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A B S T R A C T

The possibility of determining the emittance of a beam of relativistic electrons by measuring two-dimensional
angular distributions of diffracted transition radiation of relativistic electrons for two distances between the
crystal where the radiation is generated and the coordinate detector is considered. It is shown that the
technique enables the determination of the transverse dimensions and, in the case of a mismatch between
the symmetry planes of the beam and the horizontal and vertical planes, their rotation angle. A technique
is proposed for determining the beam divergence by comparing the measured angular distribution of the
diffracted transition radiation with a model. The sought values of the divergence are determined from the
results of ‘‘fitting’’, where the fitted function is the distribution for a larger distance, and the fitting function
is the convolution of a model angular distribution with a two-dimensional Gaussian distribution describing
the diverging electron beam. The conditions and boundaries of its practical implementation for measuring
the emittance of the beam of planned electron–positron colliders at the intermediate stage of acceleration are
analyzed.
. Introduction

To date, many destructive [1] and non-destructive [2,3] methods
ave been developed to determine the transverse sizes of an electron
positron) beam from linear accelerators by employing visible light
rom fluorescent screens and optical transition radiation (OTR) or
ptical diffraction radiation (ODR) from metal foils set in the accel-
rator. However, optical radiation does not ensure measurement of
xtremely small beam sizes for electron–positron linear colliders such
s the International Linear Collider (ILC) [4] and the Compact Linear
ollider (CLIC) [5] because OTR and ODR become coherent under these
onditions [6]. Wire scanners [7,8] are not capable of working with
eams of such small sizes, either.

The so-called Shintake monitor [9] is considered to be the most
romising beam size measurement method for linear colliders. How-
ver, it cannot be used in a collider regime where there are two
imultaneous particle beams or for intermediate diagnostics and control
f the beams inside the accelerator during the acceleration process.

A possible solution to this problem is to determine the size of
he beam 𝜎𝑥,𝑦 on the basis of its divergence 𝜃𝑥,𝑦 and the normalized
mittance 𝛾𝜖𝑥,𝑦, calculated or measured in the early stages of accel-
ration [10]. Here, 𝜖𝑥,𝑦 = 𝜎𝑥,𝑦𝜃𝑥,𝑦, and 𝛾 is the Lorentz factor. The
bovementioned coherent effects in the optical radiation requires the

∗ Corresponding author.
E-mail address: vnukov@bsu.edu.ru (I.E. Vnukov).

use of radiation with a shorter wavelength to determine the beam
divergence, in particular, diffracted transition radiation (DTR) [10]
or diffracted diffraction radiation (DDR) [11] in the X-ray frequency
range, generated when relativistic electrons pass through or near fine
perfect crystals [10] or X-ray mirrors [11]. To date, many beam di-
agnostic methods to measure beam sizes and divergences have been
proposed using X-rays such as PXR [12,13] and DTR [14–17].

PXR can be considered as coherent scattering of the field of a
fast charged particle by the electron shells of the periodically located
atoms of a crystal [18]. It is quasi-monochromatic, has a relatively
narrow angular distribution with a characteristic emission angle 𝛩ph =
√

𝛾−2 + 𝜔2
p∕𝜔2 [19], where 𝜔 and 𝜔p are the energies of the photon

and plasmon of the medium, respectively, and are emitted at an angle
𝛩D = 2𝛩B with respect to the direction of particle motion, where 𝛩B
is the angle between the direction of the electrons and the diffraction
plane.

Recently, we proposed a technique for determining the transverse
dimensions of an electron beam by measuring the PXR angular distribu-
tions for two different distances between the crystal and the coordinate
detector [20]. In [21], the simulation of determining the beam dimen-
sions by the [20] method was carried out. It was shown that the error
associated with using this method to estimate the beam dimensions did
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not exceed 5%–7%, and the minimum measured dimensions 𝜎𝑥,𝑦 were
etermined by the conditions 𝜎𝑥,𝑦 > 𝛿 and 𝜎𝑥,𝑦∕𝑅2 > 0.1𝛩ch, where 𝛿
s the pixel size of the coordinate detector, 𝑅2 is the shorter distance
etween the crystal and the detector, and 𝛩ch is the characteristic
adiation angle. The minimum measured transverse dimensions are
imited by the distance between the detector and the electron beam
nd cannot be less than 50–100 μm [21].

The PXR intensity reaches saturation for electron energies of the
rder of 1 GeV and below, depending on the energy of the emitted
adiation, and the characteristic angle of photons emission is typi-
ally significantly greater than 𝛾−1, therefore its use to determine the
lectron beam divergence 𝜃𝑒 ∼ 𝛾−1 and below is impractical.

In the same direction as the PXR, diffracted transition radiation
s emitted, which can be represented as the reflection of transition
adiation (TR) occurring on the front face of the crystal [22]. At
lectron energies above 5 GeV, the angular density of the DTR with
characteristic emission angle 𝛩ch ∼ 𝛾−1 [18] is much higher than

he angular density of PXR [14–16] whose contribution to these elec-
ron energies can be neglected. Therefore, the minimum transverse
imensions that can be measured using the method in [20] sharply
ecrease and are limited mainly by the dimensions of the coordinate
etector element, that is, the minimum measurable value 𝜎𝑥,𝑦 ∼ 𝛿 ≈
0–15 μm [21].

If it were possible, from the measurement results of angular dis-
ributions of DTR, to estimate not only the transverse dimensions of
he beam by the technique in [20], but also its divergence and the
ngle of rotation of the beam symmetry plane relative to the horizontal
lane, then this would significantly expand its capabilities and ease
f use. Based on the foregoing, an investigation into expanding the
ossibilities of the technique in [20] to determine the emittance of
lectron beams with energies of the order of 10 GeV and into the limits
f this technique’s applicability seems important and urgent.

. Theoretical consideration

A schematic representation of the process of formation, distribution
nd registration of the DTR is shown in Fig. 1. The electron beam falls
n the crystal and generates transition radiation as it enters it. Photons
f transition radiation with energy 𝜔 and direction of propagation 𝑛,
atisfying Bragg’s law, are reflected on crystal planes rotated through
he Bragg angle 𝛩𝐵 relative to the direction of incidence of the electron
eam, move in the direction of Bragg scattering 𝑛′ and are recorded by
detector located at an angle 𝛩𝐷 = 2𝛩𝐵 relative to the direction of the

lectron beam. Hereinafter, it is assumed that the spatial distribution
f particles relative to the center of the beam and its angular distri-
ution are described by two-dimensional Gaussian distributions with
haracteristic sizes 𝜎𝑥, 𝜎𝑦 and divergence angles 𝜃𝑥, 𝜃𝑦 (1𝜎).

