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Abstract— An analysis is presented of the Coulomb excitation of low-lying nuclear levels by the electrons 
produced by strong-field ionization of atoms. It is shown that the resulting short-lived radioactivity can be as 
high as on the order of 103 Ci for certain isotopes excited by using modern laser systems. Relativistic effects 
are demonstrated that substantially increase radioactivity as compared to that predicted by nonrelativistic 
theory results.

1. INTRODUCTION

The moving photoelectron released from an atom 
by strong-field ionization can be driven back to the ion 
core by the same laser field and produce a multiply 
charged ion via inelastic scattering from the core. This 
multiple ionization mechanism, proposed in [1, 2] 
and currently known as rescattering, can be tentatively 
described as a three-step scenario: (1) ionization of a 
neutral atom by direct interaction between the laser 
field and a valence electron; (2) acceleration of the 
outgoing photoelectron by the laser field, followed by 
its return to the parent ion; (3) impact ionization of 
the core by inelastic electron scattering from the par
ent ion.

The second step is modeled as the classical center- 
of-mass motion of a wave packet representing the 
electron. In the nonrelativistic limit, the maximum 
energy of its first recollision with the parent ion is 
3.17Up [2], where

UP = 
4̂mce>2

is the ponderomotive potential of the laser field, e is 
the elementary charge, m is the electron mass, F is the 
laser electric field amplitude, and co is frequency. 
Therefore, rescattering-induced multiple ionization is 
a threshold process that can compete with direct ion
ization, which leads to a “knee structure” of double
ionization yield plotted versus laser intensity.

The rescattering model can be applied not only to 
multiple ionization processes [3], but also to other 
secondary effects. Examples include recent studies of 
high-order harmonic generation by infrared laser 
pulses [4] and above-threshold ionization [5]. The res

cattering scenario provides an explanation for the 
existence of a plateau in the hard-photon and above
threshold electron spectra analyzed in those studies.

Rescattering plays an important role only in a lin
early polarized field and is negligible in a circularly 
polarized field. As the laser intensity increases, so does 
the Lorentz deflection of the classical electron trajec
tory by its magnetic component even in the case of lin
ear polarization, which leads to suppression of rescat
tering. When a Ti:sapphire laser operating at a wave
length of 800 nm is used, rescattering is suppressed at 
intensities higher than 1016 W/cm2 [6]. However, the 
Lorentz deflection can be eliminated by using two 
counterpropagating equal-handed, circularly polar
ized, mutually coherent laser beams, which makes res
cattering possible at any laser intensity [7].

In this paper, we analyze the effect of rescattering 
on internal degrees of freedom of atomic nuclei. Our 
analysis is based on the three-step scenario outlined 
above, but with nuclear Coulomb excitation via pho
toelectron rescattering as the last step (rather than 
impact ionization of the ion core). In our previous 
study [8], this approach was used to calculate nuclear 
excitation rates for linearly polarized fields with inten
sities no higher than 1017 W/cm2, when relativistic 
effects can be ignored. Furthermore, it was shown that 
radioactivity as high as 103 Ci can be obtained for cer
tain isotopes, such as Pu239, by using of a modern laser 
system. However, being limited to nonrelativistic 
intensities, our analysis could not be extended to 
higher nuclear excitation energies. This limitation can 
be removed by using the experimental configuration 
proposed in [7]. In the present study, laser-induced 
excitation rates are found for several isotopes by partly 
taking into account relativistic effects.
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A competing mechanism to that considered here is 
the nuclear excitation by “foreign” electrons in a high- 
temperature plasma [9]. However, that heating by this 
mechanism is feasible only when the laser pulse dura
tion exceeds 1 ps. It plays no significant role when a 
modern high-power laser is used to generate pulses of 
duration within a few femtoseconds.

2. GENERAL FORMULAS
Before calculating the yield of ions with nuclei 

excited by laser-induced recollision, we recall some 
well-known formulas. The differential cross section 
for nuclear Coulomb excitation by inelastic electron 
scattering is expressed as follows [10]:

daXI
dD.

4n(l + 1) K2 
hcJ X[(2l + l)!!]2 k]

Here, fi K = fi k, — hkf  is the transferred momentum 
(hkj and /i k/ are the initial and final electron momenta, 
respectively), 0 is scattering angle, dQ. is a solid angle 
element in the k^space,

v(Q) = k,k;
(,fc2 + k) -  k 2)K2 -  2(k, • K)(k/ • K) 

K2(K2-  k 2)2
k  = AE/hc (A/:' is nuclear excitation energy), X stands 
for the type of nuclear transition (E and M  for electric 
and magnetic ones, respectively), and I is the transi
tion multipolarity.

