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Abstract. We suggest some constructions to develop the theory of boundary value problems on manifolds with a non-smooth
boundaries. We discuss basic principles for such a theory and describe main results that we have obtained to this time. Further, we
show how these results are related to the theory of boundary value problems on non-smooth manifolds.

INTRODUCTION

In this paper we would like to present basic ideas and results which can be useful for constructing the theory of
boundary value problems for elliptic pseudo-differential equations on manifolds with a non-smooth boundary.

There are a lot of books [1, 2, 3, 4, 5, 6] in which similar problems are discussed but they use distinct methods and
consider certain “singular manifolds” of other types.

Some papers are very closed to this text [7, 8, 9] but these are related to algebraical aspects of such a theory.
The paper [10] is classified as asymptotical aspect of such a theory, some author’s studies and results can be found

in [11, 12].
Author’s results were presented in the book [13]. Generally these results concerned to the two-dimensional situa-

tion. Here we present our main ideas and results which are under consideration last years [11, 12, 14, 15, 16, 17, 18]
and these latter considerations are related to multi-dimensional case especially. Here we continue these studies and
give certain concrete constructions for special boundary value problems.

BASIC PRINCIPLES

We use a few basic principles on which the theory holds. We will describe briefly all these postulates because these
are very simple and give the key for understanding the theory. As a model we will take the following operator

u(x) �−→
∫
D

A(x,x− y)u(y)dy, x ∈ D, (1)

where A(x,y) is “kernel” of the operator, i.e. A(x,y) = F−1
ξ→yÃ(x,ξ ), F is the Fourier transform,

ũ(ξ ) = (Fu)(ξ ) =
∫
Rm

eix·ξ u(x)dx,

D ⊂ R
m is a bounded domain (for simplicity) with a boundary ∂D. Such operator (1) is called a pseudo-differential

operator in D [19] with the symbol Ã(x,ξ ).
We will suppose here that the symbol A(x,ξ ) satisfies some smoothness properties (for example, A(x,ξ ) is contin-

uously differentiable on D×R
m) and the condition

c1(1+ |ξ |)α ≤ |A(x,ξ )| ≤ c1(1+ |ξ |)α , α ∈ R.

Let us note the latter condition guarantees the boundedness of the operator (1) in Sobolev–Slobodetskii spaces
Hs(D)→ Hs−α(D) [19].

The main problem of the theory is describing Fredholm properties of the operator (1).
Definition 1 Operator (1) is called an elliptic operator if

ess inf
x∈D,ξ∈Rm

|A(x,ξ )|> 0.
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Such symbol is called elliptic symbol.
It is convenient considering operators (1) in Sobolev–Slobodetskii spaces Hs(D) [19]. We will remind the definition

[19]. By definition, this space consists of functions (distributions) u from Hs(Rm) which supports belong to D. A
norm in the space Hs(D) is induced by the Hs(Rm)-norm

||u||s =
⎛⎝∫
Rm

|ũ(ξ )|2(1+ |ξ |)2sdξ

⎞⎠1/2

,

where the sign ∼ over u denotes its Fourier transform

ũ(ξ ) =
∫
Rm

u(x(eix·ξ dx.

Everywhere below we consider only elliptic symbols, and H̃(D) denotes the Fourier image of the space H(D).

Local principle

This principle was introduced by I.B. Simonenko [20] more than a half-century ago. It asserts in a simplest form that
an operator of a special type operator of a local type) has Fredholm property iff all certain other operators (its local
representatives) have the same property. It seems there is no news but the essential point is that local representative
of an operator can have more simple structure than the starting general operator. As we will see below it is real fact.

This concept is related to the first principle. We will explain it for the case when the boundary ∂D is a smooth surface.
This case includes two types of local representatives. If the point x0 ∈ D is an inner point then a neighborhood of the

point is diffeomorphic to R
m and the local representative of the the operator (1) looks as follows

u(x) �−→
∫
Rm

A(x0,x− y)u(y)dy, x ∈ R
m. (2)

To obtain Fredholm property (= invertibility property) for such operator(2) in “local” Sobolev–Slobodetskii space
Hs(Rm) it is necessary and sufficient to require the ellipticity condition [19, 20].

