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Abstract — In this paper, the phenomenological Bouc-Wen 
model is analyzed as it has found wide application for functional 

description of nonlinear hysteretic systems and phenomena 

which are common for different engineering fields. Being 

formulated as a system of differential equations, the model has 

proven its versatility and feasibility across a broad range of 

theoretical and engineering problems and can be used as a 

hysteresis quantizer within a more complex system. The model 

allows it to be retuned and adjusted to new operation mode 

barely due to parameter setting with no amendments to its 

structure. The parameter values effect on the hysteresis loop 

significantly influencing its shape and size, and the model 

response to the input disturbance as well. Thus, the model 

parameter identification becomes an urgent problem and solving 

it, the best performance of the model can be achieved, which 

results in accurate and adequate behavior of the model. 

Therefore, the paper considers standard and extended 

modifications of the Bouc-Wen model, where the hysteresis is 

described without regard for energy dissipation or with 

degradation and pinching effects factored in correspondingly. 

Essential parameters of the model are studied in detail and 

classified depending on their impact on the shape and size of the 

hysteretic curve and response of the model as a consequence. 

Also, according to the research results, the efficient parameter 

ranges are recommended to provide the adequate model 

response to the input excitation.   

Keywords: hysteresis, the Bouc-Wen model, parameter 

identification, modeling. 

I. INTRODUCTION  

Hysteresis is a widely observed phenomenon, both in 

natural and designed nonlinear systems, being an intrinsic 

property of such a system or a consequence of degradation 

and imperfections in it. It reveals itself in number of fields, 
including fundamental physical mechanisms [1], solid-state 

theory [2], economic systems [3], biological systems [4-5], 

and others. Also, it can be intentionally built into a system 

to monitor its behavior [6]. Regardless to its origin, the 

hysteresis effect has two crucial features: lagging and rate 

independence [7]. The first of them, the lagging effect, can 

be effectively described by knowing that a system 

undergoing hysteresis contains a slippage or retarding effect 

when the operating force reverses its sign. The second 

particularity, rate independence, implies that a system’s 

response to the inputs depends on the input value, rather 
than the input’s velocity variations.  

From a mathematical point of view, all the hysteresis 

models can generally be divided into two classes according 

to their hysteresis nonlinearity types: differential models 

that have local memories and a Preisach model type with 

nonlocal memories. The latter uses the concept of operators 

[7], formulated and elaborated by Krasnoselskii, Pokrovskii, 

and Mayergoyz to become a classical Preisach model [8]. 

Hysteresis with local memories can be distinguished from 

other models by the property of being based on differential 

equations. One of the most utilized and widely accepted 

differential model is the Bouc-Wen model [9]. This one opts 

for using first-order nonlinear differential equations that 
relate input displacement to output restoring force in a 

hysteretic way and has been proven as an incredibly 

versatile tool in hysteresis study.  

One of the advantages of the differential models is their 

possibility to be embodied directly into the differential 

equations that guide the motion of a particular system while 

assigning values to the parameters that define the system’s 

behavior. There are no hysteretic operators in this prospect. 

Thus, the Bouc-Wen model can often be simpler to perform 

versus the non-differential Preisach model due to reliance of 

the former on differential equations [10-11]. 
The Bouc-Wen model deals with first-order differential 

equations that comprise a number of parameters to describe 
the hysteresis phenomenon. The influence of the parameters 
on the shape and size of the hysteresis loop is highly 
nonlinear and is difficult to assess. The parameters 
relationship and their joint effect on the model behavior are 
the research point of this paper. The Bouc-Wen model has 
been widely spread for its application to inverse problems, 
where evaluation of the model parameters is required to 
produce a curve which follows the experimental data with 
maximum accuracy [12-13]. Previously, this model was 
proposed as a hysteresis quantizer for biological artificial 
neural network with nonlinear activation function as a 
trigger-control mechanism designed to accurate and instant 
signal switching within the bioANN, as cellular systems 
show enhanced hysteretic switching in noisy environments, 
which can provide a reliable background for decision 
making and calculation process [14]. Hence, the parameter 
identification problem is of high urgency for the Bouc-Wen 
modeling, though, it will be shown that it could be 
efficiently performed for only certain types of hysteresis 
loops, while there are other loop shapes where it is less 
optimal. 

