Approximation Properties of Discrete Boundary Value Problems for Elliptic Pseudo-Differential Equations

Oksana Tarasova and Vladimir Vasilyev

Abstract We study some discrete boundary value problems which are treated as digital approximation for starting boundary value problem for elliptic pseudodifferential equation. Starting from existence and uniqueness theorem we give a comparison between discrete and continuous solutions for certain boundary value problems.

1 Introduction

We study a discrete variant of the following boundary value problem

$$\begin{cases} (Au)(x) = f(x), & x \in D, \\ (Bu)|_{\partial D} = g \end{cases}$$
(1)

where A, B are simplest elliptic pseudo-differential operators [1-3] with symbols $A(\xi)$, $B(\xi)$, acting in Sobolev–Slobodetskii spaces $H^s(D)$, $D \subset \mathbb{R}^m$ is a certain bounded domain, f, g are given functions.

Discrete variants of similar problems for differential operators were studied earlier (see, for example [4] with difference schemes, or [5] with difference potentials), but we would like to develop an approach for more general pseudo-differential operators and related equations. This approach is based on a concept of periodic factorization for an elliptic symbols and it is a discrete analogue of corresponding continuous methods [1].

Some first studies in this direction were done in [6-15].

O. Tarasova · V. Vasilyev (2)

1089

Belgorod State National Research University, Belgorod, Russia e-mail: tarasova_o@bsu.edu.ru

[©] Springer Nature Switzerland AG 2021

F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139, https://doi.org/10.1007/978-3-030-55874-1_108

2 Digital Operators and Discrete Boundary Value Problems

Here we will describe our approach to studying discrete equations and boundary value problems.

Given function u_d of a discrete variable $\tilde{x} \in h\mathbb{Z}^m$, h > 0, we define its discrete Fourier transform by the series

$$(F_d u_d)(\xi) \equiv \widetilde{u}_d(\xi) = \sum_{\tilde{x} \in \mathbf{Z}^m} e^{i\tilde{x} \cdot \xi} u_d(\tilde{x}), \quad \xi \in \hbar \mathbf{T}^m,$$

where $\mathbf{T}^m = [-\pi, \pi]^m$, $\hbar = h^{-1}$, and partial sums are taken over cubes

$$Q_N = \{ \tilde{x} \in h \mathbf{Z}^m : \tilde{x} = (\tilde{x}_1, \cdots, \tilde{x}_m), \max_{1 \le k \le m} |\tilde{x}_k| \le N \}.$$

We will remind here some definitions of functional spaces [12] and will consider discrete analogue $S(h\mathbf{Z}^m)$ of the Schwartz space $S(\mathbf{R}^m)$. Let us denote $\zeta^2 = h^{-2} \sum_{k=1}^{m} (e^{-ih \cdot \xi_k} - 1)^2$.

The space $H^s(h\mathbf{Z}^m)$ is a closure of the space $S(h\mathbf{Z}^m)$ with respect to the norm

$$||u_d||_s = \left(\int_{\mathbf{A}\mathbf{T}^m} (1+|\zeta^2|)^s |\tilde{u}_d(\xi)|^2 d\xi\right)^{1/2}.$$
 (2)

Fourier image of the space $H^s(h\mathbf{Z}^m)$ will be denoted by $\widetilde{H}^s(\hbar\mathbf{T}^m)$.

One can define some discrete operators for such functions u_d .

If $\widetilde{A}_d(\xi)$ is a periodic function in \mathbf{R}^m with the basic cube of periods $\hbar \mathbf{T}^m$ then we consider it as a symbol. We will introduce a digital pseudo-differential operator in the following way.

Definition 1 A digital pseudo-differential operator A_d in a discrete domain D_d is called the operator [12]

$$(A_d u_d)(\tilde{x}) = \sum_{\tilde{y} \in h \mathbf{Z}^m} \int_{h \mathbf{T}^m} \widetilde{A}_d(\xi) e^{i(\tilde{x} - \tilde{y}) \cdot \xi} \widetilde{u}_d(\xi) d\xi, \quad \tilde{x} \in D_d.$$

We consider a class of symbols [12] satisfying the following condition

$$c_1(1+|\zeta^2|)^{\alpha/2} \le |A_d(\xi)| \le c_2(1+|\zeta^2|)^{\alpha/2}, \quad \alpha \in \mathbf{R},$$
(3)

and universal positive constants c_1 , c_2 .

