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Abstract—We study solvability for a model elliptic pseudo-differential equation with an additional
integral condition in Sobolev–Slobodetskii spaces in certain conical domains in Euclidean space. .
Using the wave factorization for an elliptic symbol we construct a solution for this boundary value
problem and study the behavior of the solution when parameters of cones tend to their extremal
values. It was shown that for such a solvability we need certain additional condition besides
presented integral condition.
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1. INTRODUCTION

This paper is related to special boundary value problems for pseudo-differential equation in non-
ordinary singular domains of Euclidean space. Such domains we treat as cones in a space of lower
dimension and we construct these domains by limit state of bigger cones.

Contrasting to other approaches to boundary value problems for (pseudo)differential equations (see,
for example, [1, 2] and related books) we use other concepts which were introduced in author’s book [9]
(see also [14]). Our approach is closely related to the theory of boundary value problems for elliptic
pseudo-differential equations described in [3].

We describe here basic ideas using very simple example pictured in Fig. 1. We can find a general
solution for a model pseudo-differential equation in such a domain and also to extract the unique solution
for certain additional conditions, We are interested in a behavior of the solution under α → 0, i.e. a → ∞;
in this case we obtain the domain pictured in Fig. 2. Some results were obtained by the authors in
this direction. But there are multidimensional more complicated singularities (see below) for which the
same questions are valid. We consider here some combination of such singularities and establish certain
conditions for solvability of considered problems.

2. EQUATIONS AND SOLVABILITY

We use a local principle which asserts that for Fredholm property of a general pseudo-differential
equation with the symbol A(x, ξ) we need to obtain invertibility property for a model pseudo-differential
equation with the symbol A(·, ξ).
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Fig. 1. An exterior angle.
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Fig. 2. A half-infinity crack in a plane.

2.1. Model Equations and Canonical Domains

Definition 1. A domain D ⊂ R
m is called a canonical domain if it is certain simply connected cone.

Example 1. Two standard domains R
m and half-space R

m
+ = {x ∈ R

m : x = (x′, xm), xm > 0} are
typical simply connected cones.

Let A(x, ξ) de a function defined on R
m × R

m such that the integral∫

Rm

∫

Rm

A(x, ξ)ei(x−ξ)u(y)dydξ

exists at least for u ∈ S(Rm), where S(Rm) is the Schwartz class [3].

Definition 2. The operator

u(x) �−→
∫

Rm

∫

Rm

A(x, ξ)ei(x−ξ)u(y)dydξ

is called a pseudo-differential operator A with the symbol A(x, ξ).
Definition 3. A model pseudo-differential equation in a canonical domain D is called the following

equation

(Au)(x) = v(x), x ∈ D, (1)

where a symbol of the operator A doesn’t depend on x, A(x, ξ) ≡ A(ξ), and unknown function u is
defined in the domain D only.

We will consider below symbols satisfying the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α, α ∈ R,

with positive constants c1, c2.
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The equation (1) is studied in the space Hs(D); it is subspace of Hs(Rm) with respect to the norm

||u||s =

⎛
⎝

∫

Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ

⎞
⎠

1/2

,

where ũ is the Fourier transform of the function u,

ũ(ξ) =

∫

Rm

eix·ξu(x)dx,

and vanishing right hand side v ≡ 0.

2.2. Basic Constructions

We will describe here a general scheme for obtaining different singular domains in multidimensional
Euclidean space. These singular domain are complications of domains considered earlier by the author.

Let D ≡ C+ be a convex cone in R
m non-including a whole straight line, C− ≡ −C+. To describe

a solution of a homogeneous equation (1) we use a special factorization for an elliptic symbol, so
called wave factorization [9]. It is a representation of the symbol A(ξ) as a product A(ξ) = A�=(ξ) ·
A=(ξ), where the factors admit holomorphic continuation into radial tube domains T (

∗
C+), T (

∗
C−)

respectively [6],
∗
C denotes conjugate cone with respect to the cone C,

∗
C= {x ∈ R

m : x · y > 0,∀y ∈ C}.

Remark 1. Such a factorization is applicable when we consider the equation (1) in the domain
R
m \ C+.

Lemma 1. Let C1 ⊂ R
m, C2 ⊂ R

l be convex cones non-including whole straight lines in R
m,Rl

respectively. Then C = C1 × C2 is a convex cone non-including a whole line in R
m+l.

