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Abstract: We study a certain conjugation problem for a pair of elliptic pseudo-differential equations
with homogeneous symbols inside and outside of a plane sector. The solution is sought in corre-
sponding Sobolev–Slobodetskii spaces. Using the wave factorization concept for elliptic symbols, we
derive a general solution of the conjugation problem. Adding some complementary conditions, we
obtain a system of linear integral equations. If the symbols are homogeneous, then we can apply the
Mellin transform to such a system to reduce it to a system of linear algebraic equations with respect
to unknown functions.
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1. Introduction

The theory of pseudo-differential equations on manifolds with a smooth boundary
was systematically developed, starting from the papers of M.I. Vishik and G.I. Eskin [1,2] in
the middle of the last century. After this start, L. Boutet de Monvel [3] published a paper in
which he suggested an algebraic variant of the theory, including the index theorem. These
studies were continued and refined by S. Rempel and B.-W. Schulze [4], and then such
results have became useful for situations of manifolds with non-smooth boundaries [5–7].

The first author has started to develop a new approach for non-smooth situations in
the middle of the last century [8], and general concepts of the approach are presented in
the book and latest papers [9–11]. This paper is related to this approach, and it is devoted to
some generalizations of classical results for the Riemann boundary value problem [12,13] in
which we consider model pseudo-differential equations in canonical non-smooth domains
instead of the Cauchy–Riemann operator. These studies were indicated in [14], and here we
develop these results, obtaining more exact and refined solvability conditions. We formulate
the solvability conditions in terms of a system of linear algebraic equations similar to well-
known Shapiro–Lopatinskii conditions [2]. The Mellin transform [15] is used to reduce the
problem for homogeneous elliptic symbols to the mentioned algebraic system.

2. Auxiliaries

A pseudo-differential operator A in a domain D ⊂ Rm is defined by its symbol A(ξ)
in the following way

u(x) 7−→
∫
D

∫
Rm

A(ξ)ei(y−x)·ξ u(y)dydξ, x ∈ D,

where the function u is defined in the domain D. The symbol A(ξ) is a certain measurable
function defined in Rm. The space Hs(D) consists of functions from Sobolev–Slobodetskii
space Hs(Rm) with supports in D. The norm in Hs(D) is induced by the Hs-norm

||u||s =

∫
Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ

1/2

,
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where ũ is the Fourier transform of u:

ũ(ξ) =
∫

Rm
eix·ξ u(x)dx.

We start our considerations from measurable symbols A(ξ), satisfying the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α

with positive constants c1, c2, and the number α, we call an order of the pseudo-differential
operator A. Such operators are linear bounded operators Hs(D)→ Hs−α(D) [2].

In this paper, we consider plane case m = 2 and canonical plane domain D = Ca
+ =

{x ∈ R2 : x = (x1, x2), x2 > a|x1|, a > 0}. For such domains, the key role for the solvability
description for the pseudo-differential equation

(Au)(x) = v(x), x ∈ Ca
+,

takes the wave factorization concept for the symbol A(ξ) [9].
Let us reiterate that the radial tube domain T(Ca

+) over the cone Ca
+ is called the

following domain R2 + iCa
+ of a two-dimensional complex space C2 [9].

Definition 1. By wave factorization of A(ξ) with respect to cone Ca
+ = {x = (x1, x2) ∈

R2 : x2 > a|x1|, a > 0}, we mean its representation in the form

A(ξ) = A 6=(ξ)A=(ξ),

where the factors A 6=(ξ), A=(ξ) must satisfy the following conditions:
(1) A 6=(ξ) is defined, generally speaking, on the set {x ∈ R2 : a2x2

2 6= x2
1} only;

(2) A 6=(ξ) admits an analytical continuation into radial tube domain T(
∗

Ca
+) over the cone

∗
Ca
+= {x ∈ R2 : ax2 > |x1|}, which satisfies the following estimate:∣∣∣A±1

6= (ξ + iτ)
∣∣∣ ≤ c(1 + |ξ|+ |τ|)±æ, ∀τ ∈

∗
Ca
+ .

