
∂u2

∂x

∣∣∣∣
x=l

= 0,
∂u3

∂x

∣∣∣∣
x=l

= 0. (4)

These boundary conditions assume that free cell growth occurs at the boundaries of the
segment.

In order to study the stability of a stationary solution of system (2)–(4), namely, the solution
(v1, v2, v3) of the system, one can write

D1
∂2v1

∂x2 + μ1v1 − μ1v1v3 − γ1v1v3 = 0,

D2
∂2v2

∂x2 + μ2v2(1 − v2) − μ2v2v3 − γ2v1v2 = 0,

(γ2v1v2 + γ1v1v3 + γ3v2v3)(1 − v3) = 0, (5)

with boundary conditions

∂v1

∂x

∣∣∣∣
x=0

= 0,
∂v2

∂x

∣∣∣∣
x=0

= 0,
∂v3

∂x

∣∣∣∣
x=0

= 0, (6)

∂v1

∂x

∣∣∣∣
x=l

= 0,
∂v2

∂x

∣∣∣∣
x=l

= 0,
∂v3

∂x

∣∣∣∣
x=l

= 0. (7)
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4 Stability of a stationary solution

Let v = (v1, v2, v3) be a stationary solution of system (2)–(4), that is, the solution of system
(5)–(7). Let z j = u j − v j , j = 1, 2, 3. We derive the equations for each of the deviations
z j , multiply the resulting equality by z j and integrate over the segment [0, l].

From the first equation of system (2), we have:

∂u1

∂t
= ∂z1

∂t
= D1

∂2(v1 + z1)

∂x2

+μ1(v1 + z1) − μ1(v1 + +z1)(v3 + z3) − γ1(v1 + +z1)(v3 + z3).

Opening the brackets, we get

∂z1

∂t
= D1

∂2z1

∂x2 +μ1z1−μ1z1z3−γ1z1z3−μ1v1z3−μ1v3z1−γ1v1z3−γ1v3z1

+D1
∂2v1

∂x2 +μ1v1−μ1v1v3 − γ1v1v3.

Due to the fact that v = (v1, v2, v3) is the solution of system (5), the sum of the last four
terms on the right side of the last equality is equal to zero. Therefore, we obtain

∂z1

∂t
= D1

∂2z1

∂x2 + μ1z1 − μ1z1z3 − γ1z1z3 − μ1v1z3 − μ1v3z1 − γ1v1z3 − γ1v3z1.

(8)

Multiplying equality (8) by z1, we get

1

2

∂

∂t
(z2

1) = D1
∂2z1

∂x2 z1 + μ1z
2
1 − μ1z

2
1z3 − γ1z

2
1z3 − μ1v1z1z3

−μ1v3z
2
1 − γ1v1z1z3 − γ1v3z

2
1.

Considering the deviations z j to be small enough, we discard the monomials of the variables
(z1, z2, z3) that have a degree higher than two in the obtained equality. Then the last equality
is converted to the form

1

2

∂

∂t
(z2

1) = D1
∂2z1

∂x2 z1 + μ1z
2
1 − μ1v1z1z3 − μ1v3z

2
1 − γ1v1z1z3 − γ1v3z

2
1.

We integrate the obtained equality over the segment [0, l] and obtain

1

2

l∫

0

∂

∂t
(z2

1) dx = D1

l∫

0

∂2z1

∂x2 z1 dx + μ1

l∫

0

z2
1 dx − μ1

l∫

0

v1z1z3 dx

−μ1

l∫

0

v3z
2
1 dx − γ1

l∫

0

v1z1z3 dx − γ1

l∫

0

v3z
2
1 dx .
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We integrate by parts the first integral on the right-hand side of the last equality. Taking into
account the boundary conditions, we obtain

1

2

∂

∂t

l∫

0

z2
1 dx = −D1

l∫

0

(
∂z1

∂x

)2

dx + μ1

l∫

0

z2
1 dx

−μ1

l∫

0

v1z1z3 dx − μ1

l∫

0

v3z
2
1 dx

−γ1

l∫

0

v1z1z3 dx − γ1

l∫

0

v3z
2
1 dx . (9)

