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On Discrete Solutions for Elliptic Pseudo-Differential Equations

We consider discrete analogue for simplest boundary value problem for elliptic pseudo-differential equation
in a half-space with Dirichlet boundary condition in Sobolev—Slobodetskii spaces. Based on the theory of
discrete boundary value problems for elliptic pseudo-differential equations we give a comparison between
discrete and continuous solutions for certain model boundary value problem.
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Introduction

As soon as boundary value problems for partial differential equations were formulated, then at the same
time the necessity of solving methods has appeared. Since finding exact solution for these problems is a very
seldom phenomenon, numerical and approximate methods are extensively used. According to development of
computer technologies, a preference is given to such methods which can be easily realized by computers.

There are a lot of approximate methods for solving boundary value problems in mathematical literature
(see, for example, classical books [1-4] and many others) All authors consider a priori given boundary value
problem and construct for it certain approximate structures. As a rule this way leads to final system of linear
algebraic equations and the solution of the latter system us declared as an approximate solution for the starting
problem.

In our opinion there is a reason to study discrete objects initially and then to apply their properties for
studying approximation of starting continuous objects. This approach was started from papers [5-10] and further
it was developed in [11-15]. We based on Eskin’s approach for elliptic model pseudo-differential equations in a
half-space [5] and have developed appropriate discrete theory. This report is devoted to a special case how we
can approximate the infinite discrete objects by finite ones.

Digital Operators and Discrete Equations

We will use the following notations. Let T™ be m-dimensional cube [—m,7]™, h > 0,h = h~!. We will
consider all functions defined in the cube as periodic functions in R™ with the same cube of periods.

If ug(%),& € hZ™ is a function of a discrete variable, then we call it “discrete function”. For such discrete
functions one can define the discrete Fourier transform

(Faua)(§) = @a(§) = D e " Cug(@)h™, &€ hT™,

TEhZ™

if the latter series converges, and the function 44 () is a periodic function on R™ with the basic cube of periods
AT™. This discrete Fourier transform preserves basic properties of the integral Fourier transform, particularly
the inverse discrete Fourier transform is given by the formula

1

(Fy 00)(#) = ovm

/ e Lug(€)de, T e hZ™.

RT™

*Corresponding author.
E-mail: vladimir.b.vasilyev@gmail.com

Mathematics series. Ne 3(103)/2021 117



O.A.Tarasova, A.V. Vasilyev, V.B. Vasilyev

Let T™ = [—7,nw|™, h > 0, A4(§), € € R™ be a periodic function with basic cube of periods AT™, D C R™
be a domain. We introduce a digital pseudo-differential operator

(Aqua)(@) = Y Ag(&)e' D Sy (g)den™, &€ Dg= DNhZ™,
GERZ™ Yo

which is defined for functions of a discrete variable £ € hZ™.
We study operator equations
Adud = Vd, (1)

its solvability and approximate properties for small h.

m )
Let us denote (2 = h=2 Y (e7# ¢ — 1)2) S(hZ™) is a discrete analogue of the Schwartz space S(R™) [7]
k=1
and introduce the following:
Definition 1. The space H*(hZ™) is a closure of the space S(hZ™) with respect to the norm

1/2

ltalls = / (1 -+ [C21)* aa€) [2de

Tm

Further, let D € R™ be a domain, and Dy = D N hZ"™ be a discrete domain.

Definition 2. The space H®(Dy) consists of discrete functions from H*(hZ™) which supports belong to Dg.
A norm in the space H*(Dy) is induced by a norm of the space H*(hZ™). The space H§(D,) consists of discrete
functions ug with a support in Dy, and these discrete functions should admit a continuation into the whole
H?(hZ™). A norm in the H§(D,) is given by the formula

[|ual|§ = inf ||fuqlls,

where infimum is taken over all continuations £.

Of course, all such norms are equivalent to the Lo-norm but this equivalence depends on h. Let us note that
all constants below in our considerations do not depend on h.

To study the equation (1) in a discrete half-space (D = R}' = {x € R" : & — (2/, 2,), xp, > 0}) we use a
special factorization for the symbol A,4(§)

Ada(§) = Aa1(8) - Aa,—(8)
where the factors A4 (€) admit a holomorphic continuation into half-strips AIl,
My ={2€C:z2=E,+ir,&n € [-h7tn, b tn], £ > 0}.
with respect to the last variable &, under fixed (£1,--- ,&n_1) € RT™~! and satisfy some estimates [1-3].
Discrete Equations
We consider the class E,,, which includes symbols satisfying the following condition
er(1+[¢2)*? < [Aa(©)] < ea(1 + ¢/

with universal positive constants c1, co non-depending on h and the symbol A4(§).
Definition 3. Periodic factorization of an elliptic symbol A4(§) € E,, is called its representation in the form

Aa(§) = Ag 1 (§)Aa,—(§),

where the factors A4 +(€) admit an analytical continuation into half-strips ALy on the last variable &, for
almost all fixed ¢’ € AT™ ! and satisfy the estimates

AZLEOI < a1+ 1CN5E, [ATLE©)] < o1+ |C)=77,
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with constants ci, c; non-depending on h,

k=1

m—1
¢G=n (Z (M8 — 1) 4 (e (EnTiT) — 1)2> \ & tiT € AL,
The number @ € R is called an index of periodic factorization.