If the point x0 ∈ ∂D is a boundary point then a neighborhood of the the point is diffeomorphic to half-space
Rm
+ = {x ∈ Rm : x = (x1, ...,xm),xm > 0} (rectification of a boundary), and the local representative of the the operator

(ref1) looks as follows

u(x) �−→
∫
R

m
+

A(x0,x− y)u(y)dy, x ∈ R
m
+. (3)

The latter operator (3) acts in “local” Sobolev–Slobodetskii spaces Hs(Rm
+). Such operators (3) are called usually

Wiener–Hopf operators. The ellipticity condition for their invertibility is not enough. Principal role takes factorization
technique based on classical Riemann boundary value problem [19]. The dimension of a kernel (co-kernel) of the
operator (3) is defined by so called index of factorization. We denote it by m−1(x0), generally it depends on the point

x0∈ ∂ D.

This idea was applied by the author earlier [13] and it related to a new type of local representatives of the operator
(1). They appear when the boundary ∂D includes some singular points in which smoothness property does not hold.
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For example, if x0 ∈ ∂D such that its neighborhood is diffeomorphic to a cone C ⊂ R
m and a neighborhood of ∂D

transforms to a neighborhood of ∂C then local representative of the operator (1) is the following

u(x) �−→
∫
C

A(x0,x− y)u(y)dy, x ∈C, (4)

and we need to study invertibility properties of the operator (4) in “local” Sobolev–Slobodetskii space Hs(C). There-
fore, if you want to do it or not you must invent how to find the inverse operator for (4).

Multidimensional Riemann boundary value problem and the wave factorization

For this purpose the author has studied a certain multidimensional variant of Riemann boundary value problem [13]. It
appears if we try to apply the Fourier transform to study the operator (4). As a result we obtain some multidimensional
singular integral equation with a special kernel; this equation is a generalization of one-dimensional singular integral
equation with the Cauchy kernel.

Bochner kernel Let C be a convex cone non-including a whole straight line. This kernel is defined by the formula

B(z) =
∫
C

eiy·zdy, z = x+ iτ, τ ∈ ∗
C,

where
∗
C= {x ∈ Rm : x · y > 0,y ∈ C}. The Bochner kernel is holomorphic function in radial tube domain T (

∗
C) =

Rm + i
∗
C⊂ Cm [21, 22, 23]. Only one cone exists in the real line, and for this case the Bochner kernel transforms into

Cauchy kernel.
Conjugation problem Up to now there is no any way to solve such singular integral equations excluding the

Wiener–Hopf method (= method of Riemann boundary value problem). This method is based on a special represen-
tation for coefficient of conjugation problem (or in other words for the symbol of a “local operator”). The author has
used this idea for the multidimensional Riemann boundary value problem and has introduced the concept of wave
factorization for an elliptic symbol.

If we consider the cone R
k ×Cm−k where Cm−k is a convex cone in R

m−k non-including a whole straight line then
the existence of k-wave factorization for the symbol Ã(·,ξ ) with respect to the cone Cm−k means the following. The
symbol A(·,ξ ) admits the representation

A(·,ξ ′′,ξ ′) = A 
=(·,ξ ′′,ξ ′) ·A=(·,ξ ′′,ξ ′),

where ξ ′′ = (ξ1, ·,ξk),ξ ′ = (ξk+1, ·,ξm), factors A
=(·,ξ ′′,ξ ′),A=(·,ξ ′′,ξ ′) admit holomorphic continuation with re-

spect to the ξ ′ (for fixed ξ ′′) into radial tube domains T (
∗

Cm−k),T (−
∗

Cm−k) respectively with some estimates in which
the index k of k-wave factorization takes part (one can find the rigorous definition in [13]). The value of the k is
essential for a solvability of corresponding conjugation problem.

Unfortunately, existence of k-wave factorization is one of main problems, that’s why this is the third postulate.

