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Abstract: Polycyclic aromatic hydrocarbons (PAHs) are widely presented in the environment and
pose a serious environmental threat due to their toxicity. Among PAHs, naphthalene is the simplest
compound. Nevertheless, due to its high toxicity and presence in the waste of chemical and oil
processing industries, naphthalene is one of the most critical pollutants. Similar to other PAHs,
naphthalene is released into the environment via the incomplete combustion of organic compounds,
pyrolysis, oil spills, oil processing, household waste disposal, and use of fumigants and deodorants.
One of the main ways to detoxify such compounds in the natural environment is through their
microbial degradation. For the first time, the pathway of naphthalene degradation was investigated
in pseudomonades. The salicylate was found to be a key intermediate. For some time, this pathway
was considered the main, if not the only one, in the bacterial destruction of naphthalene. However,
later, data emerged which indicated that gram-positive bacteria in the overwhelming majority of cases
are not capable of the formation/destruction of salicylate. The obtained data made it possible to reveal
that protocatechoate, phthalate, and cinnamic acids are predominant intermediates in the destruction
of naphthalene by rhodococci. Pathways of naphthalene degradation, the key enzymes, and genetic
regulation are the main subjects of the present review, representing an attempt to summarize the
current knowledge about the mechanism of the microbial degradation of PAHs. Modern molecular
methods are also discussed in the context of the development of “omics” approaches, namely genomic,
metabolomic, and proteomic, used as tools for studying the mechanisms of microbial biodegradation.
Lastly, a comprehensive understanding of the mechanisms of the formation of specific ecosystems is
also provided.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are organic substances containing two or
more benzene rings. They are an important constituent of environmental pollutants. PAHs
are widely distributed contaminants in soils, waters, and air because of their common
association with many anthropogenic activities such as oil refining, incomplete combustion
of fossil fuels, household waste processing, and others [1,2]. The range of polluting
concentrations of polyaromatic compounds in contaminated sites is quite wide and ranges
from 1 µg/kg to over 300 g/kg, as has been reported [3]. Possessing a carcinogenic and
mutagenic effect, PAHs are poorly soluble in water and are well deposited on the mineral
matrix of soil. PAHs can be significantly accumulated in the environment due to their long-
term resistance to oxidation and limited biodegradability. In total, more than one hundred
polycyclic aromatic compounds are known, most of which are stable in the ecosystem
for a long time. Thus, the half-life of a three-ring phenanthrene molecule in soil can be
from 16 to 126 days, while the half-life of a five-ring benz (a) pyrene is 229–1400 days [4].
The most dangerous toxicity of PAHs concerns their carcinogenicity. In short, PAHs enter
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cells due to their hydrophobicity and induce the expression of genes encoding enzymes
of the cytochrome P450 group (CYP). CYPs, by virtue of their non-specific action, convert
PAHs into toxic metabolites. Some of the resulting metabolites can bind to DNA and have
a mutagenic/carcinogenic effect. In addition to carcinogenicity, PAHs are characterized
by developmental toxicity, genotoxicity, immunotoxicity, oxidative stress, and endocrine
disruption [5,6].

PAHs are resistant to nucleophilic attack due to the presence of the π-electron density
in the aromatic ring [7]. The transformation of PAHs in the environment leads to the
formation of oxygen (O-PAH), nitrogen (N-PAH) and azarenes (AZA), or sulfur (PASH)
derivatives. These derivatives enhance the toxicity of the parent PAHs. The classification of
such derivatives, their characteristics, and the methods of analysis are given in a wonderful
review [8]. A huge number of people around the world, especially in developed countries,
suffer from chronic respiratory diseases, including asthma, chronic obstructive pulmonary
disease, lung cancer, and so on. The review shows the potential contribution of surfactants
to the etiology of this class of diseases. This paper reviews epidemiological studies and
assesses the association between the gas phase, the particle-associated PAHs in the ambient
air, and non-malignant respiratory diseases or closely related physiological processes [9].

The significance of the problem is indicated by the data of bibliometric analysis, which
demonstrates that in recent years, “PM2.5 (suspended solid microparticles and tiny liquid
droplets (10 nm-2.5 microns in diameter), health risk, impact, source identification” have
become hot spots. The keywords with the strongest citation bursts include toxicity, spatial
distribution, health risk, and pm 2.5. Among them, toxicity and spatial distribution have
increased sharply since 2015; health risk and PM2.5 contained in the air have increased
sharply since 2019; and there is no sharp decrease [10].

Due to their ubiquity in the natural environment and various harmful effects on
organisms, PAHs are among the most concerning organic pollutants [11]. Naphthalene
is the simplest polycyclic aromatic hydrocarbon and its structure consists of a fused pair
of benzene rings. The primary use for naphthalene is in the production of phthalic anhy-
dride. Other uses of naphthalene include carbamate insecticides, surface active agents,
and resins; utlization as a dye intermediate, synthetic tanning agent, and moth repellent;
and utlization in miscellaneous organic chemicals. In addition, naphthalene and phenan-
threne are components of petroleum. Similar to other PAHs, naphthalene is a fairly toxic
substance. Inhalation, ingestion, and skin contact cause hemolytic anemia, liver damage.
and neurological damage. Contact with naphthalene can cause cataracts and damage to
the retina. The Environmental Protection Agency (EPA) has classified naphthalene as a
Group C probable human carcinogen [12].