The factor A=(ξ) has similar properties with −
∗

Ca
+ instead of

∗
Ca
+ and α− æ instead of æ.

The number æ is called index of wave factorization of A(ξ) with respect to cone Ca
+.

Let us note that if the factors A 6=(ξ), A=(ξ) are homogeneous of order æ and α− æ,
respectively, and then the symbol A(ξ) is homogeneous of order α, then one can discussho-
mogeneous wave factorization. The corresponding definition is given in [9].

3. Statement of the Problem

Let us denote Γ = {x ∈ R2 : x2 = a|x1|, a > 0}. We study here the following
conjugation problem. Finding a function U(x) which consists of two components

U(x) =
{

U+(x), x ∈ Ca
+

U−(x), x ∈ R2 \ Ca
+

in the space Hs(R2 \ Γ), and the function should satisfy the following conditions


(AU)(x) = 0, x ∈ R2 \ Γ
+∞∫
−∞

U+(x1, x2)dx2 = g0(x1), x1 ∈ R

+∞∫
−∞

U−(x1, x2)dx2 = g1(x1), x1 ∈ R

u+(x)− u−(x) = g2(x), x ∈ Γ,

(1)
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where u+, u− are boundary values of U from Ca
+ and R2 \ Ca

+, respectively, and the func-
tions g0, g1 ∈ Hs+1/2(R) and g2 ∈ Hs−1/2(Γ) are given. Since we seek a solution in the
space Hs, then such spaces Hs±1/2 are chosen according to the theorem on restriction on a
hyper-plane [2].

If we consider the equation

(Au)(x) = 0, x ∈ Ca
+, (2)

separately, then we can use one of key results from the book [9], Theorem 8.1.2; more
precisely, it is the following: if the symbol A(ξ) admits the wave factorization with respect
to the cone Ca

+ with the index æ such that æ−s = n + δ, n ∈ N, |ffi| < 1/2, then a general
solution u ∈ Hs(Ca

+) of Equation (2) has the following form

ũ(ξ) = A−1
6= (ξ)

n−1

∑
k=0

(
ãk(ξ1 − aξ2)(ξ1 + aξ2)

k + b̃k(ξ1 + aξ2)(ξ1 − aξ2)
k
)

,

where ak, bk are arbitrary functions from Hsk (R), sk = s− æ + k + 1/2, k = 0, 1, . . . , n− 1.
Furthermore, we have a priori estimates

||u||s ≤ C
n−1

∑
k=0

(
[ak]sk + [bk]sk

)
,

where [·]s denotes the Hs(R)-norm.
In this paper, we consider the case n = 1 so that we have the following formula for a

general solution
Ũ+(ξ) = A−1

6= (ξ)(ã0(ξ1 − aξ2) + b̃0(ξ1 + aξ2)).

For the second equation

(Au)(x) = 0, x ∈ R2 \ Ca
+. (3)

we have an analogous formula for a general solution

Ũ−(ξ) = A−1
= (ξ)(c̃0(ξ1 − aξ2) + d̃0(ξ1 + aξ2)),

where c0, d0 are a distinct pair of arbitrary functions.
Now, our main goal is to describe the procedure to uniquely determine four arbi-

trary functions in general solutions of the Equations (2) and (3) using boundary and
integral conditions.

4. A System of Linear Integral Equations

Using properties of the Fourier transform [2], we write integral conditions in the form

Ũ+(ξ1, 0) = A−1
6= (ξ1, 0)(ã0(ξ1) + b̃0(ξ1)),

Ũ−(ξ1, 0) = A−1
= (ξ1, 0)(c̃0(ξ1) + d̃0(ξ1)).