GENERAL CONCEPT: OPERATOR APPROACH

As we have seen there are distinct types of “local operators” (2),(3),(4) for the operator (1). We will denote all such
operators by unified formula

u(x) �−→
∫

Dx0

A(x0,x− y)u(y)dy, x ∈ Dx0
, (5)

meaning Dx0
as one of above domains.

It is convenient to consider the operator A on a manifold with such a family of local representatives in Sobolev–
Slobodetskii spaces Hs(D) for which its “local” variant will be the space Hs(Dx0

).
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Definition 2 Symbol of the operator (1) is called the operator function A(x) : D →{Ax}x∈D which is a family of local
representatives of the operator (1). The operator (1) is called an elliptic operator if its symbol consists of invertible
operators.

In other words, symbol of the operator (1) is operator family (5) when x0 varies in D.

k k

Definition 3 Canonical domains in Euclidean space R
m is such a domain which is diffeomorphic to one of the fol-

lowing cones: R
m,Rm

+,R
k ×Cm−k,k = 0,1, · · · ,m−2, where Cm−k is a convex cone in R

m−k non-including a whole
straight line.
Remark 1 �If we put by definition R

m×C0 ≡R
m,Rm−1×C1 ≡R

m
+,R

0×Cm ≡Cm then an arbitrary canonical domain

will be a cone of the type R
k ×Cm−k,k = 0,1, · · · ,m−2,m−1,m.

Definition 4 A model operator is called an operator of type (5) in some canonical domain with the symbol Ã(·,ξ )
non-depending on a spatial variable.

To define a domain (manifold) D with a singular boundary we will introduce different types of neighborhoods. For a

smooth compact manifold all neighborhoods {Uj} have the same type, these are diffeomorhic to R
m. But if a manifold

has a smooth boundary even then there are two types of neighborhoods related to a place of a neighborhood, namely

inner neighborhoods and boundary ones. For inner neighborhood U such that U ⊂ D̊ we have the diffeomorphism

ω : U → R
m. For a boundary neighborhood such that U ∩ ∂D 
= /0 we have another diffeomorphism ω1 : U → R

m
+.

May be this boundary ∂D has some singularities like conical points and wedges. A conical point at the boundary is

such a point for which its neighborhood is diffeomorphic to the cone Cm, a wedge point of codimension k,1 ≤ k ≤
m−2, is such a point for which its neighborhood is diffeomorphic to the cone R

k ×Cm−k. So if the manifold D has
such singularities we suppose that we can extract certain k-dimensional sub-manifolds, namely (m−1)-dimensional
boundary ∂ D, and k-dimensional wedges Dk,k = 0, · · · ,m− 2; D0 is a collection of conical points.

If D is a compact domain (manifold) then there is a partition of unity. It means the following. For every finite open

covering {Uj} j=1 of the manifold D there exists a system of functions {ϕ j(x)} j=1,ϕ j(x) ∈C∞(D), such that

• 0 ≤ ϕ j(x)≤ 1,

• supp ϕ j ⊂Uj,

•
k
∑
j=1

ϕ j(x) = 1.

So we have

f (x) =
k

∑
j=1

ϕ j(x) f (x)

for arbitrary function f defined on D.

Since an every set Uj is diffeomorphic to an open set D j
k = R

k ×Cm−k for some k we have corresponding diffeo-

morphisms ω j : Uj → D j
k. Further for a function f defined on D we compose mappings f j = f ·ϕ j and as far as

supp f j ⊂Uj we put f̂ j = f j ◦ω−1
j so that f̂ j : D j

k → R is a function defined in a domain of m-dimensional space R
m.

On the manifold D we fix a finite open covering and a partitions of unity corresponding to this covering {Uj, f j}n
j=1

and choose smooth functions {g j}n
j=1 so that supp g j ⊂Vj,Uj ⊂Vj, and g j(x)≡ 1 for x∈ supp f j,supp f j∩(1−g j)=

/0.
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Definition 5 The operator A on the manifold D can be represented in the form

A =
n

∑
j=1

f j · Â j ·g j +T,

where T : Hs(D)→ Hs−α(D) is a compact operator, Â j is one of model operators (5) in which the change of variables
ω j was done.