Similarly, we transform the second equation:

1

2

∂

∂t

l∫

0

z2
2 dx = −D2

l∫

0

(
∂z2

∂x

)2

dx + μ2

l∫

0

(1 − 2v2)z
2
2 dx

−μ2

l∫

0

v2z2z3 dx − μ2

l∫

0

v3z
2
2 dx

−γ2

l∫

0

v1z
2
2 dx − γ2

l∫

0

v2z1z2 dx . (10)

And in the same way, we convert the third equation:

1

2

∂

∂t

l∫

0

z2
3 dx =

l∫

0

(γ2v2 + γ1v3 − γ2v2v3 − γ1v
2
3)z1z3 dx

+
l∫

0

(γ2v1 + γ3v3 − γ2v1v3 − γ3v
2
3)z2z3 dx

+
l∫

0

(γ1v1 + γ3v2 − γ2v1v2 − 2γ1v1v3 − 2γ3v2v3)z
2
3 dx . (11)

Adding equalities (9)–(11), we get

1

2

∂

∂t

l∫

0

|z|2 dx = −D1

l∫

0

(
∂z1

∂x

)2

dx − D2

l∫

0

(
∂z2

∂x

)2

dx

+
l∫

0

(b11z
2
1 + 2b12z1z2 + 2b13z1z3

+ b22z
2
2 + 2b23z2z3 + b33z

2
3) dx, (12)
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where

|z|2 = z2
1 + z2

2 + z2
3,

b11 = μ1 − μ1v3 − γ1v3, (13)

b12 = b21 = −1

2
γ2v2, (14)

b13 = b31 = 1

2
(γ2v2 + γ1v3 − γ2v2v3 − γ1v

2
3 − μ1v1 − γ1v1), (15)

b23 = b32 = 1

2
(γ2v1 + γ3v3 − γ2v1v3 − γ3v

2
3 − μ2v2), (16)

b22 = μ2 − 2μ2v2 − μ2v3 − γ2v1, (17)

b33 = γ1v1 + γ3v2 − γ2v1v2 − 2γ1v1v3 − 2γ3v2v3. (18)

We are interested in the sign of the expression defined by formula (12). More precisely,
we want to establish sufficient conditions for this expression to be negative. Undoubtedly,
negative definiteness of the quadratic form

3∑
k=1

3∑
j=1

bkj ξk ξ j (19)

will be this sufficient condition. But there is still a reserve for refinement of sufficient condi-
tions. We will use the method applied in [40]. We will apply the one-dimensional version of
the Steklov–Poincare–Friedrichs equality [41–44] to the integrals of the squares of derivatives
on the right-hand side of equality (12). Moreover, we prefer to reproduce here the derivation
of this inequality in order to clarify the multiplicative “constant,” which does not depend on
the function included in the inequality, but depends on the length of the segment l, which
may turn out to be important. Thus, using the Cauchy–Bunyakovsky–Schwartz inequality,
we have

l∫

0

y2 dx =
l∫

0

⎛
⎝

x∫

0

1 · dy

dt
dt

⎞
⎠

2

dx ≤
l∫

0

⎛
⎝

x∫

0

12 dt ·
x∫

0

(
dy

dt

)2

dt

⎞
⎠ dx .

It is easily shown that

l∫

0

⎛
⎝

x∫

0

12 dt ·
x∫

0

(
dy

dt

)2

dt

⎞
⎠ dx =

l∫

0

⎛
⎝x ·

x∫

0

(
dy

dt

)2

dt

⎞
⎠ dx

≤
l∫

0

x dx

l∫

0

(
dy

dt

)2

dt = l2

2

l∫

0

(
dy

dx

)2

dx .