It gives the first two relations

A−1
6= (ξ1, 0)(ã0(ξ1) + b̃0(ξ1)) = g̃0(ξ1)

A−1
= (ξ1, 0)(c̃0(ξ1) + d̃0(ξ1)) = g̃1(ξ1).

(4)

We introduce new variables {
ξ1 − aξ2 = t1

ξ1 + aξ2 = t2
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and re-denote

Ũ±

(
t2 + t1

2
,

t2 − t1

2a

)
≡ Ṽ±(t1, t2),

A 6=

(
t2 + t1

2
,

t2 − t1

2a

)
≡ a 6=(t1, t2), A=

(
t2 + t1

2
,

t2 − t1

2a

)
≡ a=(t1, t2),

so that the boundary values u± will be boundary values v± for new variables t1, t2. Thus,
general solutions of the Equations (2) and (3) take the form

Ṽ+(t1, t2) = a−1
6= (t1, t2)(ã0(t1) + b̃0(t2)),

Ṽ−(t1, t2) = a−1
= (t1, t2)(c̃0(t1) + d̃0(t2)).

Therefore, using properties of the Fourier transform [2] we obtain

+∞∫
−∞

a−1
6= (t1, t2)(ã0(t1) + b̃0(t2))dt1 = ṽ+(0, t2)

+∞∫
−∞

a−1
6= (t1, t2)(ã0(t1) + b̃0(t2))dt2 = ṽ+(t1, 0),

+∞∫
−∞

a−1
= (t1, t2)(c̃0(t1) + d̃0(t2))dt1 = ṽ−(0, t2),

+∞∫
−∞

a−1
= (t1, t2)(c̃0(t1) + d̃0(t2))dt2 = ṽ−(t1, 0).

Let us introduce new notations

r1(t2) ≡
+∞∫
−∞

a−1
6= (t1, t2)dt1, r2(t1) ≡

+∞∫
−∞

a−1
6= (t1, t2)dt2,

r3(t2) ≡
+∞∫
−∞

a−1
= (t1, t2)dt1, r4(t1) ≡

+∞∫
−∞

a−1
= (t1, t2)dt2.

We rewrite integral relations by using the above notations.

+∞∫
−∞

a−1
6= (t1, t2)ã0(t1)dt1 + b̃0(t2)r1(t2)−

−
+∞∫
−∞

a−1
= (t1, t2)c̃0(t1)dt1 − d̃0(t2)r3(t2) = g̃21(t2),

r2(t1)ã0(t1) +

+∞∫
−∞

a−1
6= (t1, t2)b̃0(t2)dt2 − r4(t1)c̃0(t1)−

−
+∞∫
−∞

a−1
= (t1, t2)d̃0(t2))dt2 = g̃22(t1),

where g̃21(t2), g̃22(t1) are Fourier transforms of the function g2, which is considered as two
parts related to angle sides.
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So, we have the following relations for determining the unknown functions ã0, b̃0, c̃0, d̃0.
Of course, according to the equalities (4), we can write

b̃0(ξ1) = A 6=(ξ1, 0)g̃0(ξ1)− ã0(ξ1),

d̃0(ξ1) = A=(ξ1, 0)g̃1(ξ1)− c̃0(ξ1),

and can obtain the following integral system with respect to unknowns ã0, c̃0:

+∞∫
−∞

a−1
6= (t1, t2)ã0(t1)dt1 − ã0(t2)r1(t2)−

+∞∫
−∞

a−1
= (t1, t2)c̃0(t1)dt1 + c̃0(t2)r3(t2) = f̃1(t2)

r2(t1)ã0(t1)−
+∞∫
−∞

a−1
6= (t1, t2)ã0(t2)dt2 − r4(t1)c̃0(t1)+

+∞∫
−∞

a−1
= (t1, t2)c̃0(t2))dt2 = f̃2(t1),

(5)

where we have denoted

f̃1(t2) = g̃21(t2)− A 6=(t2, 0)g̃0(t2)r1(t2)− A=(t2, 0)g̃1(t2)r3(t2)

f̃2(t1) = g̃22(t1)−
+∞∫
−∞

a−1
6= (t1, t2)A 6=(t2, 0)g̃0(t2)dt2+

+∞∫
−∞

a−1
= (t1, t2)A=(t2, 0)g̃1(t2)dt2.