Such a representation can be constructed effectively and it fully determines a solvability picture for the
equation (1).

Conditions for a Unique Solvability

Some auxiliaries Firstly, for an elliptic symbol A4(€) such periodic factorization exists always [5, §].
Secondly, the index & of periodic factorization determines how much additional conditions for the solution
ug or for the right hand side vy we need [7, 9].
Thirdly, the equation (1) is uniquely solvable in the discrete half-space H*(Dy) for arbitrary right hand side
vg € Hj~%(Dg) only under the condition
le — 5| < 1/2, (2)

Kernel of elliptic digital operator in a discrete half-space

In this paper we consider more complicated case when the condition (2) does not hold. There are two
possibilities in this situation, and we consider one case which leads to typical boundary value problems. We use
the following result from [7] in a simplest form.

Theorem 1. Let & — s = n+ §,n € N,|§| < 1/2. Then the Fourier image for a kernel of the operator Ay

consists of the following functions
n—1

(&) = A7 ()Y en(€)Ch,

k=0
where ¢;(¢), k=0,1,---,n — 1, are arbitrary functions from H(hT™ 1), s, = s — e+ k — 1/2.
The a priori estimate

n—1
ualle < a’>lewls,
k=0

holds, where [, denotes a norm in the space H**(hT™ '), and the constant a does not depend on h.
Discrete Structures as Approzimating Objects.

Initial Observations for D = R™. Here and below we consider model pseudo-differential operators with
symbols A(¢) satisfying the condition

a(T+ €D < [AE)] < call + €)%

Further, the symbol A4(§) will be defined in the following way. We take a restriction of A(£) on the cube
AT™ and periodically extend it onto a whole R™. We consider such operator as an approximate operator for
A. For arbitrary function u the notation Q,u will denote the same construction. So, to find an approximate

discrete solution for the equation
(Au)(z) = v(z), = €D,

for D = R™ we can use the following discrete equation
Aqua = Qpv.

Its solution is given by the formula

ud(i) =

/ FTEATNE)H(E)dE,  F € hE™,

RT™

(2m)™

so that we do not need to find an approximate solution for an infinite system of linear algebraic equations.
For our case we need to apply any kind of cubature formulas for calculating the latter integral and a cubature
formula for calculating the Fourier transform ¢(¢). For v € S(R™) the discrete solution ug(Z) tends to u()
very fast under h — 0 [12].
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Rate of Approzimation.

Infinite Discrete Half-Space Case. Here we consider the case &2—s = 140, |d| < 1/2. According to Theorem 1,
the kernel of the operator A, includes only one arbitrary function so that we need only one additional condition.
The continuous analogue of the discrete boundary value problem

(Aqua)(Z) =0, T € Dy, (3)
ug(#,0) = gg(a’), & € hzZ™*, (4)
is the following
(Au)(z) =0, = €RT, (5)
u(z’,0) = g(z'), 2’ e R™1, (6)

where A is a pseudo-differential operator with symbol A(£). To obtain some comparison between discrete and
continuous solutions we will remind how the continuous solution looks. If the index of factorization equals to
e and & — s =14 4,|0] < 1/2 then the unique solution for the problem (5),(6) is constructed by the similar
formula

a(€) = b 1(€)9(€) AT (€ &m),
where Ay (¢',¢&,,) are elements of factorization of the symbol A() [5],

—+oo

b(e') = / ATHE e ),

— o0

assuming that b(&') # 0,V € R™ 1. Let us note that this is simplest variant of Shapiro-Lopatinskii conditi-
on [5].
We have the following discrete solution [§]

@a(€) = b3 (€)7a(€)AG 4 (€, &m),

+hm

bd(gl): \/A,;i_(flafm)dgmv

—hm

in which we choose special approximations. We take g4 = Qpng and Ag 1 (¢, &) we take as restrictions of
AL (€,&) on AT™. Then the periodic symbol

Ag(&) = Ag (& &m)Aa— (& &m)

satisfies all conditions of periodic factorization with the same index g. Moreover, §4(§') and Aq 4+ (&', &) coincide
with g(¢’) and A (¢',¢&,,) respectively on AT™.

Theorem 2. Let e > 1,5 > m/2,g € H*~'/2(R™~!). A comparison between solutions of problems (3), (4)
and (5), (6) is given in the following way

|u(Z) — ug(F)| < Ch*~Y, & € hZ™.