The resulting distribution of radiation, recorded by a coordinate
etector located at a distance 𝑅 from the crystal depends on the
ngular distribution of the transition radiation, the angular distribution
f the electron beam generating this radiation, the spatial distribution
f the points of electron hitting the crystal and the distance between
he crystal and the detector. In particular, with a decrease in the
istance between the crystal and the detector, the influence of the
ontribution of the beam transverse dimensions on the recorded dis-
ribution of the points of impact of photons on the detector increases
harply, which is the basis of the method for determining the transverse
imensions of the electron beam from the results of measuring the
ngular distributions for two distances between the crystal and the
etector [20].

Let us analyze successively the influence of these factors on the
ecorded radiation distribution. In accordance with [15,23,24], the
pectral–angular distribution of the DTR from a monodirectional elec-
ron beam incident on the crystal at an angle 𝛩𝐵 relative to the
eflecting planes, can be written as:

𝑑2𝐼DTR = 𝑑𝜔
𝑑2𝐼TR 𝑅(𝑛 → 𝑛′, 𝜔, 𝑔)𝑑𝛺, (1)
𝑑𝜔𝑑𝛺′ ∫ ∫ 𝑑𝜔𝑑𝛺 1

2

Fig. 1. A schematic representation of the process of formation, distribution and
registration of the DTR.

where 𝑑2𝐼TR∕𝑑𝜔𝑑𝛺 is the transition radiation spectral–angular distri-
bution, 𝑅(𝑛 → 𝑛′, 𝜔, 𝑔) is the reflecting ability of the crystal. Here
⃗ and 𝑛′ are unit vectors in the direction of motion of the primary
nd reflected photons, determined in coordinate systems related to
he directions of the electron beam and Bragg scattering (see [20] for
etails). 𝑔 is the reciprocal lattice vector of the plane on which the
eflection occurs. Its direction is determined by the angle of rotation
f the plane relative to the direction of the electron beam.

The energy of the reflected photon is related to the angle between
he vectors 𝑛 and 𝑔 via 𝜔 = |𝑔|2

2
√

𝜀0|𝑛𝑔|
, where 𝜀0 = 1 − 𝜔2∕𝜔2

p is the
dielectric constant of the crystal substance. Integration is performed
over all angles and energies of photons that satisfy the Bragg condition.
To simplify the problem, we will assume that the reflecting plane is
oriented vertically, that is, the vector 𝑔 lies in the horizontal plane.

The width of the reflected radiation spectrum (see, for example, [15,
24]) can be written as 𝛥𝜔 = 𝜔 cos𝛩∕ sin𝛩𝛥𝜃, where 𝛥𝜃 is the width of
the so-called Darwin table, and 𝛩 is the angle between the direction
of motion of the photons and the crystal plane. For 𝜔 ∼ 10 keV and
above, 𝛥𝜃 ∼

(𝜔p∕𝜔)2

sin 2𝛩B
≈ 10−4 − 10−5.

Taking into account the angular distribution of the transition radi-
ation and the divergence of the electron beam, the energy of reflected
photons can be written as 𝜔 = 𝜔B(1 + (𝜗∥𝛾 + 𝛩∥

𝑒 ) cos𝛩B∕ sin𝛩B)−1,
where 𝜔B = |𝑔|

2 sin𝛩B
, and 𝜗∥𝛾 and 𝛩∥

𝑒 are the projections of, respectively,
he vectors 𝑛 and the unit vector along the direction of motion of

the electrons incident on the crystal 𝑛𝑒 in the direction of the vector
𝑔 [22]. As a result of these factors, the width of the diffracted radiation
spectrum increases to 𝛥𝜔 ≈ 𝜔B(𝜗

∥
𝛾 + 𝛩∥

𝑒 ) cos𝛩B∕ sin𝛩B. Assuming
that the divergence of the electron beam is of the order of 𝛾−1 and
considering that for angles of photons emission greater than 2–3 𝛾−1

the intensity of TR drops sharply, we can assume that for an electron
energy of the order 10 GeV and observation angles 𝛩D ≈ 2𝛩B > 20◦

monochromaticity of the reflected radiation spectrum emitted in a full
cone 𝛥𝜔∕𝜔 ≤ 5 cos𝛩B∕ sin𝛩B𝛾−1 ∼ 10−3.

Consequently, the diffracted transition radiation can be considered
to be monochromatic, and instead of the spectral–angular distribution
𝑑2𝐼DTR
𝑑𝜔𝑑𝛺′ , we will focus on the angular distribution DTR 𝐽 (𝜔B, 𝜗′𝑥, 𝜗

′
𝑦),

where 𝜗′𝑥 and 𝜗′𝑦 are the angles of photon emission in, respectively,
he horizontal and vertical directions, measured relative to the center
f the reflex located at an angle 𝛩D = 2𝛩B relative to the direction of

the electron beam.
It is known (see, for example, [15,16,25]) that when a crystal

thickness 𝑇 is more than several lengths of primary extinction 𝑙ext ∼
0 μm and the condition 𝛥𝜃 ≪ 𝛾−1 is satisfied, the angular distribution
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of the DTR can be represented as:

𝐽DTR(𝜔B, 𝜗
′
𝑥, 𝜗

′
𝑦) = 𝑁DTR(𝜔B)

𝐶pol𝜗′
2
𝑥 + 𝜗′2𝑦

(

(𝜗′2 + 𝛩2
ph)(𝜗

′2 + 𝛾−2)
)2

, (2)

where 𝜗′2 = 𝜗′𝑥
2 + 𝜗′𝑦

2, 𝑁DTR(𝜔B) is a factor that characterizes the
output of the DTR and that depends on the crystal used, the observation
angle, and the order of reflection. 𝐶pol is a polarization factor equal
to cos2 2𝛩B and cos 2𝛩B in the framework of the kinematic [25] and
dynamic [15,16] theories of X-ray diffraction in crystals, respectively.
The presence of this factor is due to the dependence of the reflectivity of
the crystal on the radiation polarization associated with the azimuthal
angle of emission of the transition radiation photons 𝜑 measured from
the plane containing the vectors 𝑛𝑒 and �⃗� , where �⃗� is normal to the
crystal surface [26]. In our case, this is a horizontal plane.

The angular distribution of DTR for a point-like diverging electron
beam 𝐽DTR(𝜔B, 𝜗𝑦, 𝜗𝑥) (see, for example, [10,15]) can be written as
follows:

𝐽DTR(𝜔B, 𝜗𝑦, 𝜗𝑥) = ∬ 𝐽DTR(𝜔B, 𝜗
′
𝑦, 𝜗

′
𝑥)

𝐺𝑒(𝜗′𝑦 → 𝜗𝑦, 𝜗
′
𝑥 → 𝜗𝑥)𝑑𝜗′𝑦𝑑𝜗

′
𝑥, (3)

where 𝐽DTR(𝜔B, 𝜗′𝑦, 𝜗
′
𝑥) is the angular distribution of the diffracted

transition radiation (expression (2)), and 𝐺𝑒(𝜗′𝑦 → 𝜗𝑦, 𝜗′𝑥 → 𝜗𝑥) is a
two-dimensional Gaussian distribution describing a diverging electron
beam:

𝐺𝑒(𝜗′𝑦 → 𝜗𝑦, 𝜗
′
𝑥 → 𝜗𝑥) =

1
2𝜋𝜃𝑦𝜃𝑥

xp

(

−(𝜗𝑦 − 𝜗′𝑦)
2

2𝜃2𝑦

)

exp

(

−(𝜗𝑥 − 𝜗′𝑥)
2

2𝜃2𝑥

)

, (4)

here 𝜃𝑥 and 𝜃𝑦 are characteristic angles of beam divergence in the
orizontal and vertical directions, respectively.