Finally, we obtain the following assertion.

Theorem 1. If the symbol A(ξ) admits wave factorization with respect to the cone Ca
+ with the

index æ such that æ− s = 1+ δ, |δ| < 1/2, then unique solvability of the problem (1) is equivalent
to unique solvability of the system (5).

The next section is devoted to study the system (5).

5. Homogeneous Symbols and Applying the Mellin Transform

We consider here the case when the symbol A(ξ) is positively homogeneous of order
α and the factors A 6=(ξ) and A=(ξ) are positively homogeneous of order æ and α− æ,
respectively.

Lemma 1. The functions r1, r2 are positively homogeneous function of order 1 − æ, and the
functions r3, r4 are positively homogeneous functions of order 1+ æ−α.

Proof. Let us verify. Indeed, for λ > 0, we have

r1(λt2) =

+∞∫
−∞

a−1
6= (t1, λt2)dt1,

and after the change of variable t1 = λt we obtain



Axioms 2021, 10, 234 6 of 11

r1(λt2) = λ

+∞∫
−∞

a−1
6= (λt, λt2)dt = λλ−ær1(t2) = λ1−ær1(t2).

Analogously,

r3(λt2) =

+∞∫
−∞

a−1
= (t1, λt2)dt1,

and after similar change we have

r3(λt2) = λ

+∞∫
−∞

a−1
= (λt, λt2)dt = λλ−(α−æ)r3(t2) = λ1+æ−αr3(t2).

Similar conclusions are valid for r2, r4.

Remark 1. If æ = α/2, then all functions r1, r2, r3, r4 have the same order of homogeneity, which
equals to 1− æ.

Lemma 2. The functions a−1
6= (t1, t2)r−1

1 (t2), a−1
6= (t1, t2)r−1

2 (t1) are homogeneous functions of

order −1 with respect to variables t1, t2, and the functions a−1
= (t1, t2)r−1

3 (t2), a−1
= (t1, t2)r−1

4 (t1)
are homogeneous functions of order −1 too.

Proof. According to Lemma 1, we have

a−1
6= (λt1, λt2)r−1

1 (λt2) = λ−æa−1
6= (t1, t2)λ

æ−1r−1
1 (t2) =

λ−1a−1
6= (t1, t2)r−1

1 (t2).

Analogously,

a−1
= (λt1, λt2)r−1

3 (λt2) = λæ−αa−1
= (t1, t2)λ

α−æ−1)r−1
3 (t2) =

λ−1a−1
= (t1, t2)r−1

3 (t2).

The same is valid for the left two functions.

Let us note that Lemmas 1 and 2 are almost the same, as in [9].
Now, we divide by r1 and r2

+∞∫
−∞

a−1
6= (t1, t2)r−1

1 (t2)ã0(t1)dt1 − ã0(t2)−

+∞∫
−∞

a−1
= (t1, t2)r−1

1 (t2)c̃0(t1)dt1 + c̃0(t2)r−1
1 (t2)r3(t2) = f̃1(t2)r−1

1 (t2)

ã0(t1)−
+∞∫
−∞

a−1
6= (t1, t2)r−1

2 (t1)ã0(t2)dt2 − r4(t1)r−1
2 (t1)c̃0(t1)+

+∞∫
−∞

a−1
= (t1, t2)r−1

2 (t1)c̃0(t2))dt2 = f̃2(t1)r−1
2 (t1),
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and we obtain the following system of two linear integral equations