Invertibility of local operators First conclusion from the local principle is the following.
Theorem 1 The operator A has Fredholm property iff it is an elliptic operator.

Let us denote k(x) the indices of k-wave factorization of the symbol A(x,ξ ) with respect to the cone Cm−k at points
x ∈ Mk,k = 0,1, · · · ,m−2 and assume that the functions k(x),k = 0,1, · · · ,m−1, can be continued into Mk because it

is possible Mk ∩Mk−1 
= /0.

Proposition 1 Let the classical symbol A(x,ξ ) admits k-wave factorization with respect to the cone Cm−k with indices
k(x),k = 0,1, · · · ,m−2 satisfying the conditions

|k(x)− s|< 1/2, ∀x ∈ Mk, k = 0,1, · · · ,m−1. (6)

Then the operator A : Hs(M)→ Hs−α(M) has Fredholm property.
Remark 2 Let us note that (m− 1)-wave factorization is usual factorization in Eskin’s sense and it always exists
[19].

On boundary conditions Let us suppose that one of conditions (6) does not hold. It means that there is at list
one point xo ∈ ∂D. If x0 is a smoothness point at the boundary ∂D then you can look [19]. We suppose here that x0

is a conical point so that Dx0
= C and for this this convex cone C its boundary is given by the equation xm = ϕ(x′).

Moreover we suppose that 0(x0)− s = n+ ε, |ε| < 1/2. Then the local representative Ax0
is not invertible, but it is

possible to describe its kernel [16, 17].
Let C be a convex cone in the space R

m, and this cone does not include any whole straight line, it is important
because we use the theory of analytic functions of several complex variables [21, 22, 23]. Moreover we suppose that a
surface of this cone is given by the equation xm = ϕ(x′),x′ = (x1, · · · ,xm−1), where ϕ : Rm−1 →R is a smooth function
in R

m−1 \{0}, and ϕ(0) = 0.
Let us introduce the following change of variables⎧⎪⎪⎪⎨⎪⎪⎪⎩

t1 = x1

t2 = x2

· · ·
tm−1 = xm−1

tm = xm −ϕ(x′)

and we denote this operator by Tϕ : Rm → R
m so that points from lower half-space will be fixed.

Theorem 2 A kernel of the operator Ax0
in the space Hs(C) consists of functions of the following type

A−1

= (ξ )V−ϕ F

(
n−1

∑
k=0

ck(x′)δ (k)(xm)

)
,

where A 
=(ξ ) is factor of 0-wave factorization for the symbol A(x0,ξ ), δ is the Dirac mass-function, and V−ϕ is a
special integral operator defined by changes of variables in m-dimensional space and the Fourier transform, ck(x′)
are arbitrary functions from the space where Hsk(Rm−1), sk = s− 0(x0)+ k+1/2, k = 0,1,2, ...,n−1.

We have the a priori estimate

||u||s ≤ const
n−1

∑
k=0

[ck]sk ,

where [·]sk denotes the Hsk(Rm−1)-norm.
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Therefore, to obtain invertibility for such operator Ax0
and to annihilate the kernel we need to add some additional

conditions. As a rule such conditions are chosen as boundary conditions.
Remark 3 It is very unpleasant but it may be happened that we need distinct number of conditions for different
placements of the point x0. But I think such a problem is now very far from nearest ones.

DESCRIPTION OF OPERATOR Vϕ AND ITS PROPERTIES

To obtain explicit expression for Vϕ we need to choice a concrete cone. We consider here C ≡ Ca
+ = {x ∈ R

m : x =
(x′,xm),xm > a|x′|,a > 0}, the notation Tϕ ≡ Ta,Vϕ ≡Va and use the transmutation formula

FT−1
a =V−aF.

