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2 Digital Operators and Discrete Boundary Value Problems

Here we will describe our approach to studying discrete equations and boundary
value problems.

Given function ud of a discrete variable x e hZm, h > 0, we define its discrete
Fourier transform by the series

(Fdudm = Wd(£) = J2 eiX*ud(X), £ e hTm,
XeZm

where Tm= [—n, n]m, h = h-1, and partial sums are taken over cubes

= {xehZm:x = (X1, e xm), max \xk\ < N}.
Qn = { ( ), max }

We will remind here some definitions of functional spaces [12] and will consider
discrete analogue S(hzZm) of the Schwartz space S(Rm). Let us denote Z2 =
m

h—2J2 (e—ih'&k —1)2.
k=1
The space Hs(hZm) is a closure of the space S(hZm) with respect to the norm

( Vi

S I (1 + |Z2V)S\u,d(H)\2d£ . 2)
hTm )

Fourier image of the space H S(hZm) will be denoted by Hs(hTm).

One can define some discrete operators for such functions ud.

If Ad(£) is a periodic function in Rm with the basic cube of periods hTm then
we consider it as a symbol. We will introduce a digital pseudo-differential operator
in the following way.

Definition 1 A digital pseudo-differential operator Ad in a discrete domain Dd is
called the operator [12]

(AdUd)(x) = £ f Hd(H)ei{x~yHUd(£)dE, ie Dd,
yehZmhTm

We consider a class of symbols [12] satisfying the following condition
Ct(1 + 122\)“/2 <\Ad(H)\<c2(1 + |Z2V)a/2, a e R, (3)

and universal positive constants c1, c2.



Let D ¢ Rmbe adomain. We will study the equation

(Adud)(x) = Vd(x), xe Dd, (4)
in the discrete domain Dd = D M hZm and will seek a solution ud e Hs(Dd),
vd e HS-a (Dd) [12, 15].

In this paper we will discuss the case D

R+.
Let Ad(f) be a periodic symbol. Let us denote M=+ half-strips in the complex
plane C

M ={zeC:z=s+it,se[—,n] 7 > 0}

Definition 2 Periodic factorization of an elliptic symbol Ad(f) e Ea is called its
representation in the form

Ad(") = Ad,+(H)Ad, HH),

where the factors Ad,+(f) admit an analytical continuation into half-strips hifl+ on
the last variable 8m for almost all fixed §' e hTm—1 and satisfy the estimates

N <ci(l+ Iph)n, N < c2(1+ |p])x2n,
with constants c1, c2 non-depending on h,
1

\
2 (e—ihfk — 1)2 + (e—ih(fm+T) — 1)2j

8m+ ir e hM+.

The number x e R is called an index of periodic factorization.

We consider the following discrete boundary value problem

Adud
(lédulé)\)ns)%

Vdgx), X eRm (5)
gd(x'), x' e Rim—i

such that the discrete boundary value problem (5) will have good approximation
properties for initial boundary value problem.

3 Solvability and Comparison

This section is devoted to the following questions:

1. to establish solvability for our discrete boundary value problem;
2.

to give a comparison between discrete and continuous solutions.



3.1 Solvability

To describe solvability for the boundary value problem (5) we introduce the
following notations.

He "W pej aimisidipim
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This operator generates two projectors

Pf=b(U+HTF), Q*r=\{i-H*r),

which permit to formulate and solve the following problem.
The following theorem was proved in the paper [7].

Theorem 1 Letxx—s = n+ S,n e N, |5 < 1/2. Then a general solution ofEq. (4)
in Fourier images has thefollowingform

n—
Ud (%) = A -3+ (%)Xn(%)P@er(X—1(%)A-1—%)i*d (%)) + A=X(%)J2~ck(%'Y C
k=0

where Xn(% is an arbitrary polynomial of order n of variables Zk = h(e—h% —
1), k = 1, e« m, satisfying the condition (2), ck(%),j = 0, 1, mm n — 1 are
arbitrary functionsfrom H Sk(hTm—1), sk = s —x + k — 1/2, Ivd is an arbitrary
continuation of vd.from Hs—a(Dd) into Hs—a(hZm)

The apriori estimate



holds, where [-Lk denotes a norm in the space Hsk(hTm 1), and the constant a does
not depend on h.

We will apply Theorem 1 for the simple case n = 1, because we consider only
one boundary condition. Then we have
Ud(b) = hid(b) + A-1+(£)co(£"), (6)
where we denote
hd(b) = A-+(")X1(")prer(X-1(MA__(b)1lu (b)) ™

The construction of a general solution for starting boundary value problem is
very similar and exact, it was obtained in [1]. For our case it has the following form

U(b) = hi(b) + A+1(b)Co(i’), (8)
h(b) = A+ HAYAPA (Y_1(b)Ar(b)If(b)), 9)

where Pb/ = 1/2(1 + Hb/), and Hb/ is the classical Hilbert transform on the last
variable bm

+<A
u(b', TYdT
(Ww(b',bT) = ~ pv. [

Yi(b) is an arbitrary polynomial of variables bl, «s« ,bm satisfying the condition
[Y ()] ~ 1+ |b|, Ax(b) are factors of factorization for the symbol A(b).