Therefore, we finally have

l∫

0

y2 dx ≤ l2

2

l∫

0

(
dy

dx

)2

dx . (20)
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This is the one-dimensional Steklov–Poincare–Friedrichs inequality. From equality (12), we
obtain, taking into account (20), the following inequality:

1

2

∂

∂t

l∫

0

|z|2 dx ≤
l∫

0

(a11z
2
1 + 2a12z1z2 + 2a13z1z3 + a22z

2
2 + 2a23z2z3 + a33z

2
3) dx, (21)

where

a11 = μ1 − μ1v3 − γ1v3 − 2D1

l2
, (22)

a12 = a21 = −1

2
γ2v2, (23)

a13 = a31 = 1

2
(γ2v2 + γ1v3 − γ2v2v3 − γ1v

2
3 − μ1v1 − γ1v1), (24)

a23 = a32 = 1

2
(γ2v1 + γ3v3 − γ2v1v3 − γ3v

2
3 − μ2v2), (25)

a22 = μ2 − 2μ2v2 − μ2v3 − γ2v1 − 2D2

l2
, (26)

a33 = γ1v1 + γ3v2 − γ2v1v2 − 2γ1v1v3 − 2γ3v2v3. (27)

A refined sufficient condition for a stationary solution to be asymptotically stable is that the
quadratic form

3∑
k=1

3∑
j=1

akj ξk ξ j (28)

be negatively defined. Of course, the verification of this condition, although somewhat cum-
bersome, is still quite realizable, especially with the help of a computer.

5 Model without tumor cells and dead cells

Let us give a simpler example of using the technique described above. In the absence of
tumor and dead cells, the equation for the growth of the number of normal cells follows from
the second equation in system (2)

∂u2

∂t
= D2

∂2u2

∂x2 + μ2u2(1 − u2). (29)

In this model, it is assumed that the rate of their birth is equal to μ2u2 and the rate of their
death is equal to μ2u2

2.
Let v2 be a stationary solution of Eq. (29) that is the solution of the equation

D2
∂2v2

∂x2 + μ2v2(1 − v2) = 0. (30)

Following the plan already worked out above, we substitute the representation z2 = u2−v2

to Eq. (29). As a result, we get the following equality

∂z2

∂t
= D2

∂2z2

∂x2 + μ2z2(1 − 2v2) − μ2z
2
2 + D2

∂2v2

∂x2 + μ2v2(1 − v2),
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or, taking into account (30),

∂z2

∂t
= D2

∂2z2

∂x2 + μ2z2(1 − 2v2) − μ2z
2
2.

We multiply this equality by z2 and integrate the resulting equality over the segment [0, l].
After integration by parts, we obtain

1

2

∂

∂t

l∫

0

z2
2 dx = −D2

l∫

0

(
∂z2

∂x

)2

dx + μ2

l∫

0

(1 − 2v2)z
2
2 dx − μ2

l∫

0

z3
2 dx . (31)

Applying the Steklov–Poincare–Friedrichs inequality (20), we get

1

2

∂

∂t

l∫

0

z2
2 dx ≤

l∫

0

(
μ2(1 − 2v2) − 2D2

l2

)
z2

2 dx − μ2

l∫

0

z3
2 dx . (32)

Taking advantage of the fact that the calculations here, unlike the general case, will not be
very cumbersome, we show on what basis we can discard the integral from z3

2. Indeed, if the
deviation z2 is small enough, the following inequality will be executed

∣∣∣∣∣∣μ2

l∫

0

z3
2 dx

∣∣∣∣∣∣ <
1

2

∣∣∣∣∣∣
l∫

0

(
μ2(1 − 2v2) − 2D2

l2

)
z2

2 dx

∣∣∣∣∣∣ ,

and therefore, for such deviations, the sign of the right-hand side of inequality (32) coincides
with the sign of the first term. Hence, it follows that the inequality

μ2(1 − 2v2) − 2D2

l2
< 0 (33)

is a sufficient condition for the asymptotic stability of a stationary solution to Eq. (29).
Under boundary conditions (3), (4), solutions v2 = 0 and v2 = 1 satisfy Eq. (29). In the

paper [11], it is indicated that the first solution will be unstable and the second solution will
be sustainable. Taking into account condition (33), we can clarify this thesis somewhat. The
solution v2 = 0 may turn out to be stable under the condition

μ2 − 2D2

l2
< 0. (34)

This is the effect of transition from a point model to a diffusion model. In other words, we
observe the effect of switching to the model as a system with distributed parameters from a
model with focused parameters.

