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Abstract
Charge carriers parameters on a 2D- layer surface for (Cd, _x_yZn,Mny)3As, (y = 0.08) (the
concentration r,, = 1.9 x 10'? cm™, the effective value of the 2D-layer dy;, = n,p /n3p = 14.5nm,
the wave vector kr = 0.1 nm ™, the charge carriers relaxation time due to dispersion 7,

= 1.8 x 10 P, the velocity of charge carriers on Fermi surface vy = hkp /m, = 2.6° x 10°ms
the mean free path I = vp7p = 47.7 nm) were determined. It was found that the dependence of the
cyclotron mass m.(0)/m, on Fermi wave vector kxfor (Cd; _«_,Zn,Mn,);As, (y = 0.08)isin
compliance with a theoretical linear dependence, that describes mass-less Dirac fermions.

1. Introduction

Among topological Dirac and Weyl semimetal (TDSs and TWSs) materials Cd;As, has been treated as ideal
because of its ultrahigh mobility and chemical stability in air. It allows considering Cd;As, as a promising
candidate for finding new topological phases [ 1-4]. The existence of nontrivial topological characteristics of 3D
and 2D electronic states are of wide interest [5-7].

Earlier we discussed the results of studying Shubnikov-de Haas (SdH) oscillations in (Cd,; _x_,Zn,Mny);As,
(CZMA) compound (x 4+ y=0.4) [8]. SdH effect was investigated in a temperature range T = 4.2 <+ 300 Kand
in a transverse magnetic field B = 0 <+ 25 T. The values of the cyclotron mass 1, the effective g-factor ¢* and
Dingle temperature Tp were determined. For a sample with a composition y = 0.04,x = 0.36 a strong
dependence of the cyclotron mass on a magnetic field was observed. Our results of Fast Fourier Transform (FFT)
analysis based on studying Shubnikov—de Haas oscillations indicate the presence of topological properties. For
other composition (y = 0.08,x = 0.32) the magnitude of the phase shift was 3= 0.44 being close to 5 = 0.5,
which also suggests that single CZMA crystals with y = 0.08 demonstrate properties of Dirac semimetals and
indicates the presence of Berry phase and 3D Dirac fermions in Cd;As, single crystals [8, 9]. Magnetic field
dependences of resistivity have been recently measured at various orientations between a magnetic field vector
and electrical current, 7> directed along (100) crystal plane. Magnetoresistance dependences %(B)

demonstrate unusual features in (Cd; _x_,Zn,Mny)3As, (X + y= 0.4;y = 0.04) single crystal at different
orientation. An asymmetry and parity violation of magnetoresistance of magnetic diluted Dirac—Weyl
semimetal (Cdg ¢Zng 36Mng o4)3As, was established [10].

The purpose of this investigation was to continue the study of transport properties of solid solutions diluted
amagnetic semiconductor (Cd; _x_,Zn,Mny);As, (x + y= 0.4) containing Mn (y = 0.04 and 0.08).

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. SdH oscillations observed at 4.2-50 Kin CZMA (x + y = 0.4) aty = 0.04 (on theleft)and y = 0.08 (on the right) [8].
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Figure 2. Field dependence of cyclotron mass for(Cd; __,Zn,Mn,);As,samples(x 4 y = 0.4)aty = 0.04andy = 0.08 [8].

2. Experimental details

A modified Bridgeman method was used to obtain single crystals of CZMA. All the samples had tetragonal
crystal structure (s. g. P4, /nmc). Well-resolved single-period SdH oscillations were observed well in the all
investigated CZMA (X + y = 0.4) specimens at temperatures between T = 4.2 and 50 K (figure 1, see [8]).

Ithas been recently found that the cyclotron mass is independent on a magnetic field, B, for CZMA
monocrystals (y = 0.08 andy = 0.04) (figure 2, [8]). And an anomalous dependence of the cyclotron mass on a
magnetic field was observed that obeys a linear law:

m.(B) = m.(0) + a B.

Our further studies of CZMA (x + y = 0.4) were prolonged on the basis of the results obtained in [8]. The
parameters found from SdH oscillations and Hall Effect for CZMA samples (x + y = 0.4;y = 0.04,y = 0.08)
are presented in comparison with CdsAs,, table 1 [8, 11-13].

In table 1: g is Hall concentration of charge carriers; g,y is SdH carrier concentration; puy is Hall mobility;
Psapris a period of the SdH oscillations; m11(0) and o are the values of the linear law m¢ (B) = mc(0) + aB; Tp,,
characterizes broadening of Landau levels due to scattering of electrons by lattice defects.

|Frequencies Hpfor samplesx = 0.36;y = 0.04andx = 0.32;y = 0.08 obtained by simple Fast Fourier
Transform (FFT) analysis of SdH oscillations are occurred to be equal (about 40 T) [8].