Let $D \subset \mathbf{R}^m$ be a domain. We will study the equation

$$(A_d u_d)(\tilde{x}) = v_d(\tilde{x}), \quad \tilde{x} \in D_d, \tag{4}$$

in the discrete domain $D_d \equiv D \cap h\mathbb{Z}^m$ and will seek a solution $u_d \in H^s(D_d)$, $v_d \in H_0^{s-\alpha}(D_d)$ [12, 15].

In this paper we will discuss the case $D \equiv \mathbf{R}^m_+$.

Let $\tilde{A}_d(\xi)$ be a periodic symbol. Let us denote Π_{\pm} half-strips in the complex plane **C**

$$\Pi_{\pm} = \{ z \in \mathbf{C} : z = s + i\tau, s \in [-\pi, \pi], \pm \tau > 0 \}.$$

Definition 2 Periodic factorization of an elliptic symbol $A_d(\xi) \in E_\alpha$ is called its representation in the form

$$A_d(\xi) = A_{d,+}(\xi)A_{d,-}(\xi),$$

where the factors $A_{d,\pm}(\xi)$ admit an analytical continuation into half-strips $\hbar \Pi_{\pm}$ on the last variable ξ_m for almost all fixed $\xi' \in \hbar \mathbf{T}^{m-1}$ and satisfy the estimates

$$|A_{d,+}^{\pm 1}(\xi)| \le c_1 (1+|\hat{\zeta}^2|)^{\pm \frac{x}{2}}, \quad |A_{d,-}^{\pm 1}(\xi)| \le c_2 (1+|\hat{\zeta}^2|)^{\pm \frac{\alpha-x}{2}},$$

with constants c_1 , c_2 non-depending on h,

$$\hat{\zeta}^2 \equiv \hbar^2 \left(\sum_{k=1}^{m-1} (e^{-i\hbar\xi_k} - 1)^2 + (e^{-i\hbar(\xi_m + i\tau)} - 1)^2 \right), \quad \xi_m + i\tau \in \hbar\Pi_{\pm}.$$

The number $x \in \mathbf{R}$ is called an index of periodic factorization.

We consider the following discrete boundary value problem

$$\begin{cases} (A_d u_d)(\tilde{x}) = v_d(\tilde{x}), & \tilde{x} \in \mathbf{R}_+^m \\ (B_d u_d)_{|_{\tilde{x}_m=0}} = g_d(\tilde{x}'), & \tilde{x}' \in \mathbf{R}^{m-1}, \end{cases}$$
(5)

such that the discrete boundary value problem (5) will have good approximation properties for initial boundary value problem.

3 Solvability and Comparison

This section is devoted to the following questions:

- 1. to establish solvability for our discrete boundary value problem;
- 2. to give a comparison between discrete and continuous solutions.

Solvability 3.1

To describe solvability for the boundary value problem (5) we introduce the following notations.

$$(H^{per}_{\xi'}\tilde{u}_d)(\xi',\xi_m) = \frac{\hbar}{2\pi i} p.v. \int_{-\hbar\pi}^{\hbar\pi} \cot \frac{\hbar(\xi_m - \eta_m)}{2} \tilde{u}_d(\xi',\eta_m) d\eta_m,$$

where

$$p.v. \int_{-\hbar\pi}^{\hbar\pi} \cot \frac{h(\xi_m - \eta_m)}{2} \tilde{u}_d(\xi', \eta_m) d\eta_m$$

~

$$= \lim_{\varepsilon \to 0+} \left(\int_{-\hbar\pi}^{\xi_m - \varepsilon} + \int_{\xi_m + \varepsilon}^{\hbar\pi} \right) \cot \frac{h(\xi_m - \eta_m)}{2} \tilde{u}_d(\xi', \eta_m) d\eta_m$$

This operator generates two projectors

$$P_{\xi'}^{per} = \frac{1}{2}(I + H_{\xi'}^{per}), \quad Q_{\xi'}^{per} = \frac{1}{2}(I - H_{\xi'}^{per}),$$

which permit to formulate and solve the following problem.

The following theorem was proved in the paper [7].