In general, a coordinate detector measures the spatial distribution
f the points where particles or quanta hit it. In the case of a radiation
ource of small dimensions or a large distance between the detector
nd the source, when its dimensions can be neglected, measurements
re typically in terms of the angular distribution of radiation. Since the
ransverse dimensions of the electron beam of interest do not exceed
everal tens of microns, and the minimum possible distance between
he crystal and the detector is more than several tens of centimeters
see, for example, [21]), we do not differentiate between the spatial and
ngular distributions and discuss the angular distribution of radiation
or both point-like and extended electron beams.

The influence of the beam size and the distance between the crystal
nd the detector 𝑅 on the measured two-dimensional angular dis-
ribution of radiation (see, for example, [13]) can be expressed as
ollows:

𝑅(𝜔B, 𝜗
′
𝑦, 𝜗

′
𝑥) = ∬ 𝐽 (𝜔B, 𝜗𝑦, 𝜗𝑥)

(𝜗𝑦 → 𝜗′𝑦, 𝜗𝑥 → 𝜗′𝑥)𝑑𝜗𝑦𝑑𝜗𝑥, (5)

here 𝐽 (𝜔B, 𝜗𝑦, 𝜗𝑥) and 𝐽𝑅(𝜔B, 𝜗′𝑦, 𝜗
′
𝑥) are the angular distributions of

adiation for a point-like and extended beam of particles on the target,
espectively, and the integration is carried out within the full solid
ngle. The function 𝐺(𝜗𝑦 → 𝜗′𝑦, 𝜗𝑥 → 𝜗′𝑥) describes the relationship
etween the variables of each of these distributions and, for a two-
imensional Gaussian distribution of the points of electrons hitting the
rystal, can be written as:

(𝜗𝑦 → 𝜗′𝑦, 𝜗𝑥 → 𝜗′𝑥) =
1
′ ′
2𝜋𝜎𝑦𝜎𝑥

3

exp

(

−(𝜗𝑦 − 𝜗′𝑦)
2

2(𝜎′𝑦)2

)

exp

(

−(𝜗𝑥 − 𝜗′𝑥)
2

2(𝜎′𝑥)2

)

, (6)

where 𝜎′𝑥 = 𝜎𝑥∕𝑅, 𝜎′𝑦 = 𝜎𝑦∕𝑅 are the effective angles of divergence in
the horizontal and vertical planes, respectively, and 𝑅 is the distance
between the crystal and the detector. This form for recording the
relationship between the angle of photon emission for point-like and
extended emission sources is considered reasonable due to the fact that
for a fixed angle of the detector and small observation angles (less than
30–40 degrees), the change in the spatial position of the emitting point
is practically equivalent to the corresponding change in the angle of
photon emission (see [20] for details). Thus, due to the small size of
the beam on the crystal and the relatively large distance between the
crystal and the detector, the change in the solid angle covered by the
detector element can be neglected.

As can be seen from expressions (5) and (6), a change in the distance
between the crystal and the detector leads to a change in the recorded
angular distribution of the radiation yield, which forms the basis of the
method for determining the beam size from the angular distributions
of radiation for two distances between the crystal and the coordinate
detector [20].

3. Description of method

Here is a brief description of the method for estimating the beam
size on a crystal on the basis of [20] and [21]. It is assumed that the
angular distributions of DTR are measured by a coordinate detector
similar to the X-ray detector [27] used in the experiment in [28]. The
device measures integral intensity of the incident radiation and the
signal amplitude recorded by each pixel is proportional to the energy
left in it by the photons of the recorded radiation. This makes it possible
to measure the beam parameters rapidly. The photon energy is not
recorded, so we will omit 𝜔B and discuss only the angular distribution
of radiation.

Below we will consider the determination of the beam parameters
for the reflecting plane (011) of a silicon crystal and the observation
angle 𝜃D = 32.2◦. When the condition 𝜔 ≪ 𝛾𝜔p is satisfied, the angular
distribution of the intensity of the transition radiation, and hence the
DTR, does not depend on the photon energy; therefore, all of the
following statements apply to other crystals, observation angles, and
reflecting planes. Choosing a different crystal or observation angle will
only change the photon energy and reflected radiation yield [29]. The
presence of the polarization factor 𝐶pol in expression (2) leads to a
change in the ratio of the intensities of the vertical and horizontal dis-
tributions with a change in the observation angle. Transition radiation
does not depend on the sign of the particle charge [18,26], therefore,
the technique works for both electron and positron beams.

For a coordinate detector located at a distance 𝑅, the measured two-
dimensional angular distribution of the radiation intensity 𝑌𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 )
an be written in the following form:

𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) = ∬𝛥𝛺(𝑦𝑖 ,𝑥𝑗 )
𝐽𝑅(𝜗′𝑦, 𝜗

′
𝑥)𝑑𝜗

′
𝑦𝑑𝜗

′
𝑥, (7)

here 𝐽𝑅(𝜗′𝑦, 𝜗
′
𝑥) is defined in expressions (5) and (6). 𝛥𝛺(𝑦𝑖, 𝑥𝑗 ) is the

olid angle covered by the coordinate detector element located at the
ngles 𝜃𝑦𝑖 and 𝜃𝑥𝑗 at the point 𝑦𝑖, 𝑥𝑗 , over which the integration is
erformed.

It is clear that the difference between the distributions 𝑌𝑅1
(𝜃𝑦𝑖 , 𝜃𝑥𝑗 )

nd 𝑌𝑅2
(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ), measured for the distances 𝑅1 and 𝑅2 and normalized

o the same number of particles passing through the crystal is due only
o the characteristic dimensions of the beam and the distances between
he crystal and the detector. These distributions themselves are the
esults of convolutions of the angular distribution for a point-like beam
f particles 𝐽 (𝜗𝑦, 𝜗𝑥) and two two-dimensional Gaussian distributions
ith standard deviations 𝜎′ = 𝜎 ∕𝑅 and 𝜎′ = 𝜎 ∕𝑅 . As a
𝑥1 ,𝑦1 𝑥,𝑦 1 𝑥2 ,𝑦2 𝑥,𝑦 2
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first approximation, we can assume that 𝑌𝑅2
(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) is the convolution

of the distribution 𝑌𝑅1
(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) with a Gaussian distribution with a

variance that depends on the unknown size of the beam on the target
and the quantities 𝑅1 and 𝑅2,

We assume that 𝑅1 = 𝑘 ⋅ 𝑅2, where 𝑘 is an integer coefficient not
qual to one, and the solid angles covered by the detectors are the
ame in each measurement. In other words, the value of 𝑌𝑅1

(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) at
each distribution point is equal to the radiation intensity recorded by a
matrix of 𝑘×𝑘 elements covering the same solid angle as the detector’s
element installed at a distance of 𝑅2.