Direct releases of crude oil, including emissions to the ocean, are one of the most
important pathways for naphthalene to enter the environment. In 2010, the largest oil spill
in U.S. history occurred as a result of the Macondo wellhead blowout following the sinking
of British Petroleum’s Deepwater Horizon drilling platform in the Gulf of Mexico. The
incident released about 4.9 million barrels of light crude oil, which contained a high pro-
portion of low molecular weight hydrocarbons and consisted of about 3.9% PAHs [13,14].
In numerical terms, with an average conversion factor of 1 barrel = 0.1364 tons of oil, it
was equal to 26.066 thousand tons of PAHs. Although PAHs account for a small con-
stituent percentage of crude oil, they are considered the most toxic component mainly
because of their metabolites [15]. In oil collected directly from the Macondo well during
the incident, of all the PAHs, the proportion of two low-molecular weight PAHs, namely
naphthalene and phenanthrene, and their homologues, was approximately 74% and 22%,
respectively [16]. The toxicity of PAHs, in general and especially because of the waters
impacted by Deepwater Horizon, is well documented in fish and has resulted in numerous
adverse acute and chronic effects, including skin lesions, cardiotoxicity, liver abnormalities,
respiratory changes, decreased fertility, histopathological changes, and mortality [17–22].
The two most common PAHs identified in Deepwater Horizon crude oil, namely naphtha-
lene and phenanthrene, and their associated homologues, have been shown to be very toxic
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to fish. Although fish have a relatively high capacity to metabolize PAHs, hydroxylated
PAH derivatives produced during the initial metabolic response can adversely affect fish
health [15]. The acute toxicity values of naphthalene and phenanthrene for fish vary from
0.51 to 7.9 mg/L and from 0.23 to 1.15 mg/L, respectively [23–28]. The data obtained have
repeatedly confirmed the previous statement that PAHs in oil, including phenanthrene and
naphthalene, are one of the most toxic components [23,29].

The consequences of this accident were truly dramatic. It was revealed that the impacts
of the spill are ongoing and significant. As an illustration, one can cite the example of a
study on the dolphin population in the accident area. Based on studies conducted from 2010
to 2015, bottlenose dolphins in the Barataria Bay suffered increased mortality (35% greater
than expected based on studies of other bottlenose dolphin populations) and increased
likelihood of having adverse health effects (37% greater than expected). Scientists estimated
that the Barataria Bay stock of dolphins would take 39 years to recover in the absence
of active restoration [www.fisheries.noaa.gov/national/marine-life-distress/sea-turtles-
dolphins-and-whales-10-years-after-deepwater-horizon-oil. Accessed on 3 October 2021].

The restoration of the microbial population also requires a certain amount of time.
Microbiome studies at the site of the oil spill accident showed that 3 years after the release of
2000 tons of oil because of the “Qingdao pipeline explosion” in 2013, the bacterial diversity
in heavily polluted and slightly polluted sediments was completely different [30]. The main
oil degraders were bacteria of the genera Alcanivorax and Lutibacter. Biotoxicity analysis by
luminescence showed large differences between the contaminated sites, the control sites in
Jiaozhou Bay, and the non-contaminated area outside the Jiaozhou Bay. Biotoxicity also
peaked in the vicinity of the oil spill. These results indicate that the oil spill which occurred
3 years ago still has a negative impact on the environment and bacterial communities in
the sediment. The long-term impact of oil spills on macro and microbiocenoses, including
the BP Deepwater Horizon (DWH) accident, is being studied quite intensively and can
serve as a topic for a separate review [18].

Researchers are practically unanimous in stating that the use of microorganism-
destructors for the bioremediation of soils and water bodies, including the World Ocean, is
the most effective, practical, and economically beneficial approach. Since crude oil and its
refined products are complex and contain different compounds, biochemical studies are
aimed at studying the pathways of the microbial metabolism of its individual aliphatic and
aromatic components [31–35]. Studies are also concerned with the investigation of individ-
ual genetic determinants of natural bacterial degraders. Since many genetic determinants
of the biodegradation of aromatic compounds are localized within extra-chromosomal
genetic elements, the plasmid composition of bacterial degraders and the effect of bac-
teria containing biodegradation plasmids on the utilization of oil and its products are
continuously studied [36–43].

Generally, microorganisms that decompose PAHs, including naphthalene, have been
studied for quite a long time and a large amount of data on this topic has been accumulated.
About 80,000 articles have been published on the microbial decomposition of naphthalene.
In the last decade, the genetic regulation of the pathways involved in the degradation of
naphthalene by various gram-negative and gram-positive bacteria has been sufficiently
studied. By example of this compound and based on both genomic and proteomic data, a
deeper understanding of the functioning and evolution of the degradation pathways of
high-molecular-weight PAHs in bacteria has been gained, for example in [44].

2. Some Representatives of Naphthalene Destructors

Microorganisms that can degrade naphthalene are ubiquitous in soils, in fresh and
saline waters, etc. The phylogenetic diversity of the bacteria that degrade PAHs, including
naphthalene, is very broad. Among them are bacteria belonging to the genus Arthrobac-
ter [45], Pseudomonas [46,47], Rhodococcus [48], and Sphingomonas [49].