Theorem 1 Let $\mathfrak{X} - s = n + \delta$, $n \in \mathbb{N}$, $|\delta| < 1/2$. Then a general solution of Eq. (4) in Fourier images has the following form

$$\tilde{u}_{d}(\xi) = \tilde{A}_{d,+}^{-1}(\xi) X_{n}(\xi) P_{\xi'}^{per}(X_{n}^{-1}(\xi) \tilde{A}_{d,-}^{-1}(\xi) \widetilde{\ell v_{d}}(\xi)) + \tilde{A}_{d,+}^{-1}(\xi) \sum_{k=0}^{n-1} \tilde{c}_{k}(\xi') \hat{\zeta}_{m}^{k},$$

where $X_n(\xi)$ is an arbitrary polynomial of order n of variables $\hat{\zeta}_k = \hbar (e^{-i\hbar\xi_k} - i\hbar\xi_k)$ 1), $k = 1, \dots, m$, satisfying the condition (2), $c_k(\xi')$, $j = 0, 1, \dots, n-1$, are arbitrary functions from $H^{s_k}(h\mathbf{T}^{m-1})$, $s_k = s - \mathfrak{X} + k - 1/2$, ℓv_d is an arbitrary continuation of v_d . from $H^{s-\alpha}(D_d)$ into $H^{s-\alpha}(h\mathbf{Z}^m)$

The a priori estimate

$$||u_d||_s \le a(||f||_{s-\alpha}^+ + \sum_{k=0}^{n-1} [c_k]_{s_k})$$

holds, where $[\cdot]_{s_k}$ denotes a norm in the space $H^{s_k}(h\mathbf{T}^{m-1})$, and the constant *a* does not depend on *h*.

We will apply Theorem 1 for the simple case n = 1, because we consider only one boundary condition. Then we have

$$\tilde{u}_d(\xi) = \tilde{h}_d(\xi) + \tilde{A}_{d,+}^{-1}(\xi)\tilde{c}_0(\xi'),$$
(6)

where we denote

$$\tilde{h}_{d}(\xi) = \tilde{A}_{d,+}^{-1}(\xi) X_{1}(\xi) P_{\xi'}^{per}(X_{1}^{-1}(\xi) \tilde{A}_{d,-}^{-1}(\xi) \widetilde{\ell v_{d}}(\xi))$$
(7)

The construction of a general solution for starting boundary value problem is very similar and exact, it was obtained in [1]. For our case it has the following form

$$\tilde{u}(\xi) = \tilde{h}(\xi) + \tilde{A}_{+}^{-1}(\xi)\tilde{C}_{0}(\xi'),$$
(8)

$$\tilde{h}(\xi) = \tilde{A}_{+}^{-1}(\xi) Y_{1}(\xi) P_{\xi'}(Y_{1}^{-1}(\xi) \tilde{A}_{-}^{-1}(\xi) \tilde{\ell} \tilde{f}(\xi)),$$
(9)

where $P_{\xi'} = 1/2(I + H_{\xi'})$, and $H_{\xi'}$ is the classical Hilbert transform on the last variable ξ_m

$$(H_{\xi'}u(\xi',\xi_m)=\frac{1}{\pi i}\ p.v.\int_{-\infty}^{+\infty}\frac{u(\xi',\tau)d\tau}{\xi_m-\tau},$$

 $Y_1(\xi)$ is an arbitrary polynomial of variables ξ_1, \dots, ξ_m satisfying the condition $|Y_1(\xi)| \sim 1 + |\xi|, \tilde{A}_{\pm}(\xi)$ are factors of factorization for the symbol $\tilde{A}(\xi)$.

The formulas (8), (9) are valid under assumptions that the symbols $A(\xi)$ satisfies the condition

$$c_1(1+|\xi|)^{\alpha} \le |\tilde{A}(\xi)| \le c_2(1+|\xi|)^{\alpha},\tag{10}$$

and index factorization of the symbol $A(\xi)$ equals \mathfrak{X} .

There are arbitrary functions \tilde{c}_0 , \tilde{C}_0 in the formulas (6), (8). To determine, for example, the function \tilde{c}_0 we use the boundary condition from (5). We act by the operator *B* on the solution u_d and then we take the restriction on the discrete halfplane $\xi_m = 0$. According to properties of the discrete Fourier transform we have

$$\int_{-\hbar\pi}^{+\hbar\pi} \tilde{B}_d(\xi',\xi_m)\tilde{u}_d(\xi',\xi_m)d\xi_m = \int_{-\hbar\pi}^{+\hbar\pi} \tilde{B}_d(\xi',\xi_m)\tilde{h}_d(\xi',\xi_m)d\xi_m + \tilde{c}_0(\xi')b_d(\xi'),$$

where

$$b_d(\xi') = \int_{-\hbar\pi}^{+\hbar\pi} \tilde{B}_d(\xi', \xi_m) A_{d,+}^{-1}(\xi', \xi_m) d\xi_m$$

