
ORIGINAL RESEARCH PAPER

A spectral resolution for digital pseudo-differential
operators

Vladimir B. Vasilyev1

Received: 4 May 2019 / Accepted: 17 August 2019 / Published online: 26 August 2019
� Forum D’Analystes, Chennai 2019

Abstract
We consider a special class of operators acting in discrete spaces and discuss certain

its properties related to specters and approximations. These properties can be useful

for constructing approximate solutions of corresponding operator equations.
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1 Introduction

The discrete Calderon–Zygmund operator is constructed on continual ones by

standard digitization. One chooses integer lattice in multi-dimensional space, takes

the values of continual kernel in lattice points and constructs the corresponding

singular convolution. This is a digitization in space of coordinates. Calderon–

Zygmund operator’s spectra is defined by image of its symbol. If the spectra is

well ‘‘visible’’, for example it is a smooth curve, then this curve can be identified

by set of its own points which are near each other. This is frequency digitization

in the space of impulses. These digitizations have interesting exceptions and a lot

of specific properties. We will discuss some of these properties and consider some

generalizations on more general class of digital pseudo-differential operators.

These considerations are very closed to so-called inverse problems. According to

Wikipedia this is an inverse problem in a certain sense. We cite: ‘‘An inverse

problem in science is the process of calculating from a set of observations the
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causal factors that produced them: for example, calculating an image in X-ray

computed tomography, source reconstruction in acoustics, or calculating the

density of the Earth from measurements of its gravity field. It is called an inverse

problem because it starts with the results and then calculates the causes. This is

the inverse of a forward problem, which starts with the causes and then calculates

the results.’’

We consider some properties of special integral operators (singular integrals)

which were systematically studied by Calderon and Zygmund as bounded operators

in LpðRmÞ-spaces.

More precisely, given kernel K(x) one constructs an integral operator, in which

the integral is treated in the principal value sense [1, 2, 11, 12]

ðKuÞðxÞ � v.p.

Z

Rm

Kðx � yÞuðyÞdy � lim
e!0

Z

jx�yj[ e

Kðx � yÞuðyÞdy: ð1Þ

They considered generalizations (1) also, if the kernel is more complicated namely

it is the function K(x, y), x 2 Rm; y 2 Rm n f0g; and under fixed x the kernel Kð�; yÞ
defines Calderon–Zygmund operator according to formula (1). The last operators

they called singular integrals with variable kernels.

These considerations and developed methods have led to the calculus of

pseudo-differential operators [3, 4] and boundary value problems [8, 13, 14].

Calderon–Zygmund operators are very convenient models for studying more

general operators, and since such operators appear in a lot of applications one

needs studying equations with such operators. Moreover, the Calderon–Zygmund

operator is really the convolution only, but the convolution theory gives the

‘‘mathematics’’ by which one describes the interaction ‘‘input–output’’ for a

linear system. Finally, Calderon–Zygmund operator is a multidimensional

analogue of Hilbert transform which is widely used in digital signal and image

processing.

A lot of questions related to Calderon–Zygmund operators and equations and

similar difference and discrete equations were considered in author’s papers

[16–27]. Everywhere we have used Fourier analysis and methods of the theory of

boundary value problems for analytic functions.

2 Digital pseudo-differential operators

2.1 Discrete Calderon–Zygmund operators: symbols and specters

Let Zm be an integer lattice in Rm: We will use the following notations. Let Tm be

the m-dimensional cube ½�p; p�m; h[ 0; �h ¼ h�1.

If udð~xÞ; ~x 2 hZm; is a function of a discrete variable then we call it ‘‘discrete

function’’. For such discrete functions one can define the discrete Fourier transform
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ðFdudÞðnÞ � ~udðnÞ ¼
X
~x2hZm

ei~x�nudð~xÞhm; n 2 �hTm;

if the last series converges, and the function ~udðnÞ is a periodic function on Rm with

the basic cube of periods �hTm. The discrete Fourier transform is a one-to-one

correspondence between the spaces L2ðhZmÞ and L2ð�hTmÞ with norms

jjudjj2 ¼
X
~x2hZm

judð~xÞj2hm

 !1=2

and

jj~udjj2 ¼
Z

n2�hTm

j~udðnÞj2dn

0
B@

1
CA

1=2

:

Given Calderon–Zygmund kernel they construct discrete singular convolution

ðKduÞð~xÞ ¼
X

~y2hZm; ~y 6¼~x

Kð~x � ~yÞuð~yÞhm; ~x 2 hZm; ð2Þ

and convergence of the series may be treated as

lim
N!1

X
~y2CN\ hZmð Þ; ~y 6¼~x

Kð~x � ~yÞuð~yÞ;

where CN is a cube in Rm of size N 2 N :

CN ¼ x 2 Rm : max
1� k� n

jxkj �N

� �
:

In Definition (1) the truncation at infinity is not essential because first such oper-

ators were defined on infinitely differentiable functions with compact support, and

after obtaining Lp-estimate one can consider limit case taking into account that these

functions are dense in LpðRmÞ:
We have considered the operator (1) and (2) in the space L2ðRmÞ and its discrete

analogue ‘2; because we will seriously apply the Fourier transform. Comparing a

symbol of the operator K

rðnÞ ¼ v:p:

Z

Rm

eix�nKðxÞdx

and a symbol of the operator Kd

rdðnÞ ¼
X

~x2hZmnf0g
ei~x�nKð~xÞhm

we have obtained the following result [17, 18, 20].
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Theorem 1 Let K(x) be a function satisfying the following conditions

1. KðtxÞ ¼ t�mKðxÞ; 8t[ 0;

2. KðxÞ 2 C1ðSm�1Þ;

3.

Z

Sm�1

KðhÞdh ¼ 0:

Then operators K : L2ðRmÞ ! L2ðRmÞ and Kd : L2ðhZmÞ ! L2ðhZmÞ have the same
spectra 8h[ 0.

Conserving to introduced in n� 2 discrete Calderon–Zygmund operator we note

that as for as the lattice Zm is infinite set we need finite approximation in this case

too; here the important fact is that specters of discrete and continual operators are
the same.

2.2 Finite approximations for discrete Calderon–Zygmund operators

Here we will introduce a special discrete periodic kernel Kd;Nð~xÞ which is defined as

follows. We take a restriction of the discrete kernel Kdð~xÞ on the set QN \ hZm �
Qd

N and periodically continue it to a whole hZm. Further we consider discrete

periodic functions ud;N with discrete cube of periods Qd
N . We can define a cyclic

convolution for a pair of such functions ud;N ; vd;N by the formula

ðud;N � vd;NÞð~xÞ ¼
X
~y2Qd

N

ud;Nð~x � ~yÞvd;Nð~yÞhm: ð3Þ

(We would like to remind that such convolutions are used in digital signal pro-

cessing [5, 6]). Further we introduce finite discrete Fourier transform by the formula

ðFd;Nud;NÞð~nÞ ¼
X
~x2Qd

N

ud;Nð~xÞei~x�~nhm; ~n 2 Rd
N ;

where Rd
N ¼ �hTm \ �hZm. Let us note that here ~n is a discrete variable.

According to the formula (3) one can introduce the operator

Kd;Nud;Nð~xÞ ¼
X
~y2Qd

N

Kd;Nð~x � ~yÞud;Nð~yÞhm

on periodic discrete functions ud;N and a finite discrete Fourier transform for its

kernel

rd;Nð~nÞ ¼
X
~x2Qd

N

Kd;Nð~xÞei~x�~nhm; ~n 2 Rd
N :
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Definition 1 A function rd;Nð~nÞ; ~n 2 Rd
N ; is called s symbol of the operator Kd;N .

This symbol is called an elliptic symbol if rd;Nð~nÞ 6¼ 0; 8~n 2 Rd
N .

Theorem 2 Let rdðnÞ be an elliptic symbol. Then for enough large N the symbol

rd;Nð~nÞ is elliptic symbol also.

Proof The function X
~x2Qd

N

Kd;Nð~xÞei~x�nhm; n 2 �hTm;

is a segment of the Fourier series

X
~x2hZm

Kdð~xÞei~x�nhm; n 2 �hTm;

and according our assumptions this is continuous function on �hTm. Therefore values

of the partial sum coincide with values of rd;N in points ~n 2 Rd
N . Besides these

partial sums are continuous functions on �hTm. h

As before an elliptic symbol rd;Nð~nÞ corresponds to the invertible operator Kd;N

in the space L2ðQd
NÞ.

2.3 General concept

We will use the discrete Fourier transform to introduce special discrete Sobolev–

Slobodetskii spaces which are very convenient for studying discrete pseudo-

differential operators and related equations.