+∞∫
−∞

K1(t1, t2)ã0(t1)dt1 − ã0(t2)−

+∞∫
−∞

K2(t1, t2)c̃0(t1)dt1 + c̃0(t2)R(t2) = F1(t2)

ã0(t1)−
+∞∫
−∞

K3(t1, t2)ã0(t2)dt2 −Q(t1)c̃0(t1)+

+∞∫
−∞

K4(t1, t2)c̃0(t2))dt2 = F2(t1),

(6)

after new notations with

K1(t1, t2) = a−1
6= (t1, t2)r−1

1 (t2), K2(t1, t2) = a−1
= (t1, t2)r−1

1 (t2),

K3(t1, t2) = a−1
6= (t1, t2)r−1

2 (t1), K4(t1, t2) = a−1
= (t1, t2)r−1

2 (t1),

R(t2) = r−1
1 (t2)r3(t2), F1(t2) = f̃1(t2)r−1

1 (t2),

Q(t1) = r4(t1)r−1
2 (t1), F2(t1) = f̃2(t1)r−1

2 (t1).

Lemma 3. Let æ = α/2. The kernels of integral operators K1, K2, K3, K4 are homogeneous of order
−1, and the functions R, Q are homogeneous of order 0.

Proof. Using Lemma 1 and Lemma 2, we obtain the required assertion.

Now, we will rewrite the system (6) as a system of integral equations on the positive
half-axis to apply the Mellin transform.



+∞∫
0

K1(t1, t2)ã0(t1)dt1 +

0∫
−∞

K1(t1, t2)ã0(t1)dt1 − ã0(t2)−

−
+∞∫
0

K2(t1, t2)c̃0(t1)dt1 +

0∫
−∞

K2(t1, t2)c̃0(t1)dt1 + c̃0(t2)R(t2) = F1(t2)

ã0(t1)−
+∞∫
0

K3(t1, t2)ã0(t2)dt2 −
0∫

−∞

K3(t1, t2)ã0(t2)dt2 −Q(t1)c̃0(t1)+

+

+∞∫
0

K4(t1, t2)c̃0(t2))dt2 +

0∫
−∞

K4(t1, t2)c̃0(t2))dt2 = F2(t1),

The next step is the following. We would like to transform the latter system to a 4× 4
system on a positive half-axis. For this purpose, we introduce two additional unknown
functions and new notations.

We denote for all t1 > 0

M1(t1, t2) = K1(−t1, t2), M2(t1, t2) = K2(−t1, t2),

and for all t2 > 0

M3(t1, t2) = K3(t1,−t2), M4(t1, t2) = K4(t1,−t2),
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and we put also for t > 0

ã1(t) = ã0(−t), c̃1(t) = c̃0(−t), G1(t) = F1(−t), G2(t) = F2(−t).

Thus, we have the following system of linear integral equations with respect to
four unknown functions ã0, ã1, c̃0, c̃1 in which all kernel and functions are defined for
positive t1, t2:



+∞∫
0

K1(t1, t2)ã0(t1)dt1 +

+∞∫
0

M1(t1, t2)ã1(t1)dt1 − ã0(t2)−

−
+∞∫
0

K2(t1, t2)c̃0(t1)dt1 +

+∞∫
0

M2(t1, t2)c̃1(t1)dt1 + c̃0(t2)R(t2) = F1(t2)

+∞∫
0

K1(t1,−t2)ã0(t1)dt1 +

+∞∫
0

M1(t1,−t2)ã1(t1)dt1 − ã1(t2)−

−
+∞∫
0

K2(t1,−t2)c̃0(t1)dt1 +

+∞∫
0

M2(t1,−t2)c̃1(t1)dt1 + c̃1(t2)R(−t2) = G1(t2)

ã0(t1)−
+∞∫
0

K3(t1, t2)ã0(t2)dt2 −
+∞∫
0

M3(t1, t2)ã1(t2)dt2 −Q(t1)c̃0(t1)+

+

+∞∫
0

K4(t1, t2)c̃0(t2))dt2 +

+∞∫
0

M4(t1, t2)c̃1(t2))dt2 = F2(t1)

ã1(t1)−
+∞∫
0

K3(−t1, t2)ã0(t2)dt2 −
+∞∫
0

M3(−t1, t2)ã1(t2)dt2 −Q(−t1)c̃1(t1)+

+

+∞∫
0

K4(−t1, t2)c̃0(t2))dt2 +

+∞∫
0

M4(−t1, t2)c̃1(t2))dt2 = G2(−t1).