Here we use the condition $\inf_{\xi' \in \hbar \mathbf{T}^{m-1}} |b_d(\xi'| > 0$; it is a discrete analogue of Shapiro–Lopatinskii condition [1]. Since the left hand side is $\tilde{g}_d(\xi')$ we have the following relation

$$\tilde{c}_0(\xi') = b_d^{-1}(\xi') \left(\tilde{g}_d(\xi') - \tilde{t}_d(\xi') \right), \tag{11}$$

where

$$\tilde{t}_d(\xi') = \int_{-\hbar\pi}^{+\hbar\pi} \tilde{B}_d(\xi',\xi_m) \tilde{h}_d(\xi',\xi_m) d\xi_m.$$

By substitution of (11) into (6), we obtain a unique solution for the discrete boundary value problem (5):

$$\tilde{u}_d(\xi) = \tilde{h}_d(\xi) + \tilde{A}_{d,+}^{-1}(\xi) b_d^{-1}(\xi') \left(\tilde{g}_d(\xi') - \tilde{t}_d(\xi') \right),$$
(12)

3.2 A Comparison

According to Vishik–Eskin theory [1] we have a continuous analogue of the formula (12), namely

$$\tilde{u}(\xi) = \tilde{h}(\xi) + \tilde{A}_{+}^{-1}(\xi)b^{-1}(\xi')\left(\tilde{g}(\xi') - \tilde{t}(\xi')\right)$$
(13)

under the condition $\inf_{\xi' \in \mathbf{R}^{m-1}} |b(\xi'| > 0$. Now we would like to compare two formulas (12) and (13). To simplify our considerations we put $f \equiv 0$. Then the functions h, h_d, t, t_d are zero.

To obtain a good approximation we choose certain elements for the discrete solution in a particular way.

First, let us denote by q_h the following operator of restriction and periodization; this operator acts in Fourier images. Given function \tilde{u} the notation $q_h \tilde{u}$ means that we take a restriction of \tilde{u} on $\hbar \mathbf{T}^m$ and periodically continue it into whole \mathbf{R}^m . The symbol $\tilde{A}_d(\xi)$ of the discrete operator A_d is the following. We take the factorization

$$\tilde{A}(\xi) = \tilde{A}_{+}(\xi) \cdot \tilde{A}_{-}(\xi)$$

and introduce the periodic symbol by the formula

$$\tilde{A}_d(\xi) \equiv (q_h \tilde{A}_+)(\xi) \cdot (q_h \tilde{A}_-)(\xi),$$

so we have immediately the needed periodic factorization.

Secondly, we define the symbol $\tilde{B}_d(\xi)$ of the boundary operator B_d by

$$\tilde{B}_d(\xi) \equiv (q_h \tilde{B})(\xi).$$

Third, we choose $g_d = F_d^{-1}(q_h \tilde{g})$, where

$$(F_d^{-1}\tilde{u}_d)(\tilde{x}) = \frac{1}{(2\pi)^m} \int_{\hbar \mathbf{T}^m} e^{i\tilde{x}\cdot\xi} \tilde{u}_d(\xi)d\xi, \quad \tilde{x} \in h\mathbf{Z}^m.$$

Lemma 1 Let the boundary symbol $\tilde{B}(\xi)$ satisfy the condition (10) with order β . Then the following estimate

$$|\tilde{b}_d(\xi') - \tilde{b}(\xi')| \le ch^{\mathfrak{E} - 1 - \beta}$$

holds.

Proof We give corresponding estimates:

$$|b(\xi') - b_d(\xi')| = \left| \int_{-\infty}^{+\infty} \tilde{B}(\xi', \xi_m) \tilde{A}_+^{-1}(\xi', \xi_m) d\xi_m - \int_{-\hbar\pi}^{\hbar\pi} \tilde{B}(\xi', \xi_m) \tilde{A}_{d,+}^{-1}(\xi', \xi_m) d\xi_m \right| = \left| \left(\int_{-\infty}^{-\hbar\pi} + \int_{-\hbar\pi}^{+\infty} \right) \tilde{B}(\xi', \xi_m) \tilde{A}_+^{-1}(\xi', \xi_m) d\xi_m \right|.$$

Two integrals have the same estimate and we consider the second one.

$$\int_{\hbar\pi}^{+\infty} |\tilde{B}(\xi',\xi_m)A_+^{-1}(\xi',\xi_m)|d\xi_m \le c_5 \int_{\hbar\pi}^{+\infty} (1+|\xi'|+|\xi_m|)^{\beta-\mathfrak{a}}d\xi_m = \frac{c_5}{\mathfrak{a}-1-\beta} (1+|\xi'|+\hbar\pi)^{1-\mathfrak{a}} \le ch^{\mathfrak{a}-1-\beta}.$$