Let us fix u ∈ S(Rm) and evaluate

(FT−1
a u)(ξ ) =

∫
Rm

eiy·ξ (T−1
a u)(y)dy =

∫
Rm

eiy·ξ ′
u(y′,ym +a|y′|)dy

=
∫
Rm

eix·ξ e−iξma|x′|u(x′,xm)dx′dxm =
∫
Rm

eix′·ξ ′
e−iξma|x′|û(x′,ξm)dx′,

where û(x′,ξm) denotes the Fourier transform of the function u(x′,xm) with respect to the variable xm. According to
properties of the Fourier transform we denote

Fx′→ξ ′(e−iξma|x′|)≡ Ka(ξ ′,ξm),

and obtain an integral representation for the operator V−a:

(FT−1
a u)(ξ ) =

∫
Rm

Ka(ξ ′ −η ′,ξm)ũ(η ′,ξm)dη ′,

where Ka(ξ ′,ξm) is the Fourier image of corresponding distribution.

Since the function e−iξma|x′| is not integrable in R
m−1 we need some regularization method , and we mean the latter

formula as follows

lim
τ→0

Fx′→ξ ′(e−izma|x′|), zm = ξm − iτ, τ > 0,

so that

(FT−1
a u)(ξ ) = lim

τ→0+

∫
Rm

Ka(ξ ′ −η ′,zm)ũ(η ′,ξm)dη ′,

According to above

Fx′→ξ ′(e−izma|x′|) =
∫

Rm−1

eix′·ξ ′
e−izma|x′|dx′,

and we cam use certain technical methods developed in [24] to find the following representation.
Proposition 2 The function Ka has the following form

Ka(ξ ′,zm) =
iazm2m−1π

m−2
2 Γ(m/2)(

ξ 2
1 +ξ 2

2 + · · ·ξ 2
m−1 −a2z2

m
)m/2

,

where zm = ξm − iτ,τ > 0.

020002-6



So, we have

(V−aũ)(ξ ) = lim
τ→0+

1

πm/2

∫
Rm−1

iazmΓ(m/2)ũ(η ′,ξm)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
. (7)

Corollary 1 If a → 0 then

(V0ũ)(ξ ) = lim
a→0

lim
τ→0+

1

πm/2

∫
Rm−1

iazmΓ(m/2)ũ(η ′,ξm)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
= ũ(ξ ′,ξm).

Corollary 2 If ξm → 0 then

lim
ξm→0

(V−aũ)(ξ ) = lim
ξm→0

lim
τ→0+

1

πm/2

∫
Rm−1

iazmΓ(m/2)ũ(η ′,ξm)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
= ũ(ξ ′,0)

Theorem 3 The kernel of the equation (5) consists of functions of the following type

ũ(ξ ) = A−1

= (ξ )

(
n

∑
k=1

C̃k(ξ ,ξm)ξ k−1
m

)
,

where

C̃k(ξ ,ξm) = (V−ac̃k)(ξ ′,ξm).

Thus, for unique identification of the functions C̃k(ξ ′,ξm) we need some additional conditions. We consider some
variants below.

Case m = 2

First, we need to note that 2-dimensional case was studied without operator Vϕ , but to verify this way we have
constructed the operator Vϕ for this case also. Second, for 2-dimensional case we have only one type of a cone

(excluding rotations) Ca
+ = {x ∈ R

2 : x = (x1,x2),x2 > a|x1|,a > 0}. Thus, we have the following boundary function
ϕ(x1) = a|x1|. For this function we have evaluated the operator Vϕ [16] using analytic properties of the Fourier
transform, and it looks as follows

(Vaũ)(ξ ) =
ũ(ξ1 +aξ2,ξ2)+ ũ(ξ1 −aξ2,ξ2)

2

+v.p.
i

2π

+∞∫
−∞

ũ(η ,ξ2)dη
ξ1 +aξ2 −η

− v.p.
i

2π

+∞∫
−∞

ũ(η ,ξ2)dη
ξ1 −aξ2 −η

.

Case m = 3

We have a lot of cones in this case, and we consider some of them.
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4-sided angle. The boundary function for this case is the following ϕ(x) = a1|x1|+a2|x2|, i.e. the conical surface
is described by the equation x2 = a1|x1|+a2|x2|. The cone looks as follows Ca1a2

= {x ∈ R
3 : x2 > a1|x1|+a2|x2|}.