Equation (29) has been known for a long time. In 1921, G. Hotelling proposed a model of
population growth and its spatial distribution. Growth was modeled on the basis of Verhulst’s
principles as a logistic process, while the source of construction of migration processes
in space was the Fourier theory of heat distribution. The concept of saturated population
density was introduced. So if the real population density was higher than saturated one, the
population decreased, and if the real population density was lower than saturated one, then
the population increased. Justification for spatial diffusion was based on the fact that per
capita output population reduced with increasing population (labor force); then, there was a
decrease in income, and people were leaving from more populated places for less populated
ones.
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Denoting the population by p = p(x, y, t) and the coefficient of its density by s, we
obtain the equation (see [45]):

∂p

∂t
= A(s − p)p + BΔp, (35)

where A and B are two constants representing, respectively, the growth rate and the spread
rate. The time is indicated by t , and x, y are spatial coordinates.

We also note that the above calculations are the development of the method presented in
the work [40], and this section simply retells this work, in which condition (33) weakens the
condition

s − 2p0 < 0.

Puu [45] proved that the last condition was a sufficient condition for the stability of a stationary
solution to Eq. (35). In our case, due to the transition to dimensionless variables, s = 1. By
the way, the zero solution does not satisfy T. Puu’s condition. However, we have seen that
this does not mean that it is unstable. It is unknown whether the sufficient condition for the
stability of the stationary solution can be weakened further.

In the paper [46], the methods of the work [40] were applied to a more complex equation,
also considered in [45].

6 Immune response model

In this section, we will study the stability of a stationary solution in the immune response
model [11]. Here, we consider a model with a homogeneous population of tumor cells,
focusing only on their interaction with lymphocytes.

6.1 Problem statement and stability

At the initial stage of the growth of tumor cells, the immune system in some types of tumors
recognizes tumor cells, and lymphocytes begin to destroy them [23,25,27]. Let q = q(x, t)
be a linear density of lymphocytes. Then the mathematical model describing the interaction
of tumor cells and lymphocytes, assuming the absence of interaction with normal and dead
cells, has the form

∂u1

∂t
= D1

∂2u1

∂x2 + μ1u1 − γ12u1q,

∂q

∂t
= D4

∂2q

∂x2 − v
∂q

∂x
− γ21u1q. (36)

In the first equation, γ12u1q is the rate of destruction of tumor cells by lymphocytes, in the
second equation γ21u1q is the rate of death of lymphocytes on contact with tumor cells, D1

is the diffusion coefficient of tumor cells, D4 is the diffusion coefficient of lymphocytes,
γ12, γ21 are constants characterizing the interaction of tumor cells and lymphocytes, and v

is the rate of lymphocyte migration to the area of accumulation of tumor cells. It is assumed
that in the absence of tumor cells, the system is in a stationary state and its concentration of
lymphocytes is equal to q0. Tumor cells appear at the point x = x0. Under these assumptions,
the following conditions are taken as initial conditions:

u1(x, 0) = u0
1δ(x0), q(x, 0) = q0.
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We transfer from the model with the point occurrence of tumor cells to the model that assumes
their smooth distribution at the initial time. Then we obtain initial conditions of the form

u1(x, 0) = u0
1(x) ∈ C∞([0, l]), q(x, 0) = q0. (37)

When we select boundary conditions, it is assumed that

∂u1

∂x

∣∣∣∣
x=0

= 0, q

∣∣∣∣
x=0

= q0, (38)

∂u1

∂x

∣∣∣∣
x=l

= 0, q

∣∣∣∣
x=l

= q0. (39)

Let us study the stability of a stationary solution of system (36)–(39), that is, the solution
(w1, w2) of the system

D1
∂2w1

∂x2 + μ1w1 − γ12w1w2 = 0,

D4
∂2w2

∂x2 − v
∂w2

∂x
− γ21w1w2 = 0, (40)

with the boundary conditions

∂w1

∂x

∣∣∣∣
x=0

= 0, w2

∣∣∣∣
x=0

= q0, (41)

∂w1

∂x

∣∣∣∣
x=l

= 0, w2

∣∣∣∣
x=l

= q0. (42)

Let w = (w1, w2) be a stationary solution of system (36)–(39), that is, the solution of
system (40)–(42). Let z1 = u1 − w1, z2 = q − w2.