The reduced transition probability Bfi( XI) is related 
to the y-decay constant w(f  —► i) as

_ 8tt(7+ 1)k2;+ 1 
hl[(2l + 1)!!]

0 i W .
(2)

where /, and If  are the initial (ground-state) and final 
(excited-state) nuclear angular momenta, respectively.

The y-decay constant w(f  —► i) is calculated by 
using the tabular value of the half-life T1/2 [ 11]:

In 2w (/—  0  = T„
Ty = T1/2( 1 + a ) ,

where a  is the internal conversion coefficient. For 
mixed Ml  + E2 transitions, the partial mean lifetimes 
are expressed in terms of mixing ratio S as

i f 1 = T J 1 + 52), i f 2 = r Y(l + S~2).

3. CLASSICAL RELATIVISTIC DYNAMICS 
OF A PHOTOELECTRON

The nuclear excitation rate is evaluated here by tak
ing into account only the first recollision between a
relativistic electron and an ion core, which was ana

lyzed in detail in our previous study [12]. This section 
recapitulates the results reported therein.

The recollision time is calculated by analyzing the 
classical equations of motion of the wave-packet cen
ter, which are valid if the de Broglie wavelength of the 
photoelectron is much shorter than its displacement. 
Indeed, the recollision time is At ~ 7i/co; the corre
sponding displacement of a relativistic electron is I ~ 
cAt =  7ic/co; and the momentum gained is p ~ e i  Al = 
nel’/a), where 1 is the laser electric field amplitude. 
Estimating the photoelectron’s de Broglie wavelength 
as /. = 2nh/p ~ 2h(S)/eF, we have X/l ~ h(a2/ceF. When 
the pulse produced by a Ti:sapphire laser tuned to 
800 nm (co = 0.056 au) has an intensity of 3.45 x 
1018 W/cm2 (/•'= 10 au), this ratio is 2 x 10 6.

The one-dimensional relativistic motion of an 
electron driven by the electric field /-'sin to/ of a light 
wave linearly polarized along the z  axis is governed by 
the equations

du e r  me—  = -/«jSinco?,

mc-

ds

du
ds

(3)
~-Fuq sin (at. 

c

Here, w° = u0 and u1 = —ux are the components of the 
proper velocity

(.u° U1) = V2( l  -

in the Minkowski space with coordinate time x° = ct, 
spatial coordinate x1 = z, and spacetime interval s(s  = 
ct for light waves).

By introducing the proper phase C, = sa>/c related to 
the proper time x = s/c, system (3) is simplified to

(4)

(5)

du r i • y—  = —fu  sinC,
dC,

dll r 0 y—  = —fu  sinC,
dC,

where the dimensionless field strength parameter

f  -
mco)

determines the relativistic motion of the electron.
The general solution to system (4) is

u ( Q  = Cie-/cosC + C2e/cosC,

u ( Q  = - C ie-/cosC + C2e/cosC

with constants C, and C2 to be determined. The initial 
conditions to system (4) are set by assuming zero elec
tron velocity at the ionization time t0 in the laboratory 
frame: w°(C0) = 1 and u1 (C0) = 0, where C0 = c.o/0. The



final expressions for the incoming velocity compo 
nents of a rescattered electron are

where
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u (Q  = cosh [ / ( cosÇ -  cosÇ0)], 

u ( Q  = sinh[/(cosÇ -cosÇ 0)].
(6)

The spatial coordinates in the Minkowski space are 
found by solving the equations

= -  cosh [/(cosÇ -  cosÇq)], 
at, co

= — sinh[/(cosÇ -  cosÇ0)] 
at, co

subject to the initial conditions x°(C0) = ct0 and 
x1̂ )  = 0. As a result, a law of motion z(t) is obtained 
in parametric form:

-  fsinh[/(cosÇ’-  cosÇ,0)]dÇ, 
CO J

t -  t0 +
S

— ("cosh[ / ( cosÇ -  cos t̂ 0)]dÇ. 
co J

(7)

(8)

r/0) = (eF)
p 4mco

(14)

is the ponderomotive potential, if the electron is emit
ted from the atom at the instant corresponding to the 
field phase

® 0 ,  max ®  ^0, max = 1.884. (15)

Hereinafter, subscript (0) denotes nonrelativistic val
ues, as in (13) and (14).