Further, we introduce notation:

R(t2) =

{
r1, t2 > 0
r2, t2 < 0

, Q(t1) =

{
q1, t1 > 0
q2, t1 < 0

,

Ki(t1,−t2) = ki(t1, t2), Mi(t1,−t2) = mi(t1, t2), i = 1, 2, and Kj(−t1, t2) = k j(t1, t2),
Mj(−t1, t2) = mj(t1, t2), j = 3, 4.

Now we can rewrite our system as follows.



Axioms 2021, 10, 234 9 of 11



+∞∫
0

K1(t1, t2)ã0(t1)dt1 +

+∞∫
0

M1(t1, t2)ã1(t1)dt1 − ã0(t2)−

−
+∞∫
0

K2(t1, t2)c̃0(t1)dt1 +

+∞∫
0

M2(t1, t2)c̃1(t1)dt1 + r1 c̃0(t2) = F1(t2)

+∞∫
0

k1(t1, t2)ã0(t1)dt1 +

+∞∫
0

m1(t1, t2)ã1(t1)dt1 − ã1(t2)−

−
+∞∫
0

k2(t1, t2)c̃0(t1)dt1 +

+∞∫
0

m2(t1, t2)c̃1(t1)dt1 + r2 c̃1(t2) = G1(t2)

ã0(t1)−
+∞∫
0

K3(t1, t2)ã0(t2)dt2 −
+∞∫
0

M3(t1, t2)ã1(t2)dt2 − q1 c̃0(t1)+

+

+∞∫
0

K4(t1, t2)c̃0(t2))dt2 +

+∞∫
0

M4(t1, t2)c̃1(t2))dt2 = F2(t1)

ã1(t1)−
+∞∫
0

k3(t1, t2)ã0(t2)dt2 −
+∞∫
0

m3(t1, t2)ã1(t2)dt2 − q2 c̃1(t1)+

+

+∞∫
0

k4(t1, t2)c̃0(t2))dt2 +

+∞∫
0

m4(t1, t2)c̃1(t2))dt2 = G2(t1).

(7)

Now, we can apply the Mellin transform to the system (7). Let us restate that the
Mellin transform for the function f of one real variable is the following [15]

f̂ (µ) =
+∞∫
0

xµ−1 f (x)dx,

and the function f̂ exists for a wide class of functions.
We will use the following notations for the Mellin transforms. For Ki(t1, t2), ki(t1, t2),

Mi(t1, t2), mi(t1, t2), i = 1, 2, the notation K̂i(µ), k̂i(µ), M̂i(µ), m̂i(µ) denotes the Mellin
transform of the functions Ki(1, t), ki(1, t), Mi(1, t), mi(1, t), respectively. For Kj(t1, t2),
k j(t1, t2), Mj(t1, t2), mj(t1, t2), j = 3, 4, the notation K̂j(µ), k̂ j(µ), M̂j(µ), m̂j(µ) denotes the
Mellin transform of the functions Kj(t, 1).k j(t, 1), Mj(t, 1), mj(t, 1), respectively.