For the divided difference of second order we have

ðDð2Þ
k udÞð~xÞ ¼h�2ðudðx1; . . .; xk þ 2h; � � � ; xmÞ

� 2udðx1; . . .; xk þ h; . . .; xmÞ þ udðx1; . . .; xk þ h; � � � ; xmÞÞ

and its discrete Fourier transform

gðDð2Þ
k udÞðnÞ ¼ h�2ðe�ih�nk � 1Þ2 ~udðnÞ:

Thus, for the discrete Laplacian we have

ðDdudÞð~xÞ ¼
Xm

k¼1

ðDð2Þ
k udÞð~xÞ;

so that

gðDdudÞðnÞ ¼ h�2
Xm

k¼1

ðe�ih�nk � 1Þ2 ~udðnÞ:

Let us denote f2 ¼ h�2
Pm
k¼1

ðe�ih�nk � 1Þ2
and introduce the following
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Definition 2 The space HsðhZmÞ consists of discrete functions udð~xÞ for which the

norm

jjudjjs ¼
Z

�hTm

ð1 þ jf2
hjÞ

sj~udðnÞj2dn

0
@

1
A

1=2

is finite.

We will consider all functions defined on the cube �hTm as periodic functions in

Rm with the same cube of periods.

Let eAdðnÞ be a periodic function in Rm with the basic cube of periods �hTm. Such

functions are called symbols. As usual we will define a digital pseudo-differential

operator by its symbol.

Definition 3 A digital pseudo-differential operator Ad in a discrete domain Dd is

called an operator of the following kind

ðAdudÞð~xÞ ¼
X
~y2hZm

Z

�hTm

eAdðnÞeið~x� ~yÞ�n ~udðnÞdn; ~x 2 Dd;

An operator Ad is called an elliptic operator if

ess inf
n2�hTm

j eAdðnÞj[ 0:

Remark 1 One can introduce the symbol eAdð~x; nÞ depending on a spatial variable ~x
and define a general pseudo-differential operator by the formula

ðAdudÞð~xÞ ¼
X
~y2hZm

Z

�hTm

eAdð~x; nÞeið~x� ~yÞ�n ~udðnÞdn; ~x 2 Dd;

For studying such operators and related equations one needs to use more fine and

complicated technique.

Definition 4 By definition the class Ea includes symbols satisfying the following

condition

c1ð1 þ jf2jÞa=2 � jAdðnÞj � c2ð1 þ jf2jÞa=2 ð4Þ

with positive constants c1; c2 non-depending on h.

The number a 2 R is called an order of a digital pseudo-differential operator Ad.

Roughly speaking the order of a digital pseudo-differential operator is the power

of h with the sign ‘‘minus’’.

Using the last definition one can easily get the following property.
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Lemma 1 A digital pseudo-differential operator Ad 2 Ea is a linear bounded
operator HsðhZmÞ ! Hs�aðhZmÞ.

2.4 Reduction of order

According to our previous considerations a discrete Calderon–Zygmund operator is

an operator of order zero. For an arbitrary pseudo-differential operator of order a
with symbol AdðnÞ we can write

AdðnÞ ¼
AdðnÞ

k2 þ f2

� �a

ðk2 þ f2Þa;

where ðk2 þ f2Þa satisfies the condition (4) for some k. Thus, the first factor is

symbol of Calderon–Zygmund operator, and the second one is a fractional power of

the discrete Laplacian. Hence, we need studying such operators, but here we have

considered only the first operator.

3 Spectral projectors

For simplicity we consider the plane case m ¼ 2: Then S1 is the unit circumference.

Let Sa be a part of S1 intersected by the cone (see also [7, 15])

Ca
þ ¼ x 2 R2 : x2 [ ajx1j; a[ 0

� �
;

maðxÞ is a function (multiplier) equals to 1 on Sa and 0 on other piece of S1: We

formulate the problem as follows. What kind of an operator corresponds to such

multiplier in Fourier image ?