To find relativistic corrections to the nonrelativistic 
dynamics of a laser-driven electron as described by 
Eqs. (9)—(11), we expand the hyperbolic functions 
contained therein in Taylor series in powers of /  
Retaining the lowest nonvanishing term in (11), we 
obtain an equation similar to (12) up to a correction:

sinÇ -  sinÇo -  (Ç -  Ço)cosÇo = /  Co), 

where

A(Ç, Co) = -  Co)(9cosÇ0 + cos3Ç0)

(16)

The electron’s energy and momentum at time t are 
expressed as

E = me2 cosh [/(cost; -  cos^0)] , (9)

p = m csinh[/(cos^ -  cos^q)]. (10)

It is easily checked that (7)—(10) reduce to nonrelativ
istic formulas when/  <§ 1. In particular,

eFz(t) =  -[sinco?-sinco?0 -  co(?-?0)cosco?0].
mco

The proper time xx = t(/,) corresponding to the first 
recollision time /, is determined by solving the equa
tion x'(C|) = 0, by virtue of (7) equivalent to

COTjJ sinh[/(cos^ ' -  cos^0)]<i^' = 0. (11)

ax«
In the laboratory frame, the time /, is calculated by 
using formula (8) with C = C, =  cox,.

In the nonrelativistic limit ( f <  1) Eq. (11) reduces 
to a well-known equation [3]:

sinco?! -  sinco?0 = co(?j -  ?0)cosco?0. ( 12)

£<2 = 0.79 me1/ 2 = 3.17C/0), (13)

-  ^(3 + 2cos2^0)sin^ + ^cos^0sin2^ (17)

-  — sin3C + — sinCn + -^-sin3C 0.
72 S 16 S0 144 S0

Analogously, expression (10) for the momentum 
gained by the electron before the first recollision 
becomes

(0 ) APi = P i + mcf 1 s /"(0) 9--(cosÇj -cosÇq) 
.6

(18)
Co)sinÇ(1°)

where C,"' is the root of Eq. (16) with zero right-hand

side and A( C,"', C0) is given by (17). (Relativistic prob
lems are more amenable to analysis in terms of 
momentum rather than kinetic energy.)

To lowest order in / ,  the maximum relativistic 
momentum of the electron before the recollision is 
expressed as

= mcf (1.26 + 0.34/ ), (19)

As mentioned above, the maximum recollision energy 
in the nonrelativistic limit is

where the first term corresponds to the nonrelativistic 
limit [12]. For moderately relativistic electrons, 
approximation (19) is accurate up to a few percent, as 
illustrated by Fig. la.
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Fig. 1. Curves of pmax (a), Co. max O’), and xmax (c) vs. 
parameter f  Solid curves represent results of exact relativ
istic calculations; dashed curves are obtained by using 
approximate formulas (19), (22), and (23).

Em3X = 3.17 UP{1 + 1.07— 2 
me

(21)

In the nonrelativistic limit {Up <  me2), expression (21) 
reduces to (13).

Thus, relativistic effects lead to a steeper increase 
in recollision energy with f.

The electron emission time /0 max corresponding to 
the maximum recollision momentum is a much 
weaker function of/  than pnrAX:

Co,max = 1.884-0 .025/. (22)

As in (19), the first term in (22) corresponds to the 
nonrelativistic limit. Figure lb compares the exact 
behavior of Ç0 max with that predicted by (22).

The proper time xmax corresponding to the maxi
mum recollision energy is an even weaker function off.

coxmax = 5 .970-0 .012/. (23)

Figure lc demonstrates that formula (23) has a nar
rower scope of application than both (19) and (22).

4. NUCLEAR EXCITATION RATE

The nuclear excitation rate is the product of cross 
section (1) with the incident probability current den
sity j  of the rescattered electron:

dPjf _ .do 
dQ. dQ'

(24)

Using the classical model proposed in [3], we cal
culate j  from the lateral spreading of the electron wave 
packet. For a Gaussian packet, the probability density 
of finding the electron at a radial distance r from its 
classical trajectory is

When the energy gained by the electron is compa
rable to its rest energy, the expression for ponderomo- 
tive potential must take into account the relativistic 
mass shift [13]:

t/p = me 2 t / 0)
fl + ^ - 1

me
(20)

where £/̂ 0) is given by (14).
In the weakly relativistic limit, expression (19) can 

be used to refine well-known formula (13) for the
l

maximum recollision energy:

r (r )  =
1

n a ( t )
■exp

L a \ t )J

1 The analog of expression (21) given in [12] contains if^ 1 
instead of Up, which explains the difference in the coefficient of 
the second term.

where a(t) is the wave-packet width.
An atom interacting with a superstrong field is ion

ized in the above-threshold regime. If the ionization 
probability is assumed constant over a half-cycle of the 
laser field with frequency co, then the number of elec
trons emitted per unit time is proportional to co/re. 
Therefore, the z component of the current density is

. g®
2 2 , s ’7i a (t)

where q is the final charge state of the ion.
Noting that the photoelectron (released at time t{]) 

has zero velocity in the plane perpendicular to the vec-
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tor F, we use the nonrelativistic expression for the 
width of a freely evolving wave packet:

a2(t) = a\\ 1 +
l  maT

where aB is the Bohr radius.
Taking the current density in (24) at the first recol

lision time tx, we obtain the following final expression 
for the cycle average of the nuclear excitation rate:

*̂exc Q
ln 2 2 1/ +  1 hd)

n 2 2 I i +   ̂ci\ ylc2F 1 T y 2 (A  + °0
71
|  J(|)0(co s(t)1 -  COS<|)0) ”2

n/2

x 1 + — foo)
2■ mcoaB -

1-1
(25)

j ( f )  F(e )sin0rf0’

where §0 =  Ç0 = o)f0 and (j), = wf,.