Let

α11 = μ1 − γ12w2 − 2D1/ l
2, (43)

α12 = α21 = −1

2
(γ12w1 + γ21w2 exp(−σ x)), (44)

α22 = − exp(−σ x)γ21w1 − σ 2D4

exp(σ l) − 1 − lσ
. (45)

We can use the same estimation method as above. Now a refined sufficient condition for
a stationary solution to be asymptotically stable is that the quadratic form

2∑
k=1

2∑
j=1

αk j ξk ξ j (46)

be negatively defined. This condition is equivalent to the system of two conditions

μ1 − γ12w2 − 2D1/ l
2 < 0, (47)

4
(
μ1 − γ12w2 − 2D1/ l

2) (
− exp(−σ x)γ21w1 − σ 2D4

exp(σ l) − 1 − lσ

)

− (γ12w1 + exp(σ l)γ21w2)
2 > 0. (48)

Let us note an important circumstance that distinguishes the considered diffusion model
of the immune response from its point analog. If we formally go to a point model from
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model (36), discarding the diffusion and convective terms, we obtain the system of ordinary
differential equations

du1

dt
= μ1u1 − γ12u1q,

dq

dt
= −γ21u1q. (49)

Obviously, the vector function with coordinates u1 = 0, q = 0 is an unstable stationary
solution of system (49). However, this vector function can also be a stable stationary solution
of system (36) under condition

μ1 − 2D1/ l
2 < 0. (50)

Condition (48) for the zero solution turns out to be superfluous, since it becomes a conse-
quence of condition (50).

6.2 Numerical simulations

In order to visualize the dynamics of the immunological system and tumor populations,
including some possible stable states, the system given by Eq. (36) is numerically simulated.
All simulations took into consideration the domain 0 < x < 1, with boundary conditions
given by Eqs. (38) and (39) and initial conditions given by Eq. 37.

The initial state for the population density of lymphocytes was chosen as q0 = 1, implying
a maximum density of the immunological cells equality distributed along x at instant t = 0.
Two different initial conditions for the tumor cells population density were put forward. The
initial condition A states that there are tumor cells over all x , but their maximum (u0

1 = 1) is
at the center x = 0.5 and minimum at the limits of the domain. It is modeled by a periodic
function given by u0

1(x) = sin(πx). On the other hand, condition B states that the tumor
cells density is highly concentrated around x = 0.5, with no cells outside of the segment
0.45 ≤ x ≤ 0.55. It is modeled by an impulse function with maximum u0

1 = 1.
The initial condition A could describe a tumor that actually is quite scattered since it has

cells across all considered domain, but has a maximum population density at a certain point.
Diffuse tumors, such as brain tumors, may be loosely classified with this description. On
the other hand, the initial condition B refers to a very compact and dense tumor that has its
extremities close to its maximum cell concentration. Several types of carcinoma can play
that role.

The simulation parameters were chosen arbitrarily allowing the visualization of different
interesting scenarios pertaining the investigated tumor. Parameters for the stable scenarios
have been obtained by means of the stability condition given by Eq. (50), while the other
scenarios have obtained by carefully changing these parameters around each other in an
empirical way. We herein assume that we are dealing with dimensionless values and that
parameters respect their physical meanings and magnitudes of time and space domains. The
parameters used in all simulations are listed in Tables 1 and 2 for cases using conditions A
and B, respectively.