Interest in marine microbial-degrading organisms is increasing because, as mentioned
above, in recent decades, petroleum products and consequently naphthalene have been
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spread intensively in the marine ecosystem. The high hydrophobicity of petroleum prod-
ucts impedes their bioavailability. Thus, it has been shown that marine bacteria play a
significant role in the decomposition of PAHs in seawater and marine bottom sediments.
Two cultures of Neptunomonas naphthovorans strains, namely NAG-2N-126 and NAG-2N-
113, capable of using naphthalene as the only carbon and energy source were isolated. Each
strain also could degrade 2-methylnaphthalene and 1-methylnaphthalene, and one strain,
NAG-2N-113, degraded 2,6-dimethylnaphthalene and phenanthrene during incubation of
these strains with PAH in artificial seawater. Acenaphthene was not degraded when used
as the sole carbon source but was degraded by both strains when incubated with a mixture
of other PAHs [50].

Degenerate primers and PCR were used to isolate a portion of the naphthalene dioxy-
genase iron-sulfur protein (ISP) gene from each of the strains. Phylogenetic analysis of the
amino acid sequences deduced by the PAH dioxygenase ISP showed that the genes isolated
in this study were distantly related to the genes encoding naphthalene dioxygenases from
Pseudomonas and Burkholderia strains. Despite the differences in the PAH degradation
phenotype between the new strains, the amino acid fragments of these organisms excreted
by the ISP dioxygenase were 97.6% identical. Phylogenetic analysis based on 16S ribosomal
DNA placed these bacteria in the gamma-3 Proteobacteria subgroup, which is closest to the
representatives of the genus Oceanospirillum. However, morphological, physiological, and
genotypic differences between the new strains and oceanospirilla justify the creation of a
new genus and species of Neptunomonas naphthovorans. The type strain of N. naphthovorans
is NAG-2N-126 [50].

A strain identified as Rhodococcus opacus M213 with a unique set of genes and a
naphthalene metabolic pathway different from those previously described was isolated
from soil contaminated with fuel oil [51].

The research on the isolation of a thermophilic bacterium from a compost consisting of
wooden ties treated with lignite tar is interesting. Bacillus thermoleovorans was able to utilize
naphthalene as a sole source of carbon and energy [52]. The authors of this study found
the simultaneous presence of 2,3-dihydroxynaphthalene, 2-carboxycinnamic acid, and
phthalic acid, along with cinnamic acid and salicylic acid, among the metabolic products.
B. thermoleovorans, as it was concluded from this observation, produces enzymes of various
pathways for the degradation of naphthalene. The formation of 2,3-dihydroxynaphthalene
indicates the initial oxidation of naphthalene by 2,3-dioxygenase, whereas the presence
of 2-hydroxybenzene derivatives indicates the simultaneous activity of 1,2-dioxygenase
(Figure 1).

Two naphthalene-degrading strains were isolated from soil samples, from fertilizer
industries, and from different motor-markets in the Chandigarh region. They are Staphy-
lococcus aureus and Pseudomonas fluorescens strains with a naphthalene degradation effi-
ciency of 63.7% and 50.17%, respectively, after seven days incubation with 150 ppm of
naphthalene [53].

The wide variety of bacteria capable of utilizing naphthalene is also illustrated by the
study of [54], in which the authors describe the isolation and characterization of seven
naphthalene-degrading isolates from oil-contaminated bottom sediments. The isolates
were characterized as different strains of the genus Bacillus. An interesting point in this
study was the isolation of a probable new species of Paenibacillus (isolate 5), which could
degrade naphthalene to a higher extent (up to 1%) and hence could play an important role
in bioremediation. The strain has been patented as an active naphthalene degrader [55].



Processes 2021, 9, 1862 5 of 19

Figure 1. Possible pathways of the bacterial degradation of naphthalene.

3. Degradation of Naphthalene by Gram-Negative Bacteria

Naphthalene degradation pathways and their enzymes have been primarily studied
in gram-negative bacteria, including Pseudomonas species. As a rule, their degradation
genes are organized into three operons. The first one encodes enzymes involved in the
conversion of naphthalene to salicylate (upper pathway of naphthalene degradation); the
second operon encodes enzymes for the conversion of salicylate to intermediate products
of the tricarboxylic acid cycle (pyruvate and acetyl-CoA) via the meta-cleavage pathway
(lower pathway of naphthalene degradation); and the third operon encodes a positive
transcription regulator (NahR) [56–63].

The metabolic reactions leading to the degradation of naphthalene were first estab-
lished in 1964 by Davis and Evans [64]. It has been shown that the bacterial degradation of
PAHs, including naphthalene, begins with the monooxygenase or dioxygenase attack of
the aromatic ring. The formed dihydroxylated PAHs then undergo cleavage by breaking
the aromatic ring to form carboxylated compounds which, if further oxidation enzymes
are present in the strain, can be channeled to Krebs cycle intermediates [65–67] (Figure 1).

This typical series of reactions begins with the hydroxylation of the benzoic ring
with the help of multicomponent enzymes, which are the non-heme iron-bearing Rieske-
type cluster-containing oxygenases (Riske oxygenases (ORs)). ORs catalyze the oxida-
tive decarboxylation reaction, which is unique to enzymes of this family, resulting in
the formation of the corresponding phenolic derivatives. Naphthalene dioxygenase, be-
ing a (Rieske-type two-iron two-sulphur center-containing) naphthalene dioxygenase
(NOD; encoded by nahAaAbAcAd), introduces two oxygen atoms into the aromatic ring
of a wide range of aromatic hydrocarbons, such as naphthalene, phenanthrene, and an-
thracene, converting them to the corresponding dihydrodiols, such as the cis-naphthalene
dihydrodiol. cis-Dihydrodiol dehydrogenase (encoded by nahB) then dehydrogenates
the dihydrodiol to form 1,2-dihydroxynaphthalene, which undergoes meta-cleavage by
1,2-dihydroxynaphthalenedioxygenase (nahC) to form 2-hydroxychromene-2-carboxylic
acid. Enzymatic cis-trans-isomerization (isomerase encoded by nahD) produces the product
trans-o-hydroxybenzylidenpyruvate; the side chain at the trans-unsaturated bond of the
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product is cleaved by hydratase-aldolase (encoded by nahE) to form salicylic aldehyde.
Salicylate is further oxidized in two ways: through catechol (with the participation of
salicylate-1-monooxygenase) or through gentisic acid (with the participation of salicylate-
5-hydroxylase).