To determine the required beam size on the target, we use the least
squares method, minimizing the quadratic form:
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

𝑌𝑅2
(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) −

1
2𝜋𝜎′𝑥𝜎′𝑦

𝑛
∑

𝑖′=1

𝑚
∑

𝑗′=1
𝑌𝑅1

(𝜃𝑦𝑖′ , 𝜃𝑥𝑗′ )
)

xp
(

(

−
(𝜃𝑦𝑖 − 𝜃𝑦𝑖′ )

2

2(𝜎′𝑦)2
)

exp
(

−
(𝜃𝑥𝑗 − 𝜃𝑥𝑗′ )

2

2(𝜎′𝑥)2
)

)2
= Min, (8)

where 𝑚 and 𝑛 are the numbers of points in the measured distributions
in the horizontal and vertical directions, respectively. 𝜎′𝑥 and 𝜎′𝑦, which
are adjustable parameters that minimize this form, are related to the
beam size on the target 𝜎𝑥, 𝜎𝑦 via [20,21]

𝜎𝑦,𝑥 ≈
𝑘 ⋅ 𝑅2

√

𝑘2 − 1
𝜎′𝑦,𝑥. (9)

4. Determination of electron beam parameters

In order to test the capabilities of the technique and determine the
boundaries of its applicability, we simulated the determination of the
parameters of an electron beam with an energy of 10 GeV from two-
dimensional distributions of diffracted transition radiation measured
for two distances between the crystal and the coordinate detector, using
the variation of convolution parameters. The simulation was carried out
using the following conditions: the (022) reflection of a silicon crystal,
a viewing angle of 32.2◦, and 𝜔B = 11.6 keV. The size of the detector
lement was 10 × 10 μm2.

As an example, Fig. 2 shows the vertical and horizontal sections of
he two-dimensional angular distribution passing through the center
f the reflected radiation beam for the following conditions. The di-
ensions of the electron beam on the crystal are 𝜎𝑥 = 40 μm and 𝜎𝑦 =

20 μm. The divergence of an azimuthally symmetric electron beam 𝜃𝑒 =
5 μrad. The distances between the crystal and the coordinate detector
re 2 and 4 m.

To obtain the angular distribution of radiation from a point-like
lectron beam 𝐽DTR(𝜗𝑦, 𝜗𝑥), the angular distribution of DTR 𝐽DTR(𝜗′𝑦, 𝜗

′
𝑥)

was convolved with a two-dimensional Gaussian distribution describing
an electron beam with a divergence angle 𝜃𝑒 = 15 μrad. The angular dis-
ributions of the radiation intensity 𝐽𝑅1,2

(𝜗′𝑦, 𝜗
′
𝑥) for an extended beam

nd the distances between the crystal and the detector 𝑅1 = 4 m and
2 = 2 m are obtained by convolving 𝐽 (𝜗𝑦, 𝜗𝑥) with a two-dimensional
aussian distribution with effective divergences 𝜎′𝑥1,2 = 𝜎𝑥∕𝑅1,2 and
′
𝑦1,2

= 𝜎𝑦∕𝑅1,2. To get the 𝑌𝑅1
(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) and 𝑌𝑅2

(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) dependencies
𝑅1,2

(𝜗′𝑦, 𝜗
′
𝑥) were assumed to be ‘‘noisy’’ using a uniform distribution in

he range of values ±10% at each point, and the dependence 𝐽𝑅1
(𝜗′𝑦, 𝜗

′
𝑥)

was additionally compressed in half for each of the coordinates.
The deviation of the beam size values obtained by fitting from

the real values does not exceed 5%–6%. The dependence obtained by
fitting (the second term in the quadratic expression in (8)) practically
coincides with the dependence for a smaller distance (the first term)

and thus is not presented.

4

Fig. 2. Angular distribution of radiation in (a) vertical and (b) horizontal directions,
showing a model DTR angular distribution, a radiation distribution for a point-like
electron beam, and distributions for an extended electron beam with distances 𝑅1 = 4

and 𝑅2 = 2 m. Electron energy 10 GeV, silicon crystal, (022) reflection order,
bservation angle 𝛩D = 32.2◦.

Determination of the beam profile parameters

To determine the sensitivity of the present technique, for the same
conditions, we made a cycle of estimates of the beam size obtained
using the technique, depending on the distance between the crystal
and the detector. During each fitting, the noise implementation was
performed anew. The dependence of the beam size estimate 𝜎𝑦,𝑥 on the
distance, obtained by fitting, is shown in Fig. 3. Here and below, the
standard deviation of the values obtained by fitting from the mean is
taken as errors. As before, we set 𝑅1 = 2𝑅2.

Fig. 3 shows that for distances 𝑅2 of less than 2 m, the error in
determining the vertical size of the beam does not exceed 6%, and
the values obtained by fitting coincide with those specified in the
simulation. For large distances, the difference between the estimate 𝜎𝑦
and the beam size 𝜎𝑦 = 20 μm increases. At the same time, the fitting
error grows. For the horizontal beam size, the deviation is almost half as
large, and the increase in fitting error begins for distances of more than
5 m. The arrows indicate the boundaries of the applicability region of
the technique for a noise level of 20%. The same behavior was observed
for the same electron energy and observation angle in [21] for beam
sizes 𝜎𝑥 = 20 and 𝜎𝑦 = 30 μm. In all cases, the differences between the
estimate and the true value start to exceed the fitting error under the
condition 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅2 ≤ 0.1𝛾−1.

The reason for this behavior of the fitting results is that the dif-
ferences between the ‘‘noisy’’ distributions 𝑌𝑅1

(𝜃𝑥, 𝜃𝑦) and 𝑌𝑅2
(𝜃𝑥, 𝜃𝑦)

decrease with increasing distance between the crystal and the coordi-

nate detector [29], so the method loses its sensitivity. It is also found
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Fig. 3. Dependence of the beam size estimates on the distance between the crystal and
the detector. Silicon, electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝜎𝑥 = 40
μm, 𝜎𝑦 = 20 μm.

Fig. 4. Dependence of beam size estimates on ‘‘noise’’ level. Silicon, electron energy
10 GeV, observation angle 𝛩D = 32.2◦, 𝜎𝑥 = 40 μm, 𝜎𝑦 = 20 μm.

hat with increasing ‘‘noise’’ level, the deviation of 𝜎𝑥,𝑦 from 𝜎𝑥,𝑦 begins
o manifest itself for smaller distances, and vice versa: with decreasing
‘noise’’ level, the fitting error decreases, and the deviation of 𝜎𝑥,𝑦 from
𝑥,𝑦 starts at larger distances. For a horizontal beam size, because of
ts larger value, an increase in the distance between the crystal and
he coordinate detector has a weaker effect on the fitting error and the
esulting estimate of the beam size.