Let us introduce two operators defined on functions of three variables

(S1u)(ξ1,ξ2,ξ3) = v.p
i

2π

+∞∫
−∞

u(τ,ξ2,ξ3)dτ
ξ1 − τ

,

(S2u)(ξ1,ξ2,ξ3) = v.p
i

2π

+∞∫
−∞

u(ξ1,η ,ξ3)dη
ξ2 −η

.

If we will denote corresponding operator by Ta1a2
(change of variables) and its transmutation operator by Va1a2

then
we obtain

(Va1a2
ũ)(ξ1,ξ2,ξ3) =

ũ(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3)+ ũ(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)

4

+
1

2
(S1ũ)(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)− 1

2
(S1ũ)(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3)

+
ũ(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)+ ũ(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)

4

+
1

2
(S1ũ)(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)− 1

2
(S1ũ)(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)

+
(S2ũ)(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)+(S2ũ)(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)

2

+(S1S2ũ)(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)− (S1S2ũ)(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)

− (S2ũ)(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3)− (S2ũ)(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)

2

−(S1S2ũ)(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)+(S1S2ũ)(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3).

This case was studied in [17] (see also [25]) and here we give the final form only
Circle cone. According to the formula (7) we have for Ca

+

(V−aũ)(ξ1,ξ2,ξ3) = lim
τ→0+

1

π3/2

∫
R2

iaz3Γ(3/2)ũ(η1,η2,ξ3)dη1dη2(
(ξ1 −η1)2 +(ξ2 −η2)2 −a2z2

3

)3/2
.

There are a lot of cones in multidimensional Euclidean space which can be constructed from those that we have
considered. We will enumerate some of them.

• R
k ×Ca

+ ⊂ R
k+m;

• Ca1a2
×Ca

+ ⊂ R
m+3;

• (0,+∞)×Ca
+ ⊂ R

m+1;

• (0,+∞)×Ca
+×Ca1a2

⊂ R
m+4;

• R
k × (0,+∞)×Ca

+×Ca1a2
⊂ R

k+m+4.

For every of these cases we will obtain special type of the integral operator Vϕ , and every particular case will
generate its own formula for a general solution. We will consider such possibilities in forthcoming publications.
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INTEGRAL CONDITION AND SOLVABILITY

Taking into account Theorem 2 we consider the equation with a model operator

(Au)(x) = 0, x ∈Ca
+, (8)

in the cone Ca
+ with symbol A(ξ ) for n = 1. Then we have the following formula for a general solution in view of (7)

ũ(ξ ) = A−1

= (ξ )V−ac̃0(ξ ′)

with an arbitrary function c0 ∈ Hs−+1/2(Rm−1). Let us suppose that the following condition

+∞∫
−∞

u(x′,xm)dxm = g(x′), (9)

where g(x′) is given function from Hs+1/2(Rm−1). According to the Fourier transform properties we have

ũ(ξ ′,0) = g̃(ξ ′),

and taking into account Corollary 2 we can find c̃0(ξ ′) immediately from the equality

ũ(ξ ′,0) = A−1

= (ξ ′,0)c̃0(ξ ′),

more exactly

c̃0(ξ ′) = A 
=(ξ ′,0)g̃(ξ ′).

Therefore, we can formulate the following result.
Theorem 4 The boundary value problem (8), (9) has unique solution in the space Hs(Ca

+) for arbitrary given function
g(x′) ∈ Hs+1/2(Rm−1) of the following type

ũ(ξ ′,ξm) =
A−1

= (ξ ′,ξm)

πm/2
lim

τ→0+

∫
Rm−1

iazmΓ(m/2)A
=(η ′,0)g̃(η ′)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
, zm = ξm − iτ, τ > 0.

A priori estimate

||u||s ≤ const[g]s+1/2

holds.

CONCLUSION

Here we have tried to show how much possibilities gives the developed approach, and how we can find some integral
representations for certain boundary value problems. General concepts of this approach was described in author’s
papers [26, 27] but as you see there are a lot of difficulties to realize these ideas. But we hope that this point of view
can be useful and can give a new impulse to develop the theory.
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