Bacteria of the genus Pseudomonas have been the subject of great scientific interest. This
group is presented in large numbers in various natural and contaminated environments,
and the interest in these bacteria is due to both their high degree of physiological and
genetic adaptability as well as their ability to effectively aerobically decompose a wide
range of aromatic compounds. This very group of microorganisms served as the initial
model for the study of naphthalene degradation pathways [64,67–72].

The genes responsible for naphthalene degradation in Pseudomonas are most often
localized on plasmids [73,74]. The mechanism of naphthalene degradation through salicylic
acid can be illustrated by the example of the NAH7 naphthalene plasmid isolated from the
Pseudomonas putida G7 strain. The genes for the degradation of naphthalene and salicylate in
this plasmid are organized into two operons [75,76]. nahABCDEF is a set of genes (operon)
encoding enzymes’ decomposition of naphthalene to salicylate; nahGHINLJK is an operon
encoding enzymes that degrade salicylate to elements of the Krebs cycle; and nahR is a gene-
coding protein regulator of these two operons. The activity of two degradation operons of
naphthalene (nahABCDEF) and salicylate (nahGHINLJK) is regulated by a protein whose
gene is located next to the second operon. This regulatory protein has two equilibrium
forms: inactive (NahRi) and active (NahRa). In the absence of salicylate in the medium, this
regulatory protein is inactive (NahRi) and has no affinity for DNA. RNA polymerase does
not attach to the promoter region considering that without an active regulator protein, it
cannot recognize this region as a locus of attachment. An interesting property of the NAH7
plasmid is the presence of the nahY gene, which encodes a naphthalene chemoreceptor.
This gene is located next to the naphthalene degradation operons [77].

An analysis of the amino acid sequence of dioxygenases from Beijerinckia sp. strain
B1, capable of growing on biphenyl or m-xylene as the only carbon source, showed that
2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) belongs to the class of meta-cleavage dioxy-
genases, acting on dihydroxylated polycyclic aromatic hydrocarbons, and differs from the
main group of meta-cleavage dioxygenases, acting on 2,3-dihydroxybiphenyl. Similarly,
catechol 2,3-dioxygenase (XylE) belongs to the class of meta-splitting enzymes, acting on
dihydroxylated monocyclic aromatic hydrocarbons, but bears little resemblance to the
canonical catechol-2,3-dioxygenase encoded by the TOL plasmid [78].

The study of naphthalene metabolism in pseudomonads, including the use of the
resident plasmid NAH7, has played an important role in understanding the metabolism
of aromatic hydrocarbons and the evolutionary relationships between different strains-
destructors. At the same time an interesting biodegradative potential with respect to
naphthalene and other polyaromatic compounds was also shown in gram-positive bacteria.

4. Degradation of Naphthalene by Gram-Positive Bacteria

Rhodococci are considered to be perhaps the most metabolically versatile microorgan-
isms. Rhodococci inhabit a wide variety of econiches of soil and aquatic ecosystems and are
capable of decomposing a huge range of aromatic compounds including naphthalene [79–81].
Rhodococcus metabolism plasticity and the presence of a large number of peripheral metabolic
pathways gives them a strategic advantage over Pseudomonas [82,83].

Earlier studies on the analysis of the genetic determinants of the metabolism of pol-
yaromatic compounds in Rhodococcus strains showed that they differ from those encoded
by the archetypal system of P. putida G7 [62], which suggests either a lack of a relationship
between them or early divergence from a common ancestor, as was shown by the dioxyge-
nases involved in the degradation of biphenyl [78]. The fact that the genes responsible for
the first steps of naphthalene decomposition are not organized into a single cluster, as in
pseudomonads, probably provides a wider variety of mechanisms for utilization of this
compound and its adaptive plasticity.
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Referring to the example of the R. opacus M213 strain isolated from soil contaminated
with fuel oil, the naphthalene degradation pathway was shown [51]. It was revealed that
the strain did not grow on salicylate and did not induce salicylate hydroxylase. At the same
time, induction of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase was shown to be
related to catechol 1,2-dioxygenase from R. opacus 1CP and catechol 2,3-dioxygenase from
Rhodococcus sp. I1, respectively. Plasmid analysis revealed the presence of two plasmids
(pNUO1 and pNUO2), estimated to be of 750 Kb and 350 Kb in size, respectively.