To confirm the above, the dependence of 𝜎𝑦,𝑥 on the noise level
btained by fitting is plotted in Fig. 4 for 𝜎𝑥 = 40 μm, 𝜎𝑦 = 20 μm.
he distance between the crystal and the detector is 1 and 2 m.

Fig. 4 shows that with an increase in noise level from 10% to 50%,
he spread of 𝜎𝑥,𝑦 values from the true value increased from 2%–3%
o 10%–15%. The lower scatter in 𝜎𝑥,𝑦 in comparison with the noise
evel is due to the averaging over a large number of points of the
nalyzed distributions during the fitting process. As a rule, the scatter
f experimental data is not less than 10%–15%. Thus, an approximate
riterion for the applicability of the method can be the fulfillment of
he condition 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅2 > 0.1𝛩ch as suggested in [20,21]. For the
TR case, 𝛩ch = 𝛾−1.

The electron beam profile (see, for example, [8]) can be rotated
round the accelerator axis along the azimuthal angle 𝜑, that is, the
emi-major axis of the elliptical beam profile can be rotated relative to
he horizontal or vertical planes. In this case, the effective divergences
5

Fig. 5. Dependence of the beam parameter estimates for tilted electron beams on the
tilt angle. Silicon, electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝜎𝑎 = 50 μm,
𝜎𝑏 = 25 μm.

Fig. 6. Dependence of beam parameter estimates for tilted electron beams on 𝜎𝑏.
Silicon, electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝜎𝑎 = 50 μm, 𝜑=30◦.

n Eq. (6) can be rewritten as 𝜎′𝑥 = (𝜎𝑎 cos𝜑 + 𝜎𝑏 sin𝜑)∕𝑅 and 𝜎′𝑦 =
−𝜎𝑎 sin𝜑 + 𝜎𝑏 cos𝜑)∕𝑅, where 𝜎𝑎 and 𝜎𝑏 are, respectively, the major
nd minor semiaxes of the beam profile, which allows the use of the
echnique in [20] in this case as well.

Fig. 5 shows the dependence of estimates of the beam size 𝜎𝑎, 𝜎𝑏
and the tilt angle �̃�, obtained through fitting, on the value 𝜑 for 𝜎𝑎 =
50 μm, 𝜎𝑏 = 25 μm. The calculation is performed for distances 𝑅1 = 4 m
and 𝑅2 = 2 m. All other conditions are the same as those used above.

Fig. 5 shows that estimates of the beam size coincide with the values
used in the simulation, and the spread of values does not exceed 3%
and 5% for the major and minor semiaxes, respectively. The error in
determining the rotation angle does not exceed 2◦ except at 0◦, where
it is slightly higher.

To determine the range of applicability of the method for estimat-
ing the rotation angle of the symmetry plane of the beam using the
proposed technique, Fig. 6 shows the dependence of estimates of beam
profile parameters obtained by fitting on 𝜎𝑏 for a rotation angle of 30◦
and semi-major axis 𝜎𝑎 = 50 μm.

Fig. 6 shows that the deviation of the values obtained for the
transverse dimensions of the beam from the true values does not exceed
a few percent. The scatter of the rotation angle values begins to increase
starting from 𝜎𝑏 = 30 μm, which corresponds to a ratio of the beam sizes
𝜎𝑏∕𝜎𝑎 of 0.6.

It should be recalled that the technique used in [20] is model-
independent and, therefore, can be used to determine the profile of
an electron beam with the aid of the DTR mechanism or the PXR
mechanism. The same approach, that is, estimation of the emitting

region size by measuring the angular distributions for two different
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distances between the radiation source and the coordinate detector,
can be used for any highly directional radiation, including determining
the effective transverse dimensions of the emitting region of an X-ray
free-electron laser [30].

5. Beam divergence estimate

From the measured angular distribution 𝑌DTR(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ), provided one
nows the exact form of the angular distribution DTR for a monodirec-
ional electron beam 𝐽DTR(𝜗′𝑦, 𝜗

′
𝑥), one can estimate the divergence of

point-like electron beam 𝜃𝑥,𝑦 by solving the inverse problem [17]. In
ractice, this requires the fulfillment of the condition 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅 ≪
𝑥,𝑦, that is, a large distance between the coordinate detector and crystal
r small beam sizes. If this condition is not met, then the method in [17]
ould not be applicable owing to the presence of a systematic error.

To determine the beam divergence, one can use the results of
easurements of the angular distributions for two distances to deter-
ine the beam sizes 𝜎𝑥, 𝜎𝑦, and then, by taking into account their

ontribution to the measured angular distribution, estimate the beam
ivergence 𝜃𝑥 and 𝜃𝑦.

A comparison of expressions (2)–(6) reveals that the angular dis-
ribution of the DTR 𝑌𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ), measured by a detector located at a
istance of 𝑅, can be represented as two consecutive convolutions of
he intrinsic angular distribution of the diffracted transition radiation
DTR(𝜗′𝑦, 𝜗

′
𝑥) with the angular distribution of the electron beam 𝐺𝑒(𝜗′𝑦 →

𝑦, 𝜗′𝑥 → 𝜗𝑥) and the effective angular distribution 𝐺(𝜗𝑦 → 𝜗′𝑦, 𝜗𝑥 → 𝜗′𝑥)
caused by the scatter in the locations of electrons hitting the crystal.
This allows us to modify the quadratic form (8) and use it to estimate
the divergence of an electron beam by the least squares method, where
the sought values of the beam divergence 𝜃𝑥 and 𝜃𝑦 are adjustable
parameters that minimize this form.
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

𝑌𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ) −
𝐶

2𝜋𝜎′′𝑥 𝜎′′𝑦

𝑛
∑

𝑖′=1

𝑚
∑

𝑗′=1
𝐽DTR(𝜃𝑦𝑖′ , 𝜃𝑥𝑗′ )

)

exp
(

(

−
(𝜃𝑦𝑖 − 𝜃𝑦𝑖′ )

2

2(𝜎′′𝑦 )2
)

exp
(

−
(𝜃𝑥𝑗 − 𝜃𝑥𝑗′ )

2

2(𝜎′′𝑥 )2
)

)2
= Min, (10)

here 𝑚 and 𝑛 are, as before, the numbers of points of measured
istributions in the horizontal and vertical directions, respectively.
DTR(𝜃𝑦𝑖′ , 𝜃𝑥𝑗′ ) is the result of integrating the angular distribution of
TR 𝐽DTR(𝜗′𝑦, 𝜗

′
𝑥) along the solid angle covered by the detector element

ocated at the point 𝑥𝑖, 𝑦𝑗 . 𝜎′′𝑥 =
√

(𝜎′𝑥)2 + (𝜃𝑥)2 and 𝜎′′𝑦 =
√

(𝜎′𝑦)2 + (𝜃𝑦)2,
where 𝜎′𝑦 = 𝜎𝑦∕𝑅 and 𝜎′𝑥 = 𝜎𝑥∕𝑅. These are the effective divergences
determined through the beam size estimate obtained during the first
stage of processing. Here, unlike expression (8), an additional fitting
parameter 𝐶 appears, because a model dependence is used in the fitting
process, rather than an experimental dependence, normalized to the
same number of electrons as 𝑌𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ).