II. PHYSICAL BACKGROUND OF THE BOUC-WEN MODEL 

The Bouc-Wen model can be presented in the abstract 
form. The modeled object should be simplified and given as 
an equivalent system that consists of a mass m paralleled to a 
linear spring k, a linear viscous damper с, and a hysteretic 
element z(t) (Figure 1). The characteristics of such simplified 
system elements may be set empirically ad hoc depending on 
the problem to be solved. Nevertheless, the Bouc-Wen model 
is not to be deemed as entirely empirical and escapes 
weaknesses that empirical models have, when the data 
obtained are only valid for the case studied and may not be 
extrapolated out-of-case. Instead, including such physical 
entities as damper, spring, and mass, the Bouc-Wen model is 
valid for a diverse range of inputs due to its adjustable 



parameters and has been actively used in engineering 
mechanics and other fields. 

 
Fig. 1. Mechanical interpretation of a hysteretic single degree of freedom 

system  

 

Here, the model comprises linear and nonlinear 

components within. The nonlinear behavior is performed via 
the hysteretic element, e.g. a nonlinear spring (Fig. 1). The 

hysteretic force is a function of hysteretic variable z = z(t) 

(or hysteretic displacement), which is a function of the total 

displacement, x. The vise-versa scheme where hysteretic 

displacement is a function of the hysteretic force is also 

appropriate. The nonlinear response of the model is 

controlled by the energy absorbed by the hysteretic element 

and the hysteretic displacement z. Thereat, the Bouc-Wen 

model allows describing a nonlinear hysteretic system in 

coordinate representation x(t)  FR(x)(t): 
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Initially this model was conforming to mechanical 

systems, where x is a displacement, FR is restoring force, 

and elastic hysteresis FR (x)(t) is a superposition of elastic 

component kx  and hysteresis component (1 – )Dkz(t). In 

(1), D stands for plastic yield displacement, D > 0,  and  

defines the ratio of final stiffness kf  to initial stiffness ki 

stiffness, 0 <  < 1 (Fig. 2):  
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According to (1), x represents the input time history and 

FR is the hysteretic output time history. If both variables are 

bounded, the bounded input – bounded output (BIBO) 

model property leads to its stability, other options are 

unbounded input or unbounded response, which cause 

unstable behavior  of the model [9]. 

 
Fig. 2. Defining initial and final stiffness via the hysteresis loop 

III. THE BOUC-WEN MODEL MODIFICATIONS 

A. Classical model 

The hysteretic displacement z is a function of the 

hysteretic force. Thus, a hysteresis curve can be obtained as 

a rate-type dependency between the hysteretic displacement 

z with x (x = x(t)), as z varies with x at different rates 

depending on the movement phase (loading or unloading) 

and displacement level. Therefore, an elliptic type of 

hysteresis can be observed when z increases more rapidly at 

small negative x under loading and decreases at large 

positive x under unloading. At larger displacements, the 
Bouc-Wen model expresses z in form of the differential 

equation 
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where x is total displacement of the mass; z is hysteretic 

displacement, a phase dimensionless parameter of 

hysteresis, z = z (t); Α is a parameter controlling hysteresis 

amplitude; β, γ, n are the parameters describing shape and 
amplitude of hysteresis, n defines smoothness of elastic-

non-elastic transition, whereas the larger the integer values 

of n, the more abrupt the transition is, n  1, D > 0. Equation 

(3) describes a non-pinching and non-degrading type of a 

nonlinear hysteretic system, a standard Bouc-Wen model 

with five key parameters. It can be written in extended form 

with more parameters to include dissipative effects (7)-(14). 

As it follows from (3), the parameter A influences on z 

varying with time and regulates the hysteretic displacement 

amplitude zmax. Thus, A controls hysteretic stiffness: when 

describing the hysteresis by a continuous function, then the 

hysteretic stiffness is equal to zero at the local maximum or 

minimum, which are the points on the hysteresis loop where 
the movement direction shifts. There, at an infinitely small 

distance dz away from zmax, where the velocity is close but 

not equal to zero, the hysteretic displacement is as follows 
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To enhance versatility of the model, the parameter A 

may be varied with dissipated energy. Still, this parameter is 

a slightly redundant regarding the fact that both, hysteretic 
stiffness and hysteretic force, being a function of the 

hysteretic displacement range, can be varied by the 

parameters β, γ, n, the rigidity ratio α, and degradation 

parameters in case of the extended model (7)-(14). Hence, if 

the parameter A is set equal to 1.0, a non-degrading non-

pinching hysteretic system with no energy dissipation can 

thereby be described as 
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B. Extended model 

In standard form, the Bouc-Wen model is formulated as 

(3) or (6). The model parameters defining the shape and size 

of the hysteresis loop are β, γ, n, α, and A. Regarding to the 



energy dissipation which takes place in most of the 

hysteretic systems and including the pinching and 

degradation effects, the Bouc-Wen model can be formulated 

as follows [15]: 
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Nonlinear pinching function can be stated as: 
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where 1 defines the pinching rate and slope, 0 ≤ 1< 1; 2  
characterizes the pinching spread: 
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Parameters , p, q, , , S are the loop pinching 

parameters: q and p dictate the pinching level and the initial 

drop of the pinching area’s slope respectively; S defines 

displacement (the total slip), its larger values correspond to 

stronger pinching effect;  contributes to amount of pinching 

and  is the spread of it within the loop,  is a pinching ratio 

that defines connection between 1 and 2. 