Naphthalene metabolism by Rhodococcus opacus M213 was characterized genetically
and biochemically. Pathak et al., in analyzing the genome sequencing of Rhodococcus
opacus M213, showed genes similar to those involved in the oxidation of both salicylate
and o-phthalate. This observation indicates the possibility of dual pathways for NAP
degradation in the strain M213 [84]. Later, these authors indicated that the metabolism
of naphthalene is encoded by a linear megaplasmid (750 kb) as well as by gene clusters
localized on gene islands (GEI), and proceeds along a new pathway that does not pass
through the salicylate [85]. An analysis of the metabolites produced when the strain grew
on naphthalene showed that the metabolism proceeds via ortho-phthalate, which is then
decomposed via the more standard protocatechuate pathway. R. opacus M213 does not
grow on anthracene, phenanthrene, in contrast to bacteria such as Aeromonas, Alcaligens,
and Micrococcus spp., which are capable of decomposing anthracene and phenanthrene
with the formation of ortho-phthalate and protocatechuate [51]. The noted uniqueness of
the metabolic system of R. opacus M213 is presumably due to horizontal gene transfer and,
accordingly, to genomic rearrangements both in the chromosome and in the transmissi-
ble plasmids. Nitrosoguanidine-generated mutants deficient in growth on naphthalene,
o-phthalate, and/or protocatechuate were obtained for the strain, and the mutations were
previously mapped to a large linear plasmid contained in M213. It was also shown that
some of the genes involved in naphthalene degradation via a specific way are localized in
GEIs, which were identified in strain M213 using a combination of bioinformatics, metabolic
analyses, and evaluations of catabolic gene expression using RT-PCR. It is suggested that
GEIs provide the bacteria with a “quantum jump evolution”, dramatically altering the
host phenotype, including providing biodegradative potential. This study once again pays
attention to both genome plasticity in bacteria, in general, and to the understanding of the
ecological competitiveness of strain M213 due to genome shuffling caused by horizontal
gene transfer. These aspects are still not well studied and poorly understood, particularly
for soil rhodococci. In this regard, R. opacus M213 can be an illustration of the mechanisms
by which a bacterial cell is able to adapt to xenobiotics.

There were also fundamental differences in the mechanism of naphthalene decom-
position by the thermophilic strain Geobacillus sp. JF8 [67]. By analyzing the amino acid
sequences of the NahB of this organism, it was shown that the encoded enzyme does not
belong to the cis-dihydrodiol dehydrogenase group, which includes those of the classical
naphthalene decomposition pathways.

The considerable diversity of the genetic organization of naphthalene decomposition
pathways in the Rhodococcus group is confirmed by the study of the R. ruber OA1 strain. The
naphtalene degradation via a new pathway and a new naphthalene catabolic gene cluster
nar from R. ruber OA1 was identified. It was demonstrated for strain Rhodococcus ruber
OA1 that phthalate is an intermediate in naphthalene degradation and that the protocate-
chuate pathway is realized by that strain for naphthalene degradation [86]. The complete
gene cluster, pcaJIGHBARC, responsible for protocatechuate degradation was identified.
Based on this gene cluster, the gene pcaGH encoding the protocatechuate 3,4-dioxygenase
(3,4-PCD) was found.

Sun and co-authors (2017) described the naphthalene catabolic gene cluster from
Rhodococcus ruber OA1 and indicated that the catalytic mechanism involved in naphthalene
degradation in strain OA1 showed a high similarity to those present in Rhodococcus and
Gordonia, but might be different from that described in R. opacus TKN14 (Figure 2) [87].
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Figure 2. Organization of the naphthalene degradation gene clusters in (a) Rhodococcus ruber OA1 (GenBank acces-
sion number KY072804), (b) Rhodococcus opacus TKN14 (GenBank accession number AB206671.1), (c) Rhodococcus sp.
I24 (GenBank accession number AF121905.1), (d) Gordonia sp. CC-NAPH129-6 (GenBank accession number GQ848233.3),
and (e) Rhodococcus sp. NCIMB12038 (GenBank accession number AF082663.3) [Reproduced with permission from Sun
et al. [87], as an open access article distributed under the terms of the creative commons attribution License, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited,
https://docsdrive.com/pdfs/ansinet/biotech/2017/165-173.pdf, accessed on 11 September 2021].

Additionally, there are very interesting data from Maruyama et al., who studied
o-xylene oxygenase genes from Rhodococcus opacus TKN14 [88]. The authors demonstrated
that a gene (named nidE) for rubredoxin (Rd) and a novel gene (named nidF) encoding an
auxiliary protein, which had no overall homology with any other proteins, were indispens-
able for the methyl oxidation reaction of o-xylene, in addition to the dioxygenase iron–sulfur
protein genes (nidAB). It has been suggested that these genes, excepted nidF, may be in-
volved in the degradation of a wide range of aromatic hydrocarbons by the Rhodococcus
species as the first key enzyme. This assumption is based on experiments showing that
protein NidABE catalyzes the conversion of naphthalene and (di) methylnaphthalenes to
their corresponding cis-dihydrodiols, i.e., acts as a typical naphthalene dioxygenase.

An alternative pathway of naphthalene utilization is shown for strain R. opacus 3D, iso-
lated from the activated sludge of wastewater treatment plants [89]. The strain was unable
to grow with salicylate but grew with coumarin, gentisate, o-phthalate, 2-hydroxycinnamic
acid, and protocatechuate. Other rhodococci not capable of metabolizing salicylate are also
known. For example, derivatives of R. rhodochrous strain NCIMB 13064, which utilize
naphthalene, were not able to grow in mineral medium with salicylate and this compound
was not detected in the culture media [90].

The previously mentioned R. opacus M213 is also unable to assimilate salicylate, but
the growth substrates for this strain are gentisate, carboxybenzaldehyde, o-phthalate,
hydroxyphthalate, and protocatechuate. Metabolites of the o-phthalate pathway were
detected for this strain, namely cinnamic acid, 2-carboxy and 2-hydroxycinnamic acids,
coumarin, hydrocoumarin, and phthalic aldehyde. These metabolites indicate that en-
zymes and pathways of aromatic compound degradation in R. opacus strains 3D and M213
are homologous.