Proof. We need to compare two integrals:

@)= Gy [ OB
R™
and 1
wal?) = oy [ 75 €)FEALE G, ™)
RT™
for £ € hZ™.
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Thus, we have

u(@) — ua(®) = / EFE(BL(E) — b (€))FEVATE em)dET

1 .
/ ST (E)G(E) AT (E )i,
R™\RT™

because the functions g, g¢ and A4, Ag 4+ coincide in AT™.
Now we estimate the second integral.

/ e HENGENATHE  En)dE| < const / 1G(ENATHE &m)ldE <

R™\RT™ R™\RT™

—hm —+ 00

const [ N[ [+ [ )45 g ldende

Rm—1\RTm~1 hm

Further, we estimate

—hm —+ “+o0
/ + / AT 6 dEn < const / (L4 1€] + [€nl)"dén =
— 00 hr hm

const
-1
Now by Cauchy—Schwartz inequality we have

(1+ €|+ hm) = < cgh™ L.

|l <
R7n—1\hT7n71
1/2 12
[ serasgeta [ asep e
nzfl\hTmfl TYlfl\ﬁTmfl

Since g € H*~1/2(R™~1) [5] the first factor is less than [g]_1 /> and the second one tends to zero if s > m/2.
For the first integral we use the estimate

=LY — b7H(E")] < const - h®}

(see [15]).
Finally,
L iT-E (3 — —L e\ (e A—17¢t
e T/ EFEDHE) — b €)IHEIAT € n)de]| <
const -0~ [ 1g€AT € g lde < const et [ IO ge
N RTm—1

and further as above using Cauchy—Schwartz inequality.
Finite Truncation. To obtain finite object for calculation we can apply an arbitrary cubature formula for
the integral (7) and to approximately find its value in nodal points.
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Conclusion

Here only model operators in a half-space were considered. We hope that these ideas and technique will be
useful for more complicated situations in which both an operator depends on a spatial variable or a domain is
not a half-space.
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! Beazopod memnexemmir yammuow 3epmmey yrusepcumemi, Beazopod, Peceii;
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DIINNITUKAJIBIK, TIceBJ0And depeHInaaabl TeH ey IepIiH
JAUCKPETTi IentiMaepi TypaJbl

CobosteB-Coboenkunii kenicriringeri Jlupuxie mekapaJsblk >Kargaibl 0ap >KapThliail KeHICTIKTEerl 3J11u-
NITAKAJIBIK, [1ceBIoaud depeHaibl TeHIEY/H KapanaibiM ITeKapaJblK ecebiHiH JUCKPEeTTI aHAJIOTbI Ka-
pPaCTBIPBLIFaH. DJUTHNTUKAJIBIK, TICEBIOANMDMEPEHITUAIBI TEHIEYIED VIIiH JUCKPETTI XKUEK ecenTepi Te-
OpHUsIChIHA CYW€HEe OTBIPHIN, GIp MOMENBIIK NMIeKAPAJIBbIK €Cell VIMH JAUCKPETT] YKoHEe Y3IIKCi3 Imermimmaep
apachIHIaFbl CAJIBLICTBIPY OepiireH.

Kiam cesdep: muckperti nceBnoguddepeHnmaiipl onepaTop, AUCKPETTI IIemiM, JIUCKPETTI IeKapasblK,
€ecerl, XKYBbIKTay PeTi.
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! Benzopoderuti zocydapemeeniod Hayuonaibhud uccaedosamenvckul yrusepcumem, Beazopod, Poccus;
2
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O AncKpeTHBIX pereHnsIX SJIIUITHIECKNX
nceBoanpepeHImaIbHbIX YPAaBHEHUI

PaccmoTpen uckperTHbIii aHAJIOT MPOCTERINel KpaeBoi 3a1a4n Ui SJUTUIITHIECKOrO MceBRoand depeHIim-
aJIBHOI'O yPaBHEHUs B IIOJIYIPOCTPAHCTBE € I'paHUYHBbIM ycsoBueM Jlupuxisie B npocrpancrse CobosieBa—
Ciobomenikoro. OCHOBBIBasICh HA TEOPUH JUCKPETHBIX KPAEBbIX 3aJ1a4 TSI SJTUITHIECKUX TceBaoandde-
PEHIINAJIbHBIX yPaBHEHUN, TaHO CPaBHEHNUE MeYK/Iy JUCKPETHBIMU U HeIPEePBIBHBIMU PelIeHUAMHU IS OJHON
MOJIeJIbHOI KpaeBOU 3a/la4u.

Karoweswie crosa: TUCKpeTHBIN 11ceB 10 1nddepeHIInaIbHbIi OIIepaTop, AUCKPETHOE PEIIeHne, JUCKPEeTHASs
KpaeBasl 33/1a4a, OPJIOK AIPOKCUMAITIH.
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