Proof. By contradiction. Indeed, if we assume that we have a straight line � ⊂ C1 × C2 and it goes
across the point (x0, y0) ∈ C then all points λx0,∀λ ∈ R should belong to the cone C1; it is impossible
by our assumption. A convexity is verified immediately. �

Let us remind that here an important role plays the theory of one-dimensional singular integral
operators [4, 5, 7, 8].

Below we will consider the following conical domain D = R
m+n \ (C1 × C2) and use the coor-

dinates x = (x1, · · · , xm) ∈ R
m, y = (y1, · · · , yn) ∈ R

n and dual coordinates for Fourier images ξ =
(ξ1, · · · , ξm) ∈ R

m and η = (η1, · · · , ηn(∈ R
n respectively.

We will assume below that the surface ∂C1 is given by the equation xm = φ(x′) and the surface
∂C2 by the equation yn = ψ(y′), x′ = (x1, . . . , xm−1), y

′ = (y1, . . . , yn−1) so that the cone C under
consideration has coordinates (x, y). We assume also the functions φ,ψ are continuously differentiable
everywhere excluding the origin and φ(0) = ψ(0) = 0. Let us introduce the change of variables⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t1 = x1

t2 = x2

· · ·
tm−1 = xm−1

tm = xm − φ(x′)

,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ1 = y1

τ2 = y2

· · ·
τn−1 = yn−1

τn = yn − ψ(y′)

and we denote this operator by Tφ : Rm → R
m so that this operator preserves point of the lower half-

space and ∂C1 transforms into hyperplane tm = 0. Analogously we define the operator Tψ : Rn → R
n

and denote Tφψ : Rm+n → R
m+n which transforms ∂C into hyperplane xm = yn = 0. Obviously,

Tφψ = Tφ · Tψ = Tψ · Tφ = Tψφ because these operators act on distinct variables. The Jacobian
D(x, y)/D(t, τ) = 1 almost everywhere, i.e. for all points in R

m+n excluding the hyperplanes xm = 0,
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yn = 0. Further, we denote F1 the partial Fourier transform on first m variables in R
m+n, and F2 on left

n variables so that the standard Fourier transform F in R
m+n is the following: F = F1 · F2 = F2 · F1.

For operators Tφ, Tψ there are the transmutation operators [10–12]

Vφ = F1TφF
−1
1 , Vψ = F2TφF

−1
2

acting on first m co=variables and last n co-variables respectively. Let us denote Vφψ = FTφψF
−1. It is

easy to see that

V −1
φψ = V −1

φ · V −1
ψ = V −1

ψ · V −1
φ .

Using these observations we can obtain the following assertion.
Theorem 1. If the symbol A(ξ, η) admits the wave factorization with respect to the cone

C = C1 × C2 with the index æ,æ− s = n+ ε, n ∈ N, |ε| < 1/2, then a general solution of the
homogeneous equation (1) in Fourier images is given by the formula

ũ+(ξ) = +A−1
�= (ξ, η)V −1

φψ

⎛
⎝ n−1∑

|k|=0

c̃k1k2(ξ
′, η′)ξk1m ηk2n

⎞
⎠ ,

where ck1k2(x
′) ∈ Hsk1k2 (Rm+n−2) are arbitrary functions, sk1k2 = s−æ+ |k|+1, |k| = 0, 1, ..., n−

1, |k| = k1 + k2.
Proof. We use notations from our previous papers [10, 11] and existence of the wave factorization

with respect to the bigger cone C: A(ξ, η) = A�=(ξ, η) ·A=(ξ, η) with the index æ. Since the operator A
acts as an linear bounded operator Hs(Rm+n) → Hs−α(Rm+n) we denote

u−(x) = (Au)(x), x ∈ R
m+n \ C,

assuming that u−(x) = 0 for x ∈ C. Then, we rewrite the equation

(Au)(x)− u−(x) = 0, x ∈ R
m+n.

Applying the Fourier transform and the wave factorization we have

A�=(ξ, η)ũ(ξ, η) = A−1
= (ξ, η)ũ−(ξ, η).

Now we have the following inclusions [9]

A�=(ξ, η)ũ(ξ, η) ∈ H̃s−æ(C), A−1
= (ξ, η)ũ−(ξ, η) ∈ H̃s−æ(Rm+n \ C).

Thus, we have

F−1A�=(ξ, η)ũ(ξ, η) ∈ Hs−æ(C), F−1A−1
= (ξ, η)ũ−(ξ, η) ∈ Hs−æ(Rm+n \ C),

so that it is a unique distribution f(x) supported on ∂C. Therefore, we obtain the equality

F−1
(ξ,η)→(x,y) (A�=(ξ, η)ũ(ξ, η)) = f(x, y).