Theorem 2 Let $f \equiv 0, v_d \equiv 0, g \in H^{s-\beta-1/2}(\mathbf{R}^{m-1}), g_d \in H^{s-\beta-1/2}(h\mathbf{Z}^{m-1}), s-\beta > 1/2, \alpha > 1+\beta, and$

$$\inf_{\xi'\in\mathbf{R}^{m-1}}|b(\xi')|>0, \inf_{\xi'\in\mathbf{T}^{m-1},h>0}|b_d(\xi')|>0.$$

Then boundary value problems (1) and (5) have unique solutions in spaces $H^{s}(\mathbb{R}^{m}_{+})$ and $H^{s}(h\mathbb{Z}^{m}_{+})$ respectively.

If $g \in L_1(\mathbb{R}^{m-1})$ then we have the estimate

$$|\tilde{u}_d(\xi) - \tilde{u}(\xi)| \le ch^{\mathfrak{E}-1-\beta}, \quad \xi \in \hbar \mathbf{T}^m.$$

Proof The existence and uniqueness for the problems was proved in [1] for continuous case and in [8] for discrete case, and here we have described the construction for solving discrete boundary value problem. Therefore we need to prove the estimate. We have

$$\tilde{u}(\xi) - \tilde{u}_d(\xi) = b^{-1}(\xi')\tilde{g}(\xi')A_+^{-1}(\xi',\xi_m) - b_d^{-1}(\xi')\tilde{g}_d(\xi')A_{d,+}^{-1}(\xi',\xi_m) = (b^{-1}(\xi') - b_d^{-1}(\xi'))\tilde{g}_d(\xi')A_{d,+}^{-1}(\xi',\xi_m), \quad \xi \in \hbar \mathbf{T}^m,$$

and using Lemma 1 and boundedness of \tilde{g} we complete the estimate.

References

- 1. Eskin, G.I.: Boundary value problems for elliptic pseudodifferential equations. AMS Providence (1981)
- 2. Taylor, M.E.: Pseudo-Differential Operators. Princeton Univ. Press Princeton (1980)
- 3. Treves, F.: Introduction to Pseudodifferential Operators and Fourier Integral Operators. Springer New York (1980)
- 4. Samarskii, A.A.: The Theory of Difference Schemes. CRC Press Boca Raton (2001)
- 5. Ryaben'kii, V.S.: Method of Difference Potentials and its Applications. Springer-Verlag Berlin-Heidelberg (2002)
- Vasilyev, A.V., Vasilyev, V.B.: Periodic Riemann problem and discrete convolution equations. Differ. Equ. 51, 652–660 (2015)
- Vasilyev, A.V., Vasilyev, V.B.: Pseudo-differential operators and equations in a discrete halfspace. Math. Model. Anal. 23 492–506 (2018)
- Vasilyev, A.V., Vasilyev, V.B.: On some discrete boundary value problems in canonical domains. In: Differential and Difference Equations and Applications. Springer Proc. Math. Stat. V. 230, pp.569–579, Cham: Springer (2018)
- 9. Vasilyev, A.V., Vasilyev, V.B.: On some discrete potential like operators. Tatra Mt. Math. Publ. **71** 195–212 (2018)
- Vasilyev, A.V., Vasilyev, V.B.: On a digital approximation for pseudo-differential operators. Proc. Appl. Math. Mech. 17 763–764 (2017)

- Vasilyev, V.B.: Discreteness, periodicity, holomorphy and factorization. In: Constanda, C., Dalla Riva, M., Lamberti, P.D., Musolino, P. (eds.) Integral Methods in Science and Engineering. V.1, pp. 315–324. Theoretical Technique. Springer, Cham. (2017)
- Vasilyev, A., Vasilyev, V.: Digital Operators, Discrete Equations and Error Estimates. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126, pp. 983–991. Springer, Cham. (2019)
- Vasilyev, V.B.: Digital Approximations for Pseudo-Differential Equations and Error Estimates. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science, vol 11189, pp. 483–490. Springer, Cham. (2019)
- Vasilyev, V.B.: On a Digital Version of Pseudo-Differential Operators and Its Applications. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science, vol 11386, pp. 596–603. Springer, Cham. (2019)
- 15. Vasilyev, V.: The periodic Cauchy kernel, the periodic Bochner kernel, and discrete pseudodifferential operators, *AIP Conf. Proc.* **1863** 140014 (2017)