The response history dependency of the model is 

formulated as follows: 
 

v () = v0 + v ;     (11) 

 

 () = 0 +  ;    (12) 
 

A() = A0 – A ,    (13) 
 

where v and  define strength and stiffness degradation 

correspondingly, and A – dependency of A to the absorbed 

hysteretic energy  = (t); v0 = 0 = A0 = 1. Dissipated 

energy:  
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where ωn is pseudo-natural frequency of a nonlinear system. 
The value of (14) controls system dissipativity – both 
strength and stiffness degradation and pinching The term 
“strength degradation” is not precise though as far as strength 

degradation can only be modeled when displacement to be 
the input. Also, other extensions of the Bouc-Wen model are 
applicable depending on the problem context [11, 13]. 

IV. THE MODEL PARAMETERS AND THEIR EFFECT ON THE 

HYSTERESIS LOOP 

According to (7)-(14) for the extended type of the Bouc-

Wen model, we have the following set of parameters 

(Table 1).  

The differences between the analytical expressions of the 

Bouc-Wen model types result in different response to the 

input disturbance as well (Fig. 3). If the pinching function 

(8) and response history dependencies (11)-(12) are set to 

1.0 (h(z) = v =  = 1), both the pinching effect and 

degradation disappear from the hysteresis loop, which then 

follows standard non-pinching shape (3).  

 
TABLE 1. PARAMETERS OF THE BOUC-WEN MODEL  

 

As long as the input is induced by a steadily increasing 

periodic force (Fig. 3, a), and nor pinching neither 

degradation is factored in, the model (3) describes an elliptic 

curve depending on the values of the parameters n, β, and γ 

(Fig. 3, b). Once energy dissipation parameters are included, 

the hysteresis loop is no more elliptic and becomes pinched 

(Fig. 3, c). From the standard model type (3), the key 

parameters associated with the Bouc-Wen model are: the 

rigidity ratio , the hysteresis amplitude controlling 

parameter 𝐴, and the hysteresis loop shape controlling 

parameters β, γ, and 𝑛, which are the hysteresis parameters 

in Table 1.  
 

 

  
а) b) c) 

Fig. 3. A hysteresis loop sample for standard (b) and extended (c) Bouc-Wen models induced by a steadily increasing periodic force (a) 

№ Parameter Description 

  hysteresis parameters 

1.  β describes shape and size of hysteresis loop  

2.  γ describes shape and size of hysteresis loop 

3.  n describes shape and size of hysteresis loop 

4.  α rigidity ratio 

5.  Α controls hysteresis amplitude 

  pinching parameters 

6.  λ pinching parameter 

7.   defines the severity and rate of pinching 

8.  p controls the rate of initial drop in slope 

9.  ψ pinching parameter 

10.  δψ specifies the rate of pinching with z 

  degradation parameters 

11.  δΑ specifies the dependency of A to dissipated energy 

12.  δν degradation parameter 

13.  δη degradation parameter 



There are some inherent difficulties when it comes to 
fitting the Bouc-Wen model to a wide range of hysteretic 
data, partially because of the simultaneous error 
minimization with these parameters. This often leads to local 
minimums in the least squares approach, which may or may 
not be in a good overall fit [16]. Figures from 4 till 9 show 
how each of the key parameters effects on the overall shape 
of the standard Bouc-Wen model hysteresis loop. In each 
scenario, there is only one parameter changing, while the 
others hold the following values, chosen partially arbitrarily 

for creating a medium-sized loop:  = 0.5, β = 4, γ = 2, 
𝐴 = 0.8, 𝑛 = 1. 

Numerous research results state that values of three 
parameters, namely β, γ, and n, and their interrelation 
determine the basic shape and size of the hysteresis loop. For 
the amplitude controlling parameter 𝐴 and loop controlling 
parameter 𝑛, the following trends can be noticed: as 𝐴 
increases, the loop grows wider and slope becomes sharper 
(Fig. 4); as 𝑛 increases, the transition between elastic and 
post-elastic areas of the loop becomes more abrupt (Fig. 5), 
for large values, the hysteretic curve approaches that of the 
bilinear model [11]. There is a strong linear correlation 
between β and γ, thus, changing setting for β and γ 
proportionally reveals relatively low sensitivity of the Bouc-
Wen model to the absolute values of the parameters except 
for their excessive values (more than 50.0), as this causes 
significant distortion. Hysteretic stiffness and strength 
correspond inversely to the absolute values of β and γ, as 
well as smoothness of the curve, still, their influence is not 
significant (Fig. 6, 7). Also, the model shapes up to softening 
or hardening hysteretic behavior if β < 0 and β > 0 
correspondingly, and to linear hysteretic behavior, if β = 0 
(Fig. 8).  