Acting by the operator Tφψ on left and right sides of the latter equality we obtain the distribution
f(Tφx, Tψy) supported on the hyperplane tm = τm = 0.

According to the theory of distributions [6] we can conclude that

f(Tφx, Tψy) =
l∑

|k|=0

ck1k2(t
′, τ ′)δk1(tm)⊗ δk2(τn),

where |k| = k1 + k2, δ is the Dirac mass-function.
Further, we now apply the Fourier transform in R

m+n and finally obtain

FTφψF
−1 (A�=(ξ, η)ũ(ξ, η)) =

l∑
|k|=0

c̃k1k2(ξ
′, η′)ξk1m ηk2n .
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Taking into account the definition for Vφψ we can write

ũ(ξ, η) = A�=(ξ, η)V
−1
φψ

⎛
⎝ l∑

|k|=0

c̃k1k2(ξ
′, η′)ξk1m ηk2n

⎞
⎠ .

The left part of the proof is devoted to refine the value l and Hs-spaces which include the functions
ck1k2 . We starting from the fact that all summands ck1k2(ξ

′, η′)ξk1m ηk2n should belong to the space
Hs−æ(Rm+n). If so we can estimate∫

Rm+n

|ck1k2(ξ′, η′)ξk1m ηk2n |2(1 + |ξ|+ |η|)2(s−æ)dξdη

≤ c

∫

Rm+n

|ck1k2(ξ′, η′)|2(1 + |ξ|+ |η|)2(s−æ+|k|)dξdη,

and for existence the double integral∫

R2

(1 + |ξ|+ |η|)2(s−æ+|k|)dξmdηn

a necessary condition is the following: 2(s − æ+ |k|) < −2. We remind here that æ− s = n+ ε, |ε| <
1/2, so that |k| < n+ ε− 1, and we conclude that maximal value for |k| is n− 1; it is possible for ε > 0.

From above estimates we find that ck1k2 ∈ Hsk1k2 (Rm+n−2), where sk1k2 = s− æ+ |k|+ 1, |k| =
0, 1, · · · , n− 1. �

Remark 2. In this proof we take into account that A�= corresponds to −C and A= corresponds to C
(see details in [9]).

Obviously, the assertion of Theorem 1 is valid for the cone C = C1 × C2 × · · · ×Ck in the space R
d,

where Cl ⊂ R
nl , d =

k∑
l=1

nl.

Of course, Theorem 1 is a very general, but we will consider below certain concrete cones for which
we can present exact evaluations of operators Vφψ. For certain convex cones such calculations are given
in [10–13] and we will use these results for describing new singularities.

2.2.1. Certain canonical domains
a. m-dimensional circle cone. This cone has the form

Ca
+ = {x ∈ R

m : x = (x′, xm), xm > a|x′|, a > 0}.

b. 4-faced angle in 3-dimensional space. This cone has the form

Cab
+ = {x ∈ R

3 : x = (x1, x2, x4), x3 > a|x1|+ |x2|, a, b > 0}.

c. m-faced angle in m-dimensional space. This cone has the form

C+ = {x ∈ R
m : xk > 0, k = 1, . . . ,m}.

Let us note for the cone we have no parameters.
2.2.2. Description of operators VVV φ, VVV ψ. The cases a) and b) from 2.2.1 will help us to construct

new canonical singularities of lower dimensions when some parameters of cones tend to infinity. For
example, Fig. 3 corresponds to the case b) when a or b tends to ∞ so we obtain 3-dimensional domain
with a cut as a 2-dimensional half-plane.

The first operator Vφ is related to 2-dimensional cone.

The case m = 2 is a very good, there is only one mentioned cone. We write it as follows

Ca
+ = {x ∈ R

2 : x = (x1, x2), x2 > a|x1|, a > 0},
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x2
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Fig. 3. A half-plane cut in a space.

and further evaluate:

(F1T
−1
ϕ u)(ξ) =

+∞∫

−∞

eia|y1|ξ2eiy1ξ1 û(y1, ξ2)dy1

=

+∞∫

−∞

χ+(y1)e
iay1ξ2eiy1ξ1 û(y1, ξ2)dy1 +

+∞∫

−∞

χ−(y1)e
−iay1ξ2eiy1ξ1û(y1, ξ2)dy1

=

+∞∫

−∞

χ+(y1)e
iy1(aξ2+ξ1)û(y1, ξ2)dy1 +

+∞∫

−∞

χ−(y1)e
−iy1(aξ2−ξ1)û(y1, ξ2)dy1,

where û(y1, ξ2) denotes the one-dimensional Fourier transform with respect to a second variable, χ±
are indicators of R±. The latter two summands are Fourier transforms of functions χ+(y1)û(y1, ξ2),
χ−(y1)û(y1, ξ2) with respect to a variable y1 so that we we can use the following properties [3]; these
properties are called Sokhotskii formulas [7, 8]:

+∞∫

−∞

χ+(x)e
ixξu(x)dx =

1

2
ũ(ξ) + v.p.

i

2π

+∞∫

−∞

ũ(η)dη

ξ − η
,

+∞∫

−∞

χ−(x)e
ixξu(x)dx =

1

2
ũ(ξ)− v.p.

i

2π

+∞∫

−∞

ũ(η)dη

ξ − η
.

Taking into account these properties we conclude

(F1T
−1
ϕ u)(ξ) =

ũ(ξ1 + aξ2, ξ2) + ũ(ξ1 − aξ2, ξ2)

2

+ v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 + aξ2 − η
− v.p.

i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − aξ2 − η
≡ (V −1

ϕ ũ)(ξ).

Let us note that under ξ2 = 0

(F1T
−1
ϕ u)(ξ1, 0) = ũ(ξ1, 0). (2)

For convenience we re-denote the operator F1T
−1
φ and introduce the operator

(Mũ)(ξ1, ξ2) =
ũ(ξ1 + aξ2, ξ2) + ũ(ξ1 − aξ2, ξ2)

2
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+ v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 + aξ2 − η
− v.p.

i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − aξ2 − η
≡ (V −1

ϕ ũ)(ξ). (3)

For function of three variables we consider the cone

Cab
+ = {y ∈ R

3 : y = (y1, y2, y4), y3 > a|y1|+ |y2|, a, b > 0}.
Let us introduce the following one-dimensional singular integral operators [5, 7]

(S1u)(η1, η2, η3) = v.p
i

2π

+∞∫

−∞

u(τ, η2, η3)dτ

η1 − τ
, (S2u)(η1, η2, η3) = v.p

i

2π

+∞∫

−∞

u(η1, τ, η3)dτ

η2 − τ
.

and write using calculations from [11]

F2T
−1
ψ u(η) = (K1ũ)(η1 − aη3, η2 − bη3, η3) + (K2ũ)(η1 − aη3, η2 + bη3, η3)

+ (K3ũ)(η1 + aη3, η2 − bη3, η3) + (K4ũ)(η1 + aη3, η2 + bη3, η3),

where K1 −K4 are integral operators of the following type:

(K1ũ)(η1 − aη3, η2 − bη3, η3) =
1

4
ũ(η1 − aη3, η2 − bη3, η3)−

1

2
(S1ũ)(η1 − aη3, η2 − bη3, η3)

− 1

2
(S2ũ)(η1 − aη3, η2 − bη3, η3) + (S1S2ũ)(η1 − aη3, η2 − bη3, η3);

(K2ũ)(η1 − aη3, η2 + bη3, η3) =
1

4
ũ(η1 − aη3, η2 + bη3, η3)−

1

2
(S1ũ)(η1 − aη3, η2 + bη3, η3)

+
1

2
(S2ũ)(η1 − aη3, η2 + bη3, η3)− (S1S2ũ)(η1 − aη3, η2 + bη3, η3);

(K3ũ)(η1 + aη3, η2 − bη3, η3) =
1

4
ũ(η1 + aη3, η2 − bη3, η3) +

1

2
(S1ũ)(η1 + aη3, η2 − bη3, η3)

− 1

2
(S2ũ)(η1 + aη3, η2 − bη3, η3)− (S1S2ũ)(η1 + aη3, η2 − bη3, η3);

(K4ũ)(η1 + aη3, η2 + bη3, η3) =
1

4
ũ(η1 + aη3, η2 + bη3, η3) +

1

2
(S1ũ)(η1 + aη3, η2 + bη3, η3)

+
1

2
(S2ũ)(η1 + aη3, η2 + bη3, η3) + (S1S2ũ)(η1 + aη3, η2 + bη3, η3),

so we have exact expression for F2TψF
−1
2 = V −1

ψ . Moreover, it was proved in [12] that

4∑
j=1

(Kju)(η1, η2, 0) = ũ(η1, η2, 0). (4)

3. BOUNDARY VALUE PROBLEM AND DEGENERATED CONES

A boundary value problem appears if we need to obtain a unique solution for the equation (1). As we
have seen above there is a lot of solutions according to a number of arbitrary functions ck, k = 0, 1, . . . , n.
To extract the unique solution we consider a certain integral condition in latter author’s papers [10–13].

