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Ab str a c t . The authors develop a functional-theoretic approach to  solving boundary-value problems 
for the Lamé system of elasticity theory. Special attention  is paid to  the case of a plane orthotropic 
medium.

The sta te  of the medium of plane anisotropic elasticity theory [4] is characterized by the stress 
tensor a  and the deform ation tensor e, which are symmetric 2 x 2-m atrix  functions and which can be 
w ritten  in the form
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where Sj are expressed through the displacement vector u = (u 1, « 2) according to  the formulas

du\  d u 2 du \  du 2
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W hen there are no mass forces, the m atrix  a  satisfies the equilibrium equations

9 (7  (1) . 9 (7  (2) =  Q 

d x  dy
where denotes the j t h  column of the m atrix  a, which is connected w ith the deform ation tensor e 
by Hooke’s law:

ai = aiei +  a4e2 +  2a6e3, . ai
02 =  0:46:1 +  (X2£2 +  20:56:3, 0 =  0:4 02 05

(73 =  o 6£i +  056:2 +  2036:3, 05 03,

where the m atrix  a  is positive-definite. The entries ctj of this m atrix  are called the elasticity modules; 
by the Sylvester criterion, they satisfy the inequalities ctj > 0, j  = 1 ,2 ,3 , and 0102 >  o | ,  0103 >  Og,
0203 >  Og.

Substitu ting for £j their expressions through the displacement vector, we obtain the following form 
of relations of Hooke’s law:
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with m atrix  coefficients
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Substitu ting expressions (1) in the equilibrium equations, we obtain the following second-order elliptic 
system  for the displacement vector u = (111, 112):



it is called the Lamé system.
As is known [6], the m ain boundary conditions for the Lamé system considered in a dom ain D  on 

the plane are either the assignment of the displacement vector

u\r = / ,  (3)

on the boundary T = d D  or the normal component a n  =  a ^ n \  +  a ^ ) n 2 of the stress tensor a, i.e.,

(an)\r = g ,  (4)

where n  =  (« 1, ^ 2) is the unit exterior normal to  T. Obviously, (3) corresponds to  the Dirichlet
problem. According to  (1), we can write

E du
ai^~dx~n ^

where x \  =  x  and X2 =  y. Therefore, (4) corresponds to  the N eum ann problem for the Lamé system. 
These problems are also called the first and second boundary-value problems.

The second boundary-value problem (4) can be w ritten in the form of the first boundary-value
problem with respect to  the so-called conjugate function v. The la tter is defined by the relation

dv (  du d u \  dv du  du
77- =  — û21t;— b a 22- ^ - |)  = a n - — Va\2^—- (5)d x  \  dx  dy J dy d x  dy

Then comparing (1) and (5), we see th a t a n  =  [t>[æ(s),y(s)]]', where x(s)  +  iy(s)  is the natural
param etrization of T by the arclength param eter s. Hence after integration, the boundary condition
(4) takes the form

v |r  =  f ,  (6)
where /  is the prim itive of the function g considered as a function of the arclength s on v.

Let us consider the characteristic polynomial of the elliptic system (1):

X(z) = det P(z) ,  P ( z )  = a n  +  (a u  +  a2i )z  +  a 22 -z2-

Two cases are possible when in the upper half-plane, the equation x (z )  = 0 has
(i) two distinct roots v\ /  V2 and

(ii) one m ultiple root v.
In accordance w ith these cases, we set

(7)

In each of these cases, there exist linearly independent vectors x, y  e  C 2 such th a t
(i) P ( v \ ) x  =  P ( v 2 )y =  0 and, respectively,

(ii) P ( v ) x  = P ( v )y  +  P ' (v )x  = 0.
Let us compose the m atrix  B  e  C 2x2 from these vectors considered as column vectors, and in the 
notation (1 ), (7), let us set C = (021-6 +  a22B J ) .  According to  [9, 10], the general solution u  of the 
Lame system  and the function v conjugated to  it are described by the following relations in term s of 
these matrices:

u, = ReB(f), v = ReC(f), (8)

where the 2-vector-valued function (f) = (</>i,</>2) is a solution of the Douglis system
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Here, it is assumed th a t the dom ain D  is simply connected and the functions u, v, and (f) vanish at a 
fixed point zo e  D] under this assum ption, (f) is uniquely determ ined by u.

In explicit form, the m atrices B  and C  can be described through the roots of the characteristic 
polynomial % [9]. For this purpose, let us represent % in the form

X{z) = 9{z)g2{z) -  g23{z) = h x{z) -  z h 2(z) +  z 2h3(z) 

w ith quadratic trinom ials

gi{z)  =  o i  +  2a§z  +  ol3z 2, h \(z )  = p 2 ~  P$z +  Paz2,

g2(z) = o 3 +  2a5z  +  a 2z 2, h 2(z) = p 5 -  p 3z + p 6z 2, (10)

g3{z) =  o 6 +  (o 3 +  0:4)2: +  a 5z 2, h 3(z) = f34 -  /36z  +  P i z 2.