 
 

Fig. 4. Hysteresis loop shape for different values of A 

 

 
Fig. 5. Hysteresis loop shape for different values of n 

 

 
 

Fig. 6. Hysteresis loop shape for different values of γ 

 

 
 

Fig. 7. Hysteresis loop shape for different values of β 

 

 
Fig. 8. Hysteresis loop shape for different signs of β  

 

Much more sensitivity the model demonstrates to the 

relative value of β with respect to γ or vice versa. The 

balance between these two parameters specifies whether the 

model corresponds to hardening or softening input-output 

dependency (Fig. 9). Setting n = 1.0, the following 

relationships between β and γ affecting the hysteresis loop 

can be observed: 

1) β + γ > 0;  γ – β < 0 stands for weak softening and for 

loading mode, if second condition is replaced by 

equation (γ – β = 0); 
2)  β + γ > β – γ defines strong softening both for loading 

and unloading, which narrows the hysteresis loop; 

3) β + γ = 0; γ – β < 0 describes weak hardening; 

4) β + γ < 0; β + γ > γ – β describes strong hardening. 



 
 

Fig. 9. Hysteresis loop shape for various combinations of β and γ 

 
The Bouc-Wen model is highly dependent on its 

parameter values, and there are plenty of parameter 
combinations that will lead to unusable results. The results 
obtained and research review of parameter identification [14-
17] allows some bottom-lining as for parameter setting that 
proves to be reasonable bounds for numerous cases of the 
hysteresis modeling. The parameter ranges given in Table 2 
below provides stable and complete hysteresis loops of 
standard type of the model. 

TABLE 2. A SAMPLE OF THE OPTIMAL BOUC-WEN 

PARAMETER RANGES 

 

Parameter 
Values  

min max 

𝛼 0.2 0.8 

𝛽 3.0 5.0 

𝛾 1.1 3.0 

𝐴 0.4 1.1 

𝑛 1.0 2.0 

 
The parameter bounds specified above provide an 

adequate response of the model for certain types of hysteresis 
loops. Nevertheless, for the loops with significant shape or 
size distortions – large width, extremely skinny area, etc. – 
the parameter ranges need to be revisited. In the generation 
of the Bouc-Wen hysteresis curve, the differential equations 
draw the loop from quiescent conditions. The Bouc-Wen 
loop is also prone to have variability in its amplitude before 
setting in a more consistent pattern after several iterations. 
Thus, the Bouc-Wen model is allowed to run for many 
cycles, with the last complete cycle being used as a baseline 
loop. 

 

V. CONCLUSIONS 

 

Given that all the key parameters of the standard Bouc-

Wen model have been detailed, the model can be solved for 

bounded input – bounded output case using appropriate 
software. Extended modification of the model to be 

simulated according to its parameters. Depending on the 

case, the identification problem may have unique or more 

than one solution. Nevertheless, such a solution is highly 

sensitive to the model parameter values and their 

interrelation, especially when restoring force is deemed as 

independent variable. This handicaps the parameters 

accurate identifying manually by trial and error and 

demands for sound identification approach to be found. 

Despite its versatility and ability to perform smoothly 

pinched hysteresis curves varying in their sizes and shapes, 

the Bouc-Wen model is not fully appropriate for any 
hysteretic system. Thus, the Bouc-Wen model may be 

malfunctioned for slack systems, where initial stiffness is 

zero or next to zero until the slack is passed, or has some 

limitations [18]. Other limitations of the model come as 

natural sequences of the following aspects: 1) being highly 

dependent on dissipated energy, the model describes the 

hysteresis behavior of a system with similar energy 

characteristics as the one the model was adjusted to; 2) 

versatility of the model becomes moderate once 

experimental data are not noise-free, and here, the fitting 

problem arises. 

Thus, while the Bouc-Wen model may give a good 
approximation of a true hysteresis loop for a specific input 

excitation used with parametric identification or tuning 

purposes, it may not be appropriate to represent the behavior 

of a true hysteretic system under general input excitations 

without proper parameter adjusting. Therefore, finding an 

approach to the model parameter identification seems to be 

the focus point for further research. 
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