Rhodococcus sp. strain B4, isolated from a soil sample contaminated with polycyclic
aromatic hydrocarbons, uses naphthalene as the sole source of carbon and energy. Salicylate
and gentisate have been identified as intermediate products of naphthalene catabolism.
However, unlike the well-studied catabolic pathway encoded by the NAH7 plasmid of
P. putida, salicylate does not induce the genes of the naphthalene degradation pathway in
Rhodococcus sp. strain B4. The study shows an unusual requirement for the cofactors for
key enzymes. The activity of 1,2-dihydroxynaphthalene oxygenase depends on NADH,
whereas salicylate 5-hydroxylase requires NADPH, ATP, and coenzyme A [80].

Thus, it can be concluded that the metabolic mechanisms of gram-positive bacteria
are more mobile, diverse, and play an important role in their adaptation to a wide range

https://docsdrive.com/pdfs/ansinet/biotech/2017/165-173.pdf
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of environmental pollutants, including naphthalene. This determines a more profitable
environmental strategy, which, among other things, allows them to occupy a wide range of
environmental niches [91–93].

5. Peculiarities of Econiches for Naphthalene-Degrading Bacteria

Mechanical and chemical methods commonly used to remove hydrocarbons from
contaminated sites have limited effectiveness and are expensive. Bioremediation is a
promising technology for restoring these contaminated sites because it is cost-effective
and can lead to the complete mineralization of toxicants. Bioremediation is fundamentally
based on biodegradation, which results in either the complete mineralization of organic
pollutants with the formation of carbon dioxide, water, inorganic compounds, and cellular
proteins, or the transformation of complex organic pollutants into other simpler organic
compounds under the action of microorganisms.

A few bioremediation strategies can be highlighted.

1. Bioaugmentation is a bioremediation strategy that involves introducing indigenous
microorganisms to the contaminated site to detoxify and degrade environmental
contaminants. This strategy is used in both anaerobic [94] and aerobic conditions.
Several successful bioaugmentation cases have been documented. Decomposing
naphthalene Streptomyces sp. strain QWE-35, isolated from activated sludge, was
introduced into a membrane bioreactor, which significantly increased the efficiency of
naphthalene decomposition [95]. The effect of microbial inoculation on naphthalene
mineralization in biosolid treatment was evaluated in soil manure microcosms. Inoc-
ulation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene
resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms
in the PAH-contaminated soil required a 28 h adaptation period before significant
mineralization occurred [96].

2. Biostimulation concerns the activation of native oil-oxidizing microflora by creating
optimal conditions for its development. This strategy also has many successful
examples. For example, this is demonstrated in [97]. Thus, in the research of [98], it
was shown that under laboratory conditions, the introduction of organic fertilizers
increases the decomposition rate of naphthalene in soil samples by more than two
times within 28 days.

3. The use of bacterial cultures in ex situ conditions in bioreactors of various config-
urations. Thus, a good example of the biodegradation of naphthalene using the
bacterium Pseudomonas putida M8, isolated from soil in the suspension phase, shows
the advantage of increased availability of pollutants for bacteria. The experiments
were carried out in a reactor with a stirrer and oxygen. The results obtained confirmed
the success of the selected bioremediation technology in the treatment of contam-
inated soils [99]. The use of a Batch Bioreactor with a Moving Bed (MBBR) with
mixed microbial consortia operating under anaerobic, anoxic, and aerobic conditions
resulted in the degradation of 90–94.8% of naphthalene at a concentration of 10 to
100 mg/L in 24 h (RT) [100]. Highly active strains degrading resistant compounds
isolated from contaminated sites can be effectively used in bioreactors. Additionally,
strains adapted to the decomposition of pollutants in bioreactors are a source of
microflora activity for remediation by bioaugmentation [101].
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The most promising cases relate to biotechnologies involving a combination of the
two approaches described above, particularly the introduction into the soil of bioprepa-
rations that include active bacterial associations and mineral fertilizers. For example, the
preparations of the “Lenoil” series are designed to clean various types of soil from oil
contamination and have the ability to stimulate plant growth. These preparations include a
consortium of oil-oxidizing microorganisms such as Bacillus brevis and Arthrobacter species
IB DT-5; aerobic nitrogen-fixing microorganisms, namely Azotobacter vinelandii IB 4; and
the biomass of aerobic spore-forming microorganisms, namely Bacillus species 739, which
allows to simultaneously increase the efficiency of oil products’ biodegradation in soil and
to activate the microbiological activity of soil [102,103].

As stated, PAH contamination is a global problem and a number of microbial species
have been investigated for the efficient degradation of this class of compounds [83,104].

In situ bioremediation can be more effective under appropriate conditions for micro-
bial growth, such as an adequate supply of nutrients, surfactants, water, and oxygen. It is
one of the most signifcant approaches for the enhancement of bioremediation efficiency
at the PAH-contaminated site [105]. The naturally occurring microbial species have been
effectively used at contaminated fields and the effects of nutrient addition to stimulate
bioremediation on the field scale have been extensively studied.

In Table 1, as an example, some data on the efficiency of the decomposition of naph-
thalene by microorganisms are presented and the optimal temperature conditions in which
these organisms were studied are given, according [106].