The concentration of charge carriers, 1,p, in 2D-layer CZMA (y = 0.08) can be found analyzing SdH
oscillations with the help of Lifshitz-Onsager relation [ 14], where the frequency Hr = 40 T directly relates to the
cross-sectional area of 2D Fermi surface: n,p = 2eHyp /h = 1.9 x 10'> cm™2. Comparing this value with the
concentration of charge carriers in the space n3p = 1.3 x 10'® cm™ found from the transport measurements
the effective value of 2D-layer d,p = nyp /n3p = 14.5 nm can be calculated.
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Table 1. Parameters found from SdH oscillations and Hall Effect
for CZMA samples (X + y = 0.4;y = 0.04,y = 0.08)in
comparison with Cd;As,.

Y 0.04 0.08 CdsAs,
fig, cm > 3.4-10"7 1.3-10'® —
1R /Nsar 0.97 1.04 1.2[11]
pr107 em?vls™! 2.28 1.53 2.9[13]
P, T 0.061 0.025 0.02[13]
me(0) /myg 0.0409 0.0435 0.043[13]
a/my x 103%,1/T 3.3 0 —
Tp, K 12.7 13.2 9.8[12]
Tpy K 4.4 6.4 —

Table 2. Effective 2D-mobility and Hall 3D-
mobility in the CZMA samples (y = 0.04

andy = 0.08).

y 0.04 0.08
Hop 1075 em* Vs — 0.73
1074 em? Vs 2.28 1.53

The wave vector can be determined if the density of charge carriers is known, that can be expressed as:
myp = gk# /4, where g—the factor of degeneration of Landau bands. In our spin-filtered densities case we apply

degeneration factor as g = 25[15]. As aresult, it was found that for CZMA (y = 0.04) the wave vector is kr

=0.1nm™.

According to Lifshitz-Kosevich theory [14] the temperature dependence of SAH oscillation amplitude can be
expressed as:

27T2kB T/AEN (H)
sinh [272%ks T/ AEy (H)]
X exp [—27T2k3 TD /AEN(H)]

AR(H, T) o

where Tp and AEy are adjustable parameters, and H corresponds to a magnetic field at the minimum
(maximum) of longitudinal magnetoresistance. The value AEy is an energy gap between Nand (N + 1) Landau
band:

heH

AEy = ,
N 21 me

where m—is an effective cyclotron mass. The parameter Tp, is Dingle temperature

_h

Ip=——,
P 27T2TDkB

where 7p—a is relaxation time for charge carriers due to diffraction, for samplesy = 0.04 andy = 0.08 7p
=1.9 x 10775, 7p = 1.8 x 1013, respectively.

From the values kg, m.and 7p calculated for the samples y = 0.04 the velocity on Fermi surface
vg = hkp/m. = 2.65 x 10°ms™ ', the mean free path I = vp7, = 47.7 nm were calculated.

In the table 2 effective 2D-mobility and Hall 3D-mobility are presented.

Alinear dispersion law is an important feature of quantum transport (figure 3). This kind of dependence was
also observed for Dirac fermions in graphene [ 16, 17]. The dispersion law for the carriers (electrons): E = hvgk,
where vp—Fermi velocity, k—a wave vector. The relation with effective mass:

m. = E/(vp)*=hk/vE.

From the data in figure 3 it can be seen that the values obtained experimentally [11, 18, 19] and the values
obtained for CZMA (y = 0.04) (marked with symbols) are in a good accordance with the theoretical linear
dependence, that describes mass-less Dirac fermions (the continuous line).

In agreement with [8] rising Mn concentration leads to changes in transport properties of diluted magnetic
semiconductor (Cd; _x_yZn,Mny);As, (x + y = 0.4). The results of SdH oscillation investigations iny = 0.04
samples showed the absence of a phase shift Fand evidence of Berry phase. Thus, (Cdg ¢Zng 36Mng 94)3AS;
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Figure 3. The dependence of the reduced cyclotron mass m1.(0)/m, on Fermi wave vector kg, obtained from transport experiment
with mono crystals Bi,Se; with different doping levels [11, 18, 19] and completed with our result for CZMA (y = 0.04).

samples are not topological insulators but they demonstrate an anomalous dependence of charge carriers’
cyclotron mass on a magnetic field.

Thus, we have shown the presence of a relation between manganese concentration and topological
properties in CZMA diluted magnetic semiconductor and the presence of mass-less Dirac fermions in
(Cd;_x—yZn,Mny)3As, (x + y = 0.4).
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