Here,
/  (3i /?4 (36\

= (det 0 )0 “ 1

denotes the m atrix  associated w ith the m atrix  o  in Hooke’s law; it is also positive-definite. In explicit 
form,

(3\ = a 2a 3 — a 2, (32 = 0103 — a 2, (33 = a \ a 2 — o f,
/?4 =  O5O6 — O 3O 4, /?5 =  O4O6 — O 1O 5 , Pq =  O 4O 5 — O 2O 6.

In this notation, in accordance w ith two cases in (7), we have the relations

Pi Pa Рб
P = \ P a P2 Ръ

\p6 Pb Рз

в  =

B  =  ( 9 2 M  a i W  \  c  =  - h M -  M 3 W ) \  ( 1 2 i l )

\ - g s ( v )  - g 3{v ))  V bbly) h'3(v) J

where, for definiteness, it is assumed th a t h3(v2) Ф 0 in the case (i). Since h3 is a quadratic trinom ial
with real coefficient, a t least one of the numbers v\  and v2 is not its root, and the above assum ption
does not restrict the generality. As is shown in [9], in all the cases, the m atrices В  and С  are invertible.

Note th a t a close approach to  representation of solutions of anisotropic plane elasticity theory is 
considered in [5].

The general solution ф of system (9) is expressed by the following formulas according to  two cases 
(7) of the m atrix  J :

(i) фк(х,у )  = ф к(х + 1Уку), к =  1 , 2 ,
(ii) фг(х,у)  = tp i ( x  + vy)  + ytp'2(x + vy),  ф2{х, у) = ф2(х  +  vy),

where the functions фк are analytic in the dom ain D(vk)  =  {x  +  i/ky, (x , y) e  D }  in the case (i) and 
in the dom ain D(u)  in the case (ii). In particular, in the isotropic case where

о  i =  02 =  Л +  2/x, 03 =  /j,, 04 =  Л (14)

with some positive Л and /x, we have the case (ii) w ith v  =  i, and the substitu tion of (10)-(13) in (8) 
leads to  the known Kolosov-M uskhelishvili formulas [6].

An elastic medium is said to  be orthotropic if the coordinate lines are sym m etry axes. This case 
corresponds to  vanishing of the elasticity modules 05 and Об of the m atrix  o. In particular, the m atrix



a  is block-diagonal, and  th e  m a trix  /3 associa ted  to  it has a sim ilar property . Therefore, w ith  account 
for ( 1 1 ), expressions ( 1 0 ) take  th e  form

g i (z )  = a \  +  a 3z 2, h \ ( z )  =  « 3 (0:1 — 0 4 Z2) ,

g2{z) =  o 3 +  a 2z 2, h 2(z) = (ol\  -  oliol2) z , (15)

g3{z) =  ( o 3 +  0 :4 ) 2:, h 3(z) =  a 3 ( - a 4 +  a 2z 2),

and, respectively, th e  charac te ris tic  polynom ial is given by th e  re la tion

( ( , 0 2 , 4\ a \ a 2 -  a \  -  20:30:4
X{z) =  o 3(o i  +  2az  + a 2z  ), a = -----------   . (16)

203

I t  is easy to  verify th a t  a +  ^a i<x2 > 0. Indeed, th is  inequality  is equivalent to  th e  inequality

( V o io 2 +  a 3)2 >  (o 3 +  o 4)2,

w hich is obvious because of th e  condition  a \ a 2 >  10 4 1. Therefore, we have th e  following expressions 
for th e  roots of th e  b i-q u ad ra tic  polynom ial (16) in th e  u p p er half-plane:

v± = ie±te £ — , 26 =  a rcc tan  °  ==, |a| <  J a \ c x 2, (17ii)
V 0:2 \ / a \ a 2 — a 2

. , a ±  \ /a2 — cx\(x2 -----  , .
i \ l  —---------, a > (17i2)

a = ^/(x\(x2. (17ii)
0:2

In accordance with this, formulas (12) are also improved.

T heorem  1. Under the assumption  05 =  ae = 0 of orthotropness, the matrices B  and C  are described
as follows.