The formulas (8), (9) are valid under assumptions that the symbols A(b) satisfies
the condition

cl(1 + 1b)“ < |A(b)|<c2(1 + Ib])“, (10)

and index factorization of the symbol A(b) equals s.

There are arbitrary functions c0, CO in the formulas (6), (8). To determine, for
example, the function cO we use the boundary condition from (5). We act by the
operator B on the solution ud and then we take the restriction on the discrete half-
plane im = 0. According to properties of the discrete Fourier transform we have

+hn +hn

j  Bd(b',bm)Ud(b',bm)dbm = f Bd(b', bm)hd(b',bm)dom + ~ ') b d(b"),
_hn _hn



where

+hn
bd(£) = | Bd(£',£m)A—+(£',£m)dEm
—Hn
Here we use the condition inf  \bd(£'\ > 0; it is a discrete analogue of
£'ehTm42

Shapiro-Lopatinskii condition [1]. Since the left hand side is gd(£') we have the
following relation

) = b—L(E") (gd(£") —td(£")) , (11)
where
+hn
td(€') = f Bd(£',£m)hd(£',£m)dEm.
—Hn

By substitution of (11) into (6), we obtain a unique solution for the discrete
boundary value problem (5):

Ud(£) = bl £) + Ad\(£)b~d I (£) (gd(£) —td(E) |, (12)

3.2 A Comparison

According to Vishik-Eskin theory [1] we have a continuous analogue of the
formula (12), namely

U(E) = h(£) + A+}(E)b(£) (9(E) —t(£)) (13)

under the condition _ inf \b(£\ > 0. Now we would like to compare two
£'eRm-2

formulas (12) and (13). To simplify our considerations we put f = 0. Then the
functions h, hd, t, td are zero.

To obtain a good approximation we choose certain elements for the discrete
solution in a particular way.

First, let us denote by gh the following operator of restriction and periodization;
this operator acts in Fourier images. Given function U the notation ghU means that
we take a restriction of Uon hTm and periodically continue it into whole Rm. The
symbol Ad(£) ofthe discrete operator Ad is the following. We take the factorization

A(£) = A+(£) *A—£)



and introduce the periodic symbol by the formula

Ad(£) = (qhA+)(£) « (ghH(£),

so we have immediately the needed periodic factorization.
Secondly, we define the symbol Bd(£) of the boundary operator Bd by

Bd(£) = (ahB)(£).

Third, we choose gd = F—_l(qhg), where

(FJliid)(x) = f .xehzZm.
hTm

Lemma 1 Let the boundary symbol B (£) satisfy the condition (10) with order B.
Then thefollowing estimate

\bd(£") —b(£,)\< ch lE—d—e

holds.

Proof We give corresponding estimates:

ha
\B(E') —bd(E'N = | B(E, EM)A+AE Em)EM — f  B(E, Em)A—+(E', Em)dE,,
—hn
| —hn  +OM\
f f B (£, Em)A— (£',£m)dE
-oT * hn

Two integrals have the same estimate and we consider the second one.

+ +He
f \B(E£Em)AM(E" Em)\dEm <c¢ f (1 + \E'\+ \Em\)e—~xdEm
hn hn

S 1+ \E£\+hn)iKC ehx——
X —1—8B



Theorem 2 Letf =0,vd = 0,9 e Hs_e_1/2(Rm_1),gd e Hs_e_1/2(hZm_1),
s_B >1/2,s > 1+ B,and

inf |b(b) >0, inf \bd(b")| > 0.
b'srm 1 b'eTm 1,h>0

Then boundary value problems (1) and (5) have unique solutions in spaces
Hs(RMm) and Hs(hZ+) respectively.
Ifg e L1(Rm_1) then we have the estimate

Ud(b) _ U(b)K chs_1e, behTm.

Proof The existence and uniqueness for the problems was proved in [1] for
continuous case and in [8] for discrete case, and here we have described the
construction for solving discrete boundary value problem. Therefore we need to
prove the estimate. We have

u(b) _ ud(b) = b_1(b")g(b")A+1(b’, bm) _ b_1(b*)gd(b")A_+.(b", bm) =

(b_1(b") _ b_1(b'))gd(b')A_1+(b’, bm), b e hTm,

and using Lemma 1 and boundedness of g we complete the estimate.
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