As 𝑌𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ), one can take the measurement results for 𝑌𝑅1,2
(𝜃𝑦𝑖 ,

𝑥𝑗 ), used to determine the beam size, or to reduce the error in the
btained values of 𝜃𝑥,𝑦, carry out an additional measurement. To reduce
he influence of the error in determining the transverse dimensions of
he beam on the accuracy of the divergence estimate, it is desirable to
se the angular distribution measurement results for a larger distance as
𝑅(𝜃𝑦𝑖 , 𝜃𝑥𝑗 ). The same approach can be employed to estimate the beam

divergence from the measurement results of the angular distribution of
radiation when 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅 ≪ 𝜃𝑥,𝑦, replacing 𝜎′′𝑥,𝑦 with 𝜃𝑥,𝑦.

If necessary, during the fitting process, one can take into account
he rotation of the beam around the accelerator axis and write 𝜃𝑥 =
𝑎 cos𝜑 + 𝜃𝑏 sin𝜑 and 𝜃𝑦 = −𝜃𝑎 sin𝜑 + 𝜃𝑏 cos𝜑, where 𝜃𝑎 and 𝜃𝑏 are the
ivergences along the symmetry axes of the beam. For small effective
ivergences (𝜎𝑎,𝑏∕𝑅 ≪ 𝜃𝑎,𝑏), this approach allows determination of the
ngle of reversal, which is impossible using the methods in [10,17],
here only vertical and horizontal distributions of the radiation are
nalyzed.
6

Fig. 7. Dependences of the ratios 𝜃𝑥∕𝜃𝑥 and 𝜃𝑦∕𝜃𝑦 on the vertical beam divergence 𝜃𝑦.
ilicon, electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝜎𝑥=40 μm, 𝜎𝑦=30 μm.
𝑥=15 μrad. 𝑅1=6 m, 𝑅2=3 m.

To simplify quadratic form (10), we combined convolutions accord-
ng to the divergence and size of the beam on the target. One can
erform convolutions (3) and (5) sequentially, and substitute the results
n quadratic form (10). The two approaches give roughly the same
esults. We adopted the approach involving separate computations of
onvolutions because it appears to be more consistent.

In order to determine the feasibility and limits of applicability of
he proposed method for estimating the electron beam divergence, we
ade a cycle of estimates of the electron beam divergence obtained
sing this technique and the ‘‘noisy’’ angular distributions for several
ivergence values. For simplicity, the characteristic beam dimensions
n the target 𝜎𝑥 = 40 μm and 𝜎𝑦 = 30 μm are assumed to be known
nd constant. The beam divergence in the horizontal direction 𝜃𝑥 = 15
rad. The distances between the crystal and the coordinate detector
re 3 m and 6 m. The symmetry planes of the beam coincide with
he horizontal and vertical planes. The other conditions are the same
s those used above. The dependences of the ratios 𝜃𝑥∕𝜃𝑥 and 𝜃𝑦∕𝜃𝑦,
btained by modeling, on the beam divergence in the vertical plane 𝜃𝑦
re plotted in Fig. 7.

Fig. 7 shows that in the investigated range of vertical divergence,
he deviation of the divergence estimates obtained by the developed
ethod from the true values does not exceed 4%–5%, with the excep-

ion of the range 𝜃𝑦 ≤ 3 μrad ∼ 0.06𝛾−1, where the average of the
stimates of the vertical divergence 𝜃𝑦 is still close to the true value,
hile the estimation error has grown to ∼ 20%.

To reveal why the fitting error increases for small 𝜃𝑦, Figs. 8(a) and
(b) show the model vertical angular distributions for 𝜃𝑦 values of 3
nd 15 μrad, respectively. All other conditions remain unchanged.

A comparison of Figs. 8(a) and 8(b) reveals that for 𝜃𝑦 = 15
rad, there is a consistent difference between the model and fitted
ependences over the entire range of fitting angles. For 𝜃𝑦 = 3 μrad, a
ifference is observed only in a narrow range of angles near the center
f the reflex, while outside this range, given the ‘‘noise’’ level, there is
ractically no difference.

Therefore, the increase in error in the estimates of vertical diver-
ence for small 𝜃𝑦 values in Fig. 7 is caused by the scatter in the points
f adjusted dependence. This is also evidenced by the fact that as the
oise level decreased from ±10% to ±2.5%, the spread in the 𝜃𝑦 values
btained for a vertical divergence of 3 μrad dropped from ±14% to
5%.

This suggests that the proposed method, which enables the esti-
ation of the divergence of an extended electron beam with known

ransverse dimensions through a comparison of the measured angular
istribution of the diffracted transition radiation of relativistic electrons
n a thin crystal against a model distribution, can be used if 𝜃𝑥,𝑦 > 0.1𝛾−1
or 𝑅 = 6 m and ‘‘noise’’ level ±10%.
1



Yu.A. Goponov, R.A. Shatokhin, K. Sumitani et al. Nuclear Inst. and Methods in Physics Research, A 996 (2021) 165132

6

b
t
b
s

a
t
t
𝜃
d

p
c
n
s
t

𝜖

e
o
s
t
i
i

v
e
𝜎
a
w
h

𝜖
o
e
t
d

e
t
a
e
t
t
t
i
l
d
f

t
b
s
i
e
o

o
t
s
e

Fig. 8. Angular distributions of radiation in the vertical direction for 𝜃𝑦=3 μrad (a)
and 15 μrad (b), showing a model DTR angular distribution, a radiation distribution
for a point-like electron beam, and distributions for the extended electron beam with
distance 𝑅1 = 6 m. Electrons energy 10 GeV, silicon crystal, (022) reflection order,
observation angle 𝛩D = 32.2◦ 𝜎𝑥=40 μm, 𝜎𝑦=30 μm. 𝜃𝑥=15 μrad.

. Estimation of beam emittance

The ability to determine the size and divergence of a beam in
oth directions by measuring the angular distributions of the DTR for
wo crystal-detector distances raises the possibility of determining the
eam emittance from the results of these measurements. In the first
tage of processing, the transverse dimensions of the beam 𝜎𝑥 and
𝜎𝑦 are determined from the measurement results, and in the second,
ccording to the results of fitting the model angular distribution to
he angular distribution at a greater distance, and taking into account
he transverse beam size on the target, the beam’s divergence (𝜃𝑥 and
�̃�) and emittance (𝜖𝑥 = 𝜎𝑥𝜃𝑥 and 𝜖𝑦 = 𝜎𝑦𝜃𝑦) are estimated in both
irections.