It is important to consider that although the adopted parameters respect the physics and
internal logics of the studied system, they do not necessarily have an individual biological
meaning according to the proposed interpretation for each scenario, since they were not
measured or estimated directly. In fact, in order to explore a meaning in respect of each
parameter, a precisely conducted work of comparison and validation of the studied model
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Table 1 Parameters and description for numerical simulations of system (36) with initial condition as a
periodic distribution of tumor cells (u0

1(x) = sin(πx))

Cases (with initial condition A) D1 D4 μ1 v γ12 γ21

1A: Lymphocytes overcome tumor cells (stable) 0.0050 0.0050 0.0100 0.2000 1.0000 1.0000

2A: Tumor cells overcome lymphocytes (unstable) 0.0100 0.0100 0.2000 0.0100 1.0000 3.0000

3A: Tumor cells’ quiescence (stable) 0.0050 0.0050 0.0100 0.0100 0.0700 2.0600

Table 2 Parameters and description for numerical simulations of system (36) with initial condition an impulse
function for the distribution of tumor cells (u0

1(x) = 1 for 0.45 ≤ x ≤ 0.55 and u0
1(x) = 0 elsewhere)

Cases (with initial condition B) D1 D4 μ1 v γ12 γ21

1B: Lymphocytes overcome tumor cells (stable) 0.0050 0.0050 0.0100 0.2000 0.7500 1.0000

2B: Tumor cells overcome lymphocytes (unstable) 0.0050 0.0050 0.3500 0.0100 0.5000 5.0000

3B: Tumor cells’ quiescence (stable) 0.0080 0.0050 0.0150 0.0100 0.0243 1.2500
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Fig. 1 Case 1A—Lymphocytes overcome tumor cells (periodic initial condition)

would be required. Regardless, although hypothetical, the following virtualized scenarios
and their respective interpretations are plausible and compatible to oncology phenomena.

Cases 1A and 1B describe the scenario in which the immunological system prevails against
tumor cells after a sufficient amount of time has passed, yielding a stable solution u1 = 0
and q = 1. Figures 1 and 2 illustrate the results of the numerical simulation for this case. In
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Fig. 2 Case 1B—Lymphocytes overcome tumor cells (impulse initial condition)

that scenario, the lymphocytes are strong enough to kill the tumor cells, gradually decreasing
their population density as time passes and restoring their reservoir capacity afterward. One
can note that both initial conditions yield very similar results, but in Case 1B the tumor cells
are eliminated more quickly due to a reduced total amount of cancerous cells present in the
impulse initial condition.

Cases 2A and 2B picture the scenario where the tumor cells growth rate μ1 and rate of
destruction over the lymphocytes γ21 are much higher than in the first case. Such change
yields an unstable result as the immune cells population is degraded and the tumor cells
grow unchecked after some time has passed, as presented in Figs. 3 and 4. In this scenario,
the parameter regarding velocity of lymphocytes (v) was purposely kept lower than in the
previous case so one can notice the difference between the transport of immune cells being
dominated by either convection (Case 1) or diffusion (Case 2).

Cases 3A and 3B present a very interesting scenario in which tumor and immune cells
reach an equilibrium, in which their population densities remain constant and nonzero after a
sufficient amount of time has passed. Following the stability conditions previously discussed,
this case yields a stable result for system (36) that is different from u1 = 0 and q = 1, as
shown in Figs. 5 and 6. Additionally, comparing Cases 3A and 3B, it is noticeable that the
stable levels of tumor cell density are much lower in the latter, which is a trend present on
the other cases. This might comparatively suggest that tumors whose cells are more densely
concentrated could be treated by the immune system more effectively.

123



Eur. Phys. J. Plus         (2021) 136:131 Page 15 of 18   131 

0

0.2

5

0.4

0.6

0.8

t

Tumor cells density u
1
(x,t)

1

x

0.50 0

0

0.2

5

0.4

0.6

0.8

1

Lymphocyte cells density q(x,t)

t

1

x

0.50 0

x

0

1

2

3

4

5

t

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x

0

1

2

3

4

5

t

0.2

0.4

0.6

0.8

1

Fig. 3 Case 2A—Tumor cells overcome lymphocytes (periodic initial condition)
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Fig. 4 Case 2B—Tumor cells overcome lymphocytes (impulse initial condition)
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Fig. 5 Case 3A—Quiescence/stability (periodic initial condition)
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Fig. 6 Case 3B—Quiescence/stability (impulse initial condition)
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