I f  (a 3 +  « 4) ( V ^ №  — 203 — 04) /  0, then

_ /  03 +  02^1 03 + 02^2 A r  -  rv ( a 4ui - a 2v f  a 4v2 -  a 2v f \  , .
V - ( « 3 + a 4 ) z / i  - ( 0 3  +  0 4 ) ^ 2 / ’ 3 1 ^ - 0 4  +  0 2 ^ 1  - 0 4  + 0 2 ^ 2 /

where ui}2 are defined by (17ii) with an arbitrary choice of  signs.
I f  0:3 +  04 =  0, then

„  _ (  0 0 3 + 0 2 ^ 2 ^  n  _  „ (  («102 — Ot2)v 2 0 4^2 “  OL2v \ \  , .
\a i  + a3v2 0 J ’ 3 \ - ( a ia 2 -  a2)vi -0 4  +  02 2̂ 7 ’ 2

where v i >2 are defined by (17i2) and the choice of signs is determined by the condition 02^2 /  04 .
I f  ŷ<xl<x2 = 2a3 +  04, then

p, _  (  a 3 + a 2u2 2a 2u \  _  ( o 4z/ -  a 2u3 o 4 -  3a2u2\  , .
”” \ - ( a 3  +  o 4)^  - ( 0 3  +  0 : 4 ) / ’ — ^ - 0 4  +  a 2v 2 2a 2v ) ’  ̂ ^

where v  is defined by (17i;).

Note th a t the theorem  covers all possible cases, since the double relation 03 +  04 =  ^ai<x2 — 2a3 — 
04 =  0 is impossible. Indeed, it implies the relation a \ a 2 =  o f, which contradicts the condition 

ol\ ol2 >  a 2 stipulated by the positive definiteness of the m atrix  o.

Proof. F irst of all, we note th a t the condition a = ^ai<x2 in (17i;) is equivalent to  ^/0102—203—04 =  0. 
Indeed, according to  (16), we can rewrite it in the form ( ^ a \ a 2 +  04) ( x/ 0 i 02 — 203 — 04) =  0, and it 
remains to  note th a t the first factor is positive here.



Furtherm ore, let us show th a t the relation h%(v) =  0 is equivalent to  «3 +  0:4 =  0 and is possible only 
in the case (I7h)-  Indeed, according to  (15), it is impossible in case (17ii). Therefore, this relation 
reduces to  a ±  \Ja2 — a \ a 2 =  —0:4. In particular, it should be 0:4 <  0 and (a +  « 4 ) 2 =  a 2 — 0:10:2. 
W ith  account for (16), the la tte r relation can be rew ritten in the form (0102 — 0 3 0 4 )  ( 0 3  +  0 4 )  =  0.

Since 04 <  0, the first factor is different from zero, which proves the above assertion. □

Therefore, different cases in (12) exactly correspond to  the corresponding cases in (18). Therefore, 
it remains to  substitu te  relations (15) in (12) and use (17).

Note th a t various theoretic-functional approaches to  orthotropic plane elasticity theory were devel
oped by many authors [1-3].

Let us especially dwell on the case of isotropic medium. According to  (14), this case corresponds 
to  formulas (17i;) and (18i;) w ith multiple root v  =  i. In explicit form,

*  -  ^ ++2';))‘)  -  +"> t 1, ‘ " i 1”

n  _  (  2(A +  //,)i 4A +  6/x \  _  ,. . /
\ —2(A +  /x) 2(A +  2 f i ) i )  ~  ^  + ^  \

2 i x  +  3
- 2  ( x  + l  )i

where we set x  =  (A +  3/x)/(A +  /x). 
Obviously, m atrices of the form

M = [ XQ I ) ,  x , y e C ,

commute with the Jordan  block J  in (7), and, therefore, the replacement <fi =  M<p does not derive 
from the solution class of the Douglis system (9). Hence setting B  = B M  and C = C M ,  we can 
rewrite relations (8) w ith respect to  p  and B, C.  In o ther words, the m atrices B  and C  are defined 
with accuracy up to  postm ultiplication by the m atrix  M .

Setting

m  = — -—  1 - ^  +  1)*N
a + / A °  - 1

in this case, we can replace the previous expression for B  and C  by

b = ( 1 ° y  r + n -\ l  —x )   ̂ 2 — {X + l)l
In the case (i), the substitu tion of (13) in (8) yields the representation of the general solution 

of the Lame system through the pair of analytic functions ip\ and ip2 described in [4]. However, 
these functions are defined in d istinct domains D(vk),  k  =  1 , 2 , which complicate the study of the 
boundary-value problems (3) and (6) by using analytic functions.

In the case (ii), the dom ain D(v)  of the functions V’fc is the same, but, according to  (13), in this case, 
u  and v linearly depend on tp and the derivative ip', which also leads to  an additional complication. 
This obstruction in the isotropic case is overcome by using special integral representations of analytic 
functions, which are suggested by D. I. Sherman, N. I. Muskhelishvili, and others [6]. For this reason 
[11], it is more convenient to  develop a direct approach to  studying problems (3) and (6) based on the 
application of the analytic function tools directly to  solutions of the Douglis system (9).

Let the dom ain D  be finite, and let it be bounded by a simple Lyapunov contour T. It is convenient 
to  assume th a t the point z = 0 belongs to  D.