In order to determine the feasibility and applicability of the pro-
osed method for estimating the electron beam emittance, we made a
ycle of estimates of the electron beam emittance through this tech-
ique and ‘‘noisy’’ angular distributions for several horizontal beam
izes. For simplicity, it was assumed that the emittances in both direc-
ions were known and were equal to 𝜖𝑥 = 0.0006 mm⋅mrad and 𝜖𝑦 =

0.00025 mm⋅mrad, which corresponds to the value of the normalized
emittance 𝛾𝜖𝑥 ∼ 11.7 μm⋅radian and is close enough to the 𝛾𝜖𝑥 ∼
10 μm⋅radian for the ILC collider and an electron energy of 250 GeV [4].

For the same reason, the symmetry planes of the beam coincide
with the horizontal and vertical planes. The distances between the
crystal and the coordinate detector are 2 and 4 m. The other conditions
coincide with those used above. The dependence of 𝜖𝑥 and 𝜖𝑦, obtained
by modeling, on the horizontal beam size is plotted in Fig. 9.
 o

7

Fig. 9. Dependence of the emittance estimate on horizontal beam size. Silicon,
electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝜖𝑥 = 0.0006 mm⋅mrad,
𝑦=0.00025 mm⋅mrad.

Fig. 9 shows that in the 𝜎𝑥 range from 25 to 80 μm, the horizontal
mittances obtained by fitting coincide with the true values, while
utside this range indicated by arrows, the obtained emittances deviate
ignificantly from the true values. Moreover, in the region of small 𝜎𝑥,
here is a systematic shift of 𝜖𝑥 to larger values, and for large sizes, that
s, small divergences (𝜃𝑥 < 7.5μrad ∼ 0.15𝛾−1), there is a sharp increase
n the fitting error.

The vertical emittance estimates behave similarly. The average
alue of 𝜖𝑦 does not depend on the horizontal beam size, while the
rror in its determination increases in the regions of small and large
𝑥. Since in expressions (8) and (10) the variables 𝜃𝑦, 𝜎′𝑦 and 𝜃𝑥, 𝜎′𝑥
re independent, varying the parameters of the vertical distribution
ill practically have no effect on estimates of the emittance in the
orizontal plane.

To understand the reasons for this behavior of the dependences of
�̃� and 𝜖𝑦 on the horizontal beam size, Fig. 10 shows the dependences
f the ratio of the estimates of the vertical and horizontal beam param-
ters, obtained in determining the emittance, to their true values, on
he horizontal beam dimensions for transverse dimensions (10a) and
ivergence angle (10b).

Fig. 10(a) shows that the increase in the estimate of the horizontal
mittance for small beam sizes is due to the shift in the estimate of the
ransverse dimensions caused by a decrease in the effective divergence
ngle 𝜎′𝑥 = 𝜎𝑥∕𝑅2 (see Fig. 3 and its caption). For 𝜎𝑥 = 20 μm, the
ffective divergence 𝜎′𝑥 = 10 μrad ∼ 0.2𝛾−1. The wider applicability of
he technique compared to the conditions in Fig. 3 is presumably due to
he lower relief, that is, the ratio of the amplitude at the maximum to
he depth of the dip, of the horizontal angular distribution of the DTR
n comparison with the vertical angular distribution (see Fig. 2). For
arge values of 𝜎𝑥, the spread in estimates of the horizontal beam size
ecreases and the error in determining the vertical beam size increases
rom 3% to 12%.

A comparison of Figs. 9 and 10(b) clearly shows that the scatter in
he emittance estimates in the large 𝜎𝑥 region is due to the scatter in
eam divergence in the horizontal direction obtained during fitting. It
hould be noted that the error in determining the vertical divergence
s practically independent of 𝜎𝑥 (see Fig. 9b), that is, an increase in the
rror in determining the vertical emittance for large 𝜎𝑥 values is due
nly to an increase in the error in determining 𝜎𝑦.

To help visualize this behavior of 𝜃𝑥, Fig. 11 shows the dependences
f the ratio of the vertical and horizontal divergence estimates to the
rue values on the horizontal beam size, obtained for the beam sizes
pecified in the simulation process in both directions. Thus, the influ-
nce of the error in determining the horizontal and vertical dimensions
f the beam on the error in estimating the divergence is excluded.
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Fig. 10. Dependence of the ratios 𝜎𝑥,𝑦∕𝜎𝑥,𝑦 (a) and 𝜃𝑥,𝑦∕𝜃𝑥,𝑦 (b) on horizontal beam size.
ilicon, electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝜖𝑥 = 0.0006 mm⋅mrad,
𝑦=0.00025 mm⋅mrad, 𝜎𝑦=25 μm, 𝜃𝑦=10 μrad.

Fig. 11. Dependence of the ratios 𝜃𝑥,𝑦∕𝜃𝑥,𝑦 on horizontal beam size for fixed 𝜎𝑥,
𝜎𝑦 values. Silicon, electron energy 10 GeV, observation angle 𝛩D = 32.2◦, 𝑅1=4 m,
𝜖𝑥 = 0.0006 mm⋅mrad, 𝜖𝑦=0.00025 mm⋅mrad, 𝜎𝑦=25 μm, 𝜃𝑦=10 μrad.

Fig. 11 shows that for fixed 𝜎𝑥, 𝜎𝑦 values, estimates of the horizontal
beam divergence 𝜃𝑥 coincide with the true values over the entire range
of horizontal beam sizes. Consequently, the error in the horizontal
emittance for small 𝜃𝑥 values is mainly due to the error in determining
the beam size.
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For 𝜎𝑥 > 80 μm (𝜃𝑥 < 7.5 μrad), that is, in the range of angles
where large deviations of horizontal emittance from the true values
are observed, the scatter in the estimates of the horizontal divergence
∼ 10%–15% is significantly larger than for smaller values of 𝜎𝑥. This
is most likely because the increase in errors is due to a decrease in 𝜃𝑥
compared to the effective divergence 𝜎′𝑥 = 𝜎𝑥∕𝑅1 > 20 μrad. It is also
related to the difference in the magnitude of the errors in comparison
with the results shown in Fig. 7 for a smaller beam size and a larger
distance between the crystal and the coordinate detector, which yields
a value that is 𝜎′𝑦 = 𝜎𝑦∕𝑅1 ∼3 μrad smaller than the vertical divergence.

The above analysis demonstrates that the proposed technique can be
used to determine the emittance of an electron beam with an energy of
more than 5 GeV, that is, where the PXR contribution is negligible.
In the first stage, by comparing the angular distributions measured
for two different distances, the beam profile is determined, that is, its
transverse dimensions 𝜎𝑥, 𝜎𝑦 and, if necessary, the angle of rotation
of the symmetry plane relative to the horizontal plane. In the second
stage, according to the results of fitting the model angular distribution
of DTR to the angular distribution at a larger distance, and taking into
account the transverse size of the beam on the target, the values of the
beam divergence 𝜃𝑥 and 𝜃𝑦 and its emittance are determined in both
directions.