Applying the Mellin transform to the system (7), we obtain at least formally the
following system of linear algebraic equations

(K̂1(µ)− 1)â0(µ) + M̂1(µ)â1(µ)+

(K̂2(µ) + r1)ĉ0(µ) + M̂2(µ)ĉ1(µ) = F̂1(µ)

k̂1(µ)â0(µ) + (m̂1(µ)− 1)â1(µ)−
k̂2(µ)ĉ0(µ) + (m̂2(µ) + r2)ĉ1(µ) = Ĝ1(µ)

(1− K̂3(µ))â0(µ)− M̂3(µ)â1(µ)+

(K̂4(µ)− q1)ĉ0(µ) + M̂4(µ)ĉ1(µ) = F̂2(µ)

−k̂3(µ)â0(µ) + (1− m̂3(µ))â1(µ)+

k̂4(µ)ĉ0(µ) + (m̂4(µ)− q2)ĉ1(µ) = Ĝ2(µ).

. (8)



Axioms 2021, 10, 234 10 of 11

A matrix of the (4× 4)-system (8) is the following

A(µ) =


K̂1(µ)− 1) M̂1(µ) K̂2(µ) + r1 M̂2(µ)

k̂1(µ) m̂1(µ)− 1 k̂2(µ) m̂2(µ) + r2
1− K̂3(µ) −M̂3(µ) K̂4(µ)− q1 M̂4(µ)

−k̂3(µ) 1− m̂3(µ) k̂4(µ) m̂4(µ)− q2

.

6. Solvability Conditions

Here, we can formulate the following assertion on the solvability of system (5) for
homogeneous kernels (see also [9]).

Theorem 2. Let A 6=(ξ) and A=(ξ) be homogeneous non-vanishing functions of order α/2 and
−α/2, respectively, and differentiable away from the origin, r1(t2) 6= 0, ∀t2 6= 0, r2(t1) 6= 0,
∀t1 6= 0. The system of linear integral Equation (5) is uniquely solvable if, and only if, the condition

inf |detA(µ)| 6= 0, <µ = 1/2 (9)

holds.

Proof. Basic elements of the proof were given in the above considerations and Lemmas 1–3.
The condition (9) is related to properties of the Mellin transform [2,9,15].

Nevertheless, we will give some explanations. If we have the wave factorization,
then we obtain the system (5). For homogeneous factors A 6=(ξ) and A=(ξ), the system (5)
transforms into the system (7). The latter system of linear integral equations has kernels
which are homogeneous of order −1. That is why we can apply the Mellin transform. If we
have the expression

+∞∫
0

K(t1, t2)u(t1)dt1,

in which the kernel K(t1, t2) is a homogeneous function of order −1, then after applying
the Mellin transform we obtain the following expression

+∞∫
0

tµ−1
2

 +∞∫
0

K(t1, t2)u(t1)dt1

dt2.

The change of variable in the inner integral t2 = xt1 leads to the following integral

+∞∫
0

tµ−1
1 xµ−1

 +∞∫
0

t1K(t1, xt1)u(t1)dt1

dx,

and after rearrangements of integrals we obtain the following product

+∞∫
0

tµ−1
1 u(t1)dt1

+∞∫
0

xµ−1K(1, x)dx = û(µ)K̂(µ),

where û denotes the Mellin transform of u.
So, using the Mellin transform, we can obtain the system of linear algebraic Equation (8),

which is equivalent to the system (7). Lemma 3 is needed for this purpose. The condition (9)
is a necessary and sufficient condition for the unique solvability of such systems and the
applicability of the inverse Mellin transform.

Since we suppose the factors A 6=, A= are differentiable, then the Mellin transform is
applicable for the kernels Kj. The functions under the integral can be assumed to be smooth
enough, taking into account further approximation in Hs-spaces.
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Remark 2. A priori estimates for a solution of the problem (1) can be obtained by the methods
described in [9]. We will give these estimates in next papers.

7. Conclusions

In this paper, we have shown that a certain conjugation problem can be reduced to
a system of linear algebraic equations. One can consider other conjugation problems for
homogeneous elliptic symbols using this approach. Perhaps it is reasonable to consider
different boundary conditions which are local, such as Dirichlet and Neumann conditions.
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