Theorem 3 We have the following property 8u 2 L2ðR2Þ

Fðma � uÞ ¼ lim
s!0þ

Z

R2

2a~uðg1; g2Þ dg1dg2

ðn1 � g1Þ2 � a2ðn2 � g2 þ isÞ2
: ð5Þ

Proof Let Hðx; yÞ be the indicator of Ca
þ. Let us consider the integral (s[ 0)

Z Z

R2

eiðxnþygÞHðx; yÞuðx; yÞe�sydy;

it is a Fourier transform of the product of two functions u(x, y) and Hðx; yÞe�sy

which are absolutely integrable (the last property allows us to apply a convolution

theorem). Let us find a Fourier transform of function Hðx; yÞe�sy:
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Z Z

R2

eiðxnþygÞHðx; yÞe�sydxdy ¼
Z Z

Ca
þ

eiðxnþygÞe�sydxdy

¼
Z Z

Ca
þ

eixneiyðgþisÞdxdy ¼
Zþ1

�1

Zþ1

ajxj

eiyðgþisÞdy

0
B@

1
CAeixndx

¼ � 1

gþ is

Zþ1

�1

eiajxjðgþisÞeixndx

¼ � 1

iðgþ isÞ

Z0

�1

e�iaxðgþisÞeixndx þ
Zþ1

0

eiaxðgþisÞeixndx

0
@

1
A

¼ � 1

iðgþ isÞ

Z0

�1

eixðn�aðgþisÞÞdx þ
Zþ1

0

eixðnþaðgþisÞÞdx

0
@

1
A

¼ � 1

iðgþ isÞ
1

iðn� aðgþ isÞÞ �
1

iðnþ aðgþ isÞÞ

� �

¼ 1

gþ is
2aðgþ isÞ

n2 � a2ðgþ isÞ2
¼ 2a

n2 � a2ðgþ isÞ2
:

The convolution of the last function with ~uðn; gÞ and passage to the limit under

s ! þ0 gives the formula (5). h

Remark 2 The sector size is

a ¼ 2 arctanð1=aÞ

We will denote the operator (5) in the following way

~u �! Ga ~u:

4 Calderon–Zygmund operators and spectral resolution

Here we consider Calderon–Zygnund operators with kernels as in Theorem 1. If is it

possible to reconstruct the operator knowing its spectra? The answer is positive with

some reservations if we know what kind of an operator we would like to construct.

More precisely we can prove the following theorem if the spectra of K is a smooth
closed curve in a complex plane.

Theorem 4 Two-dimensional Calderon–Zygmund operator can be reconstructed

on its spectra up to rotations S1 ! S1.
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Proof In the case m ¼ 2 the image r : S1 ! spec K � c necessarily goes around

smooth curve in a complex plane. Let’s take a partition of curve by points (vertices)

kk 2 c; k ¼ 1; 2; . . .; n; and on each arc kk�1kk on c we choose an arbitrary point ~kk:

We are doing the same for S1 taking its partition for n (equal) pieces sk�1sk, and then

each piece corresponds to certain ~k (for near pieces of ~k we take near pieces of S1).

Each arc sk�1sk in S1 will correspond to multiplier mak
ðxÞ (let’s note that every Gak

is Calderon–Zygmund operator), so that

Fð~kkmak
Þ ¼ ~kkGak

;

and therefore

F
Xn

k¼1

~kkmak

 !
¼
Xn

k¼1

~kkGak
:

We will treat the latter formula in the following sense

F�1
Xn

k¼1

~kkmak
~u

 !
¼
Xn

k¼1

~kkGak
u:

Further, we can write

F�1
Xn

k¼1

~kkmak
~u

 !
Dsk ¼ l

Xn

k¼1

~kkGak
Dkku; ð6Þ

where l ¼ mesS1

mes c .

Since Dsk represents a certain sector, it will be denoted by ak. Then we we

rewrite the formula (6) in the following way

F�1
Xn

k¼1

~kkmak
~u

 !
¼ l

Xn

k¼1

~kka
�1
k Gak

Dkku;

Now we recall that ak; ak are angle sizes which should be connected to ~kk. Using the

notation a�1
k Gak

� ~Gkk
and taking into account that the limit in left-hand side of the

latter formula exists we obtain (up to a constant) the line integral over c

K ¼
Z

c

k ~Gk dk: ð7Þ

in the right-hand side.

It is obviously that if we will have some small additional information on the

spectra, we can reconstruct the operator exactly. h

Remark 3 The formula (7) is very similar to spectral decomposition for a self-

adjoint operator (so called spectral theorem) [9].
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5 Conclusion

Some observations and connections between discrete and continuous operators are

presented in the paper. These author’s observations related to a spectra of operators

are inspired by Mark Kac question ‘‘Can one hear the shape of a drum’’ [10]. The

author hopes obtaining certain results for multidimensional case also.
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