As the limits of applicability of the method for estimating the beam
emittance, in the first approximation we can take the applicability
conditions for determining the beam size and its divergence separately,
that is, 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅2 > 0.1𝛾−1 and 𝜃𝑥,𝑦 > 0.1𝛾−1. Combining these
conditions allows one to obtain the following estimate of the minimum
value of the measured normalized emittance 𝛾𝜖𝑥,𝑦 > 0.01𝑅2𝛾−1.

For an electron energy of 10 GeV, the same ‘‘noise’’ level and a
smaller distance between the crystal and the coordinate detector 𝑅2
= 1 m, we obtain the minimum measured value of the normalized
emittance 𝛾𝜖𝑥,𝑦 > 0.01𝑅2𝛾−1 ∼ 0.5 μm⋅radian, which is comparable
to the normalized emittance of an X-ray free electron laser in both
planes (∼1 μm⋅radian) [30], the normalized horizontal emittance of the
CLIC (0.66–2.4 μm⋅radian) [5] and is significantly higher than the value
of the vertical normalized emittance of the planned electron–positron
colliders ∼ 30 nm⋅radian [4,5]. Meeting the requirement 𝜎𝑥,𝑦 > 𝛿 =
10 μm increases the value of the minimum measurable normalized
emittance to 𝛾𝜖𝑥,𝑦 ∼ 1.0–1.5 μm⋅radian.

In order to expand the applicability of the method, the ‘‘noise’’
level and the distance between the crystal and the coordinate detector
should be reduced for a close position of the counter. The choice of
𝑘 = 𝑅1∕𝑅2 ∼ 3–5 instead of 2, as in our simulations, will reduce
the contribution of the error in determining the transverse dimensions
to the beam divergence and emittance determined by the proposed
technique. A decrease in the pixel size of the coordinate detector should
expand the applicability of the method and decrease the lower limit of
the emittance, which can be measured using the proposed technique.
The exact boundaries of the applicability of the method can be deter-
mined after choosing the coordinate detector and the positions where
it will not affect the acceleration process and where its installation will
not lead to a significant increase in cost.

As noted above, we used a model distribution of DTR (expression
(2)) that was obtained under the assumption that 𝛥𝜃 ≪ 𝛾−1. If this con-
dition is not met, then to obtain the model angular distribution of DTR
𝐽 (𝜗′𝑥, 𝜗

′
𝑦) it is necessary to use the more precise expression (1) instead of

expression (2) and explicitly take into account the effects of the Darwin
table width 𝛥𝜃 and the exact form of the dependence 𝑅(𝑛 → 𝑛′, 𝜔, 𝑔)
(see [23,31]) on the crystal parameters and measurement conditions
for the angular distribution of DTR.

This approach will smoothen the angular distribution from the
monodirectional electron beam 𝐽 (𝜗′𝑥, 𝜗

′
𝑦), which will not affect the

effectiveness of the proposed technique, but may slightly change the
limits of its applicability.

It should be noted that the degree of smoothening is determined
by the width of the Darwin table 𝛥𝜃, which, in turn, depends on
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the reflecting plane and the photon energy. Therefore, to reduce
the distortions of the angular distribution of DTR, we can use the
crystallographic planes (001) and (112), for which the width of the
Darwin table is approximately two to three times smaller, than for
the (011) plane with 𝛥𝜃 = 13.46 μrad for the present geometry of
observation.

Conversely, using the reflective (111) plane, as suggested in [17],
the width of the Darwin table will almost triple, become comparable
to 𝛾−1, and even exceed it, depending on the electron energy and the
angle of observation. A more detailed analysis of the effect of the
Darwin table width and the angular dependence of the reflectivity
on the angular distribution of the diffracted transition radiation is
beyond the scope of the proposed study. A study investigating these
issues is currently underway, the results of which will be presented
soon.

7. Conclusions

The emittance of a beam of electrons with energies above 5 GeV
𝜖𝑥,𝑦, where the contribution of parametric X-ray radiation is negligible
and the beam size is about 15-20 μm and higher, can be determined
from measurements of the angular distributions of diffracted transition
radiation of relativistic electrons in thin crystals for two different
distances between the source and the coordinate detector.

The transverse dimensions of the beam 𝜎𝑥,𝑦 are determined from the
results of fitting the distribution for a smaller distance by convolving
the distribution for a larger distance with a two-dimensional Gaussian
distribution, the parameters of which are unambiguously related to the
dimensions of the beam and the distances between the crystal and the
detector as outlined in the method in [20]. The limit of applicability of
this technique is the condition 𝜎𝑥,𝑦∕𝑅2 > 0.1𝛾−1, where 𝑅2 is a shorter
distance.

An additional requirement is the fulfillment of the condition for the
ratio of the characteristic beam size to the detector size, 𝜎 ≥ 𝛿, where 𝛿
is the pixel size of the coordinate detector. The method for estimating
the electron beam size [20] is model-independent and does not require
exact knowledge of the beam divergence or the degree of the crystal
structure perfection. The technique makes it possible to determine not
only the size of the beam on the target, but also its symmetry plane’s
rotation angle with respect to the horizontal and vertical planes.

The beam divergence 𝜃𝑥,𝑦 is determined from the results of fitting
the angular distribution measured for a larger distance by convolution
of the model angular distribution of diffracted transition radiation
with a two-dimensional Gaussian distribution describing a diverging
electron beam, taking into account the transverse dimensions and,
if necessary, the beam’s rotation angle obtained in the first stage of
processing.

The present approach allows the estimation of the divergence of an
electron beam with known sizes 𝜎𝑥,𝑦 in both directions 𝜃𝑥,𝑦 with an error
of no more than 5%–10% if the condition 𝜃𝑥,𝑦 > 0.1𝛾−1 is satisfied. In
order to reduce the error in the divergence, it is desirable to satisfy
the condition 𝜎𝑥,𝑦∕𝑅1 < 𝜃𝑥,𝑦. When the condition 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅 ≪ 𝜃𝑥,𝑦
is satisfied, the technique enables the determination of not only the
beam divergence, but also the tilt angle of its plane symmetry about
the vertical and horizontal planes.

In the case of an extended electron beam and measurements for
different distances between the crystal and the coordinate detector
in order to determine the beam emittance, both conditions must be
satisfied: 𝜎′𝑥,𝑦 = 𝜎𝑥,𝑦∕𝑅2 > 0.1𝛾−1 and 𝜃𝑥,𝑦 > 0.1𝛾−1. The lower boundary
of the region of applicability of the technique is determined by the pixel
size of the coordinate detector and the attainable range of distances
between the crystal and the detector.
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