The formula includes certain parameters of cones and we interested to know how looks the solution if
some parameters tend to infinity. Let us note that if the parameters tend to zero we return to well known
cases [3, 9, 12, 13]. According to the above sections we consider here the following boundary value
problem for a product of the cones Ca

+ ⊂ R
2 and Cab

+ ⊂ R
3 in 5-dimensional space R

5, namely⎧⎨
⎩
(Au)(x, y) = 0, (x, y) ∈ R

5 \ (Ca
+ × Cbc

+ ),∫
R2

u(x1, x2, y1, y2, y3)dx2dy3 = f(x1, y1, y2).
(5)
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Let us denote g̃(ξ1, η1, η2) ≡ A�=(ξ1, 0, η1, η2, 0)f̃ (ξ1, η1, η2). We will use the changes of variables{
ξ1 + aξ2 = t1

ξ1 − aξ2 = t2
,

{
η1 + aη3 = τ1

η1 − aη3 = τ3
.

According to expression (3) we introduce the operator

(Ng̃)

(
t1 + t2

2
, η′

)
=

g̃(t1, η
′) + g̃(t2, η

′)

2
+ v.p.

i

2π

+∞∫

−∞

g̃(τ, η′)dτ

t1 − τ
− v.p.

i

2π

+∞∫

−∞

g̃(τ, η′)dτ

t2 − τ
.

Analogously we introduce the operators (Lg̃)
(
ξ′, τ1+τ3

2 , η2
)
= K1(ξ

′, τ3, η2) +K2(ξ
′, τ3, η2) +

K3(ξ
′, τ1, η2) +K4(ξ

′, τ1, η2). After accurate evaluations one can obtain

(Lg̃)

(
ξ′,

τ1 + τ3
2

, η2

)
=

g̃(ξ′, τ1, η2) + g̃(ξ′, τ3, η2)

2
+ (S1g̃)(ξ

′, τ1, η2)− (S1g̃)(ξ
′, τ3, η2).

Theorem 2. Let the symbol A(ξ) admits the wave factorization with respect to the cone C with
the index æ such that æ− s = 1 + ε, |ε| < 1/2 for enough large a. Then for arbitrary f ∈ Hs+1(R3)
the unique solution of the problem (5) has limit under a → ∞, b = const if the function g̃ satisfies
the equation for all η2 ∈ R

g̃

(
t1 + t2

2
,
τ1 + τ3

2
, η2

)
= (NLg̃)

(
t1 + t2

2
,
τ1 + τ3

2
, η2

)
. (6)

Proof. We use the equalities (2) and (4) and assertion of Theorem 1 for |k| = 0. Then we have only
one arbitrary function c̃0(ξ1, η1, η2), ξ = (ξ1, ξ2), η = (η1, η2, η3). The integral condition from (5) gives
the relation ũ(ξ1, 0, η1, η2, 0) = f̃(ξ1, η1, η2), from which we determine immediately

c̃0(ξ1, η1, η2) = A�=(ξ1, 0, η1, η2, 0)f̃ (ξ1, η1, η2).

According to Theorem 1 the unique solution of the problem (5) in R
5 \ (Ca

+ × Cab
+ ) satisfies the

equality A�=(ξ, η)ũ(ξ, η) = (V −1
φψ g̃)(ξ, η). Thus, for the left hand side of the latter equality we obtain

A�=

(
t1 + t2

2
,
t1 − t2
2a

,
τ1 + τ3

2
, η2,

τ1 − τ3
2a

)
ũ

(
t1 + t2

2
,
t1 − t2
2a

,
τ1 + τ3

2
, η2,

τ1 − τ3
2a

)
,

so that under a → ∞ we obtain

A�=

(
t1 + t2

2
, 0,

τ1 + τ3
2

, η2, 0

)
ũ

(
t1 + t2

2
, 0,

τ1 + τ3
2

, η2, 0

)
= g̃

(
t1 + t2

2
,
τ1 + τ3

2
, η2

)
.

It is left to define lim
a→∞

V −1
φψ g̃.

Using the same changes of variables we can conclude that such limit should be the following

(NLg̃)

(
t1 + t2

2
,
τ1 + τ3

2
, η2

)
.

It completes the proof. �

Remark 3. Let us note that the equation (6) is a two-dimensional functional singular integral
equation.

CONCLUSION

Our considerations show that there are a lot of distinct singularities which can be studied by this
method. Our approach permits to construct and to study new singular domains in the theory of pseudo-
differential equations.
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