As already mentioned, diaromatic compounds—naphthalene and its homologues—are
part of diesel fuels. Problems of the bioremediation of the environment from diesel fuel are
particularly acute for areas of the far north. This is because in remote areas, such as the
Canadian Arctic, on-site bioremediation is the only possible option for cleaning hydrocarbon
spills. Several studies have shown that microorganisms, particularly bacteria, are capable of
decomposing hydrocarbons at the extreme temperatures common in polar and alpine zones.

Considering that oil production is mostly carried out in zones that are not optimal for
the life of microorganisms (high or low temperatures, salinity, arid climate), several author
teams working with microorganism inhabitants of extreme regions should be noted.
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Table 1. Characteristics of the microbial process for naphthalene degradation.

Microbial Species Source Condition; Temperature
(◦C); Period (Days)

PAH Compound
(Ci—ppm)

Degradation
Efficiency (%) Genes Coding Enzymes Peculiarities Reference

Pseudomonas putida IR1
Hydrocarbon-
contaminated

soil
Aerobic; 30; 7

NAP (200)
PHE (200)
PYR (200)

72 ± 2
60 ± 4
69 ± 3

nahA (naphthalene
dioxygenase) and nahE

(trans-o-hydroxybenzylidene
pyruvate hydratase-aldolase)

Biosurfactants were synthesized. The
surface tension decreased from

54.9 dN cm−1 to 35.4 dN cm−1. An
emulsifying activity of 74% with diesel oil,

when grown on dextrose, was present.

[107]

Pseudomonas sp. Plants growing at
PAH-contaminated sites Aerobic; 30; 7

NAP (100)
FLU (100)
PHE (100)
PYR (100)

95.3
87.9
90.4
6.9

No information Strain P3 has more potential for use in the
removal of PAHs from plant tissues. [108]

Stenotrophomonas sp. Plants growing at
PAH-contaminated sites Aerobic; 30; 7

NAP (100)
FLU (100)
PHE (100)
PYR (100)
B(a)P (10)

98.0
83.1
87.8
14.4
1.6

No information [108]

Neptunomonas
naphthovorans
NAG-2N-126

Creosote-contaminated
sediment Aerobic; 20; 7 NAP (5)

PHE (1)
100
100

Naphthalene dioxygenase
iron–sulfur protein (ISP) gene

fragments

A naphthalene dioxygenase iron–sulfur
protein (ISP) gene deduced amino acid

sequences and showed that the genes were
distantly related to the genes encoding

naphthalene dioxygenases of Pseudomonas
and Burkholderia strains.

[50]

Sphingomonas koreensis
ASU-06 Oil-contaminated soil Aerobic; 30; 15

NAP (100)
PHE (100)
ANT (100)

100
99
98

Catabolic genes alkB, alkB1, nahAc,
C12O, and C23O

Degradation of 15 various PAH and
production of the extracellular

biosurfactant.
[109]

Burkholderia cepacia 2A-12 Oil-contaminated soil Aerobic; 30; 2
NAP (215)
PHE (215)
PYR (215)

100
100

0
No information

The PAH degradation rate of the strain was
enhanced by the addition of other organic

materials such as YE, peptone, glucose,
and sucrose.

[110]

Rhodococcus ruber OA1
Pharmaceutical

wastewater treatment
plant

Aerobic; 6 NAP (500 mg) 100

The genes encoding NDO large and
small subunits

(narAaAb/nidAB), cis-naphthalene
dihydrodioldehydroge-

nase(narB/nidC), and putative
aldolase (narC/nidD)

Regulated narR1 and narR2 genes

Heterologous expression of narAaAb and
rub1 genes. [86,87]

Rhodococcus opacus R7

Polycyclic aromatic
hydrocarbon-
contaminated

soil

Aerobic; 30; 15 NAP (1 g) 100
High-quality draft genome sequence

of strain R7, consisting of 10, 118,
and 052 bp

1,2-Dihydro-1,2-dihydroxynaphthalene as
well as salicylic and gentisic acids were

identified as metabolites.
[111–113]

Rhodococcus sp. strain B4

Polycyclic aromatic
hydrocarbon-
contaminated

soil

Aerobic, 1 NAP (0.5 g) 100

Unusual cofactor requirements:
1,2-dihydroxynaphthalene oxygenase
activity depends on NADH and the

salicylate 5-hydroxylase requires NADPH,
ATP, and coenzyme A.

[80]
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One of the main world leaders in this field is the group of Professor Rosa Margesin
(University of Innsbruck, Austria), who has been working in this area for the past 16 years.
Margesin and colleagues have demonstrated the ability of cold-adapted strains of the
genus Rhodococcus to degrade alkanes (hexadecane) and aromatic hydrocarbons (phenol
and anthracene) at low temperatures. The potential of 89 cold-adapted isolates from
yeasts and bacteria capable of growth and production of various enzymes (catechol 1,2-
dioxygenase, amylase, β-lactamases, β-galactosidase, lipase, and protease) at 10 ◦C was
studied. The effect of temperature on the biodegradation of diesel fuel by yeasts in mineral
medium and soil (4–30 ◦C) was studied. Prof. R. Margezin and colleagues have written
several reviews on the applied aspects of enzymes from cold-adapted microorganisms,
including a wide range of the metabolic activities of psychrotrophic and psychrophilic
microorganisms in alpine cold ecosystems polluted by oil hydrocarbons [114–121].