5. NUMERICAL RESULTS

We have calculated the excitation rates for nuclei 
driven by a monochromatic laser field at 800 nm as 
given by formula (25), using the initial and final angu
lar momenta and parities, as well as the y-decay half- 
lives of the excited states, as nuclear parameters. Note 
that the nuclear excitation rate exhibits threshold 
behavior as a function of laser intensity, due to the 
existence of a maximum recollision momentum esti
mated by (19). Indeed, a nucleus can be excited only if

Jp
2 4 2+ m c - m e  > AE.

Pav/q, 10 s'3c-l

I, I0 16 W/crn"
Pçxc/ ®-1

Figure 2a shows the curves of Pcxc divided by the 
charge state q that were calculated in [8] for low-lying 
excited states in 133Ba and 239Pu in the nonrelativistic 
limit. Since the corresponding threshold intensities 
are 6.25 x 1016 and 3.97 x 1016 W/cm2, respectively, the 
geometry proposed in [7] should be used for exciting 
the nuclei. The behavior of the curves near the thresh
old is determined by the dynamics of the rescattered 
electron. The nuclear excitation yield saturates with 
increasing intensity and ultimately depends on nuclear 
parameters and internal conversion coefficients rather 
than laser intensity. In particular, the higher yield of 
excited 239Pu is explained by the shorter lifetime of its 
excited state, which implies a higher Coulomb excita
tion rate.

Fig. 2. Nuclear excitation rate divided by charge state q 
vs. 800-nm laser intensity: (a) nonrelativistic calculations 
from [8]; (b) comparison between calculations based on 
relativistic (solid curves) and nonrelativistic (dashed 
curves) equations of motion. For lithium, q cannot 
exceed 3.

To estimate the gamma radioactivity generated by 
laser-induced excitation of the 239Pu isotope in a tar
get, we use a lowest excited state lifetime of 36 ps and 
assume q « 10 as reasonable for the laser parameters 
considered here. Counterpropagating beams with a 
pulse duration of 10 fs and a pulse energy of 3 J can be 
focused into a volume of 5 x 10-3 cm3 to obtain an 
intensity well above the threshold. The short-lived 
radioactivity from 239Pu excited by a laser pulse in a gas 
target of density 1020 cm-3 can be as high as 103 Ci. A 
similar radioactivity can be obtained by exciting the 
240Pu isotope (with lifetime of 164 ps) by a laser pulse 
with an energy of 45 J, other parameters being equal.

Figure 2b compares the results calculated for other 
isotopes listed in the table with those obtained in the 
nonrelativistic limit. It is clear that the role played by
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Table

Isotope Tl/2> 
ground state

71;
I,

AE, keV; 
excited state

Us
T  fif

Type of 
transition Tl/2, ns

7Li Stable 3/2“ 477.612 1/2- M l 7.3 x 10-5
133Ba 10.52 years 1/2+ 12.322 3/2+ M l 7.0
165Ho Stable 7/2- 94.700 9/2- Ml+E2:?>=  1.055 0.022
239pu 24110 years 1/2+ 7.861 3/2+ M l + E2: 8 = 0.055 0.036
240Pu 6563 years 0+ 42.824 2+ E2 0.164

relativistic effects increases with nuclear excitation 
energy, as predicted by expressions (19) and (21).

A comparison between results based on the three- 
step model of [2] and those obtained by ab initio inte
gration of the time-dependent Schrödinger equation, 
presented in [14] for above-threshold ionization of an 
atom, showed that exact treatment of the Coulomb 
interaction between the photoelectron and the ion 
core significantly increases the contribution of the first 
rescattering to the ionization yield (by up to an order 
of magnitude). Similar results are expected for nuclear 
Coulomb excitation, leading to excitation rates higher 
than predicted in this study. Furthermore, it was dem
onstrated in [14] that higher order rescattering contri
butions are lower by five orders of magnitude as com
pared to the first-order one. This finding justifies the 
assumption above that the first rescattering plays a 
dominant role in laser-induced nuclear excitation.
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