Obviously, we can write problem (3) in the equivalent form

u +  £i =  f, u( 0) = 0,

where {1 G  M.1 m ust be found with respect to  the pair (u, £), £ G  M2.



Analogously, we can proceed for problem (6). In accordance w ith (8), we can rewrite these problems 
for solutions of system (9) in the form

Re G<p+ +  £ =  / ,  0(0) =  0, (19)

with respect to  the pair (</>,{), where G = B  or G = C  in accordance w ith the second problem and
(t>+ is the boundary value of (f).

We solve problem (9) in the class of vector-valued functions (f) Holder continuous in the closed 
dom ain D.  According to  [11], we can uniquely represent this function in the form

4>(z) = —  ( ( t - z ) ~ j l d t j t p ( t ) + i i o, £0 e M 2, (20)
7T% J

r
where the vector-valued function p  = ( p i , p 2) is real and Holder continuous on T.

Here, for x , y  e  M, we use the m atrix  notation (x +  i y ) j  =  x  ■ 1 +  y J ,  where 1 is the identity
2 x 2-matrix, and the notation (dx +  i d y ) j  for the m atrix  differential has an analogous meaning. In
this case, the following analog of the Sokhotskii-Plejm el formula holds:

</>+ (to) =  p ( t 0) +  — [ (t -  to)~jl dtjtp(t) +  iio. (21)
m  J 

r
Here, it is convenient to  denote the singular integral w ith m atrix  kernel by (Sjip)(to). For J  = i, it 
passes to  the classical Cauchy integral (S<p)(to)- Substitution of (21) reduces (19) to  the equivalent 
system  of singular equations

Re G((p +  SjLp) -  ( J m G )£0 +  £ =  / ,

— [  t j l dtjip(t)  +  =  0.
iri J

r
Let us write

—t~7l d t j  =  b(t)dst, (22)
7T

with the 2 x 2-m atrix function b(t) (dx  +  i d y ) j  Holder continuous on T. Then we can rewrite the 
previous system with respect to  the pair (0, £):

Re G(ip +  Sjip) — ( J m  G) (Re &,¥>)+£ =  / ,
( J m  b, tp) =  0. (23)

Here, (c, ip) is the integral of ap on T w ith respect to  the arclength; in the case where the m atrix  
function c(t) is real, this integral belongs to  R2.

Obviously,
2 R  e S j t f  = SjLp — S-f f ,

where we take into account th a t the vector-valued function tp is real. Therefore, system (23) is 
equivalent to  the system

Nip +  £ =  / ,
(24)

(<P,9j)= 0, i  =  !» 2,
with respect to  the pair (p , ( ) ,  where g\  and g2 are rows of the m atrix  b and

2 N p  = G (p  +  S j p )  +  G(p  — S-jp) — 2(Jm  G)(Reb,  p).

Let us agree to  write N \  ~  N 2 if the difference is an integral operator of the form

[(Ni -  N 2)p](t0) = J  Y Z J ^ d s t ,
r



where the vector-valued function k(to, t )  is Holder continuous o n T x T  and vanishes for t  = to- By 
assum ption, the contour T is Lyapunov. Therefore, a simple verification shows th a t S j  ~  S  and, 
analogously, S j  ~  S.  Hence

N  ~  GP+ + G P - ,  2P± = 1 ± S .

Since the m atrix  G is constant and invertible, the singular operator GP++ G P -  is invertible, and the 
operator inverse to  it is w ritten  by the explicit formula [7] by using the canonical function. As a result, 
(24) reduces to  the system of Fredholm integral equations w ith the operator M  = (G'P+ +  G 'P_)_1A'r ~  
1 in the principal part; the known approxim ate m ethods [8] can be applied to  its numerical solution.

An analogous approache can also be realized for domains w ith piecewise-smooth boundary as is 
shown in [12] for the Dirichlet problem for weakly coupled elliptic systems; however, it is now based 
on the tools of nonclassical singular equations [13]. This approach can cover the case of m ulticonnected 
domains, finite or infinite, in particular the case where the dom ain D  is the upper half-plane, and the 
solution of the problem (3), (6) is w ritten  in explicit form [14].

Precisely, let a function /  satisfy the Holder condition on the extended line R =  R U o o  (i.e., f ( t )  
and / ( 1 / i )  have this property on any finite closed interval of the line) and vanish at oo. The solution 
u , v  of problems (3) and (6) is sought for in an analogous class for the closed half-plane D.  Then 
according to  [14],

u(z)  = Re — J  B i t  — x)~jl B ~ l f  {t) dt,
R

v(z)  = Re — J  B { t  — z)~jl C ~ l f { t )  dt.
R

In the case of orthotropic medium, the substitu tion of formulas (18) in this relation allows us to  
obtain final solutions.
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