Several Spanish authors [122–124] and researchers from China [125,126] demonstrated
the ability of psychrotrophic hydrocarbon-oxidizing bacteria to degrade oil or diesel fuel
under laboratory conditions at low temperatures of 4–15 ◦C. Additionally, studies on
the analysis and mechanisms of the adaptation of psychrophilic and psychrotrophic mi-
croorganisms oxidizing hydrocarbons of oil are actively conducted. In these articles, it
is demonstrated that with a decrease in temperature, processes such as the changes in
membrane fluidity due to fatty acids composition, changes in protein and lipid composition
of the cell membrane, synthesis of carotenoids, and synthesis of cold-shock proteins take
place. It has been shown that psychrophilic enzymes have high catalytic efficiency and
low conformational stability, while the synthesis of exopolysaccharides as cryoprotectors
during cold shock is activated.

A team of Australian researchers is investigating both the impact of hydrocarbon
(diesel fuel) pollution on various Antarctic ecosystems, as well as the phytoremediation of
Antarctic soils contaminated by diesel fuel [127–131]. Another team of Australian scientists,
specifically Josie van Dorst and Belinda Ferrari at the University of New South Wales
(Kensington), are studying the microorganisms and microbial community dynamics of
Antarctic soils exposed to diesel spills [132,133]. A Canadian Research Group (McGill
University) is investigating the bioremediation of oil-contaminated Arctic soils in northern
Canada by stimulating native microorganisms and changing soil microbiocenoses (compo-
sition and abundance of microorganisms) [134–137]. An American/Canadian Arctic team
(Terrence Bell at Cornwall University; Etienne Yergeau and David Juck of the National
Research Council of Canada; and Lyle White and Charles Greer at McGill University) is
studying the effects of diesel fuel on native microbial communities of Canadian Arctic
soils and its degradation by autochthonous soil microorganisms [138,139]. Bioremediation
methods have a few incomparable advantages, such as the safety, speed, low cost, and high
efficiency of the removal of pollutants from the environment.

6. Conclusions

Thus, based on the data of the cited literature, several conclusions can be drawn
regarding the importance of the research being carried out and their directions. First, the
data obtained allow us to develop effective systems for cleaning contaminated sites using
biopreparations. However, interest in the processes of the biodegradation of hydrocarbons
is not limited to practical purposes only. All over the world, research is being carried out to
study the ecological, biochemical, and genetic aspects of the microbial degradation of oil
and its components.

Under conditions of increasing environmental pollution by compounds of natural and
anthropogenic origin, the metabolic capabilities of existing natural microbial communities
are changing and new microbiocenoses are being formed, including those due to introduced
bacteria-destructors. Understanding these processes will allow us not only to restore
disturbed ecosystems but also their intelligent management.

In this regard, research at the metagenome level comes to the forefront. The problem
is that a large number of cultivation-independent methods have shown that contaminant-
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degrading organisms obtained by accumulation culture in the laboratory are often not suf-
ficiently efficient in the in situ biodegradation of contaminants. Many pollutant-degrading
organisms in environmental samples have been shown to be very abundant but are repre-
sented by non-culturable forms [140–142]. In this context, many relationships, including
interspecies relationships between organisms, are very often left unexplored when study-
ing the physiology of degrading bacteria. According to this scenario, it is appropriate to
use molecular microbial tools to identify key catabolic players in polluted sites, to predict
contaminant degradation networks in the environment, and to propose methods for ratio-
nal interventions associated with bioremediation implementation. A good illustration is
the study of Guazzaroni et al. (2013), in which the authors, using a metagenomic approach,
performed a thorough and holistic (or ecosystem approach) phylogenetic, functional, and
proteomic analysis of bacteria in naphthalene-contaminated soil [143]. They examined
samples with an enriched microbial community obtained from the soil and samples of
the same soil biostimulated with biogenic elements. In all cases, the biodegradation net-
works of the respective whole communities were reconstructed. This study elucidated
the genomic and proteomic basis for understanding microbial biodiversity, ecology, and
function in response to PAHs (represented by naphthalene) and biostimulation. Based on
a comparison of protein expression profiles and metagenome datasets, hypotheses about
the interactions between members of microbial communities were hypothesized. For the
first time, the authors used databases to reconstruct “putative” degradation networks of
complex microbial communities.

Based on metaproteomic and taxonomic data, the authors proposed a meta-network
approach in which they used expression levels and taxonomic definitions of proteins as
the most relevant clues to infer an active set of reactions in the naphthalene-degrading mi-
crobial community [144]. The approach was applied to develop context-specific metabolic
networks of two different naphthalene-enriched communities originating from anthro-
pogenically contaminated soil. The authors were able to detect common functional dif-
ferences between the two states of microbial communities (under biostimulation and not
under biostimulation) at the metabolic level. In addition to the population level, the organi-
zation of different pathways at the organismal level has been established, which is relevant
to the division of the role of each member in communities.

To summarize, we can say that the microbial bioremediation of soils, bottom sediments,
and waters polluted with toxicants of anthropogenic origin is quite an effective tool. The
ability of microorganisms to degrade oil components is the result of genetic adaptation, thus
a in-depth understanding of all aspects of the degradation mechanism at the molecular–
genetic level is necessary.

High-throughput technologies such as genomics, proteomics, transcriptomics, and
metabolomics are needed to elucidate the genetic pathways involving catabolic genes and
their regulation mechanisms [145]. These studies will contribute to understanding the
mechanisms of destruction not only at the cellular level but also within the context of the
microbial community, understanding the relationships of all organisms in the ecosystem
and therefore making it possible to both establish predictions and manage the biocenosis.
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