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Abstract—Models based on regression analysis for predicting the operational efficiency of high-pressure
roller crushers are considered. A systematized and structured production database is created and statistically
analyzed. The consistency of the data is verified. The parameters with the greatest influence on the produc-
tivity are identified. The basic structure of the mathematical models is determined, and the limits on their
applicability are assessed. Predictive mathematical models are developed. Their adequacy is verified, and
their precision is established in assessing the productivity of mills at an enrichment plant where the mineral
composition of the incoming ore varies.

Keywords: high-pressure roller crushers, iron ore, ore crushing, regression analysis, modeling, operational
efficiency, prediction
DOI: 10.3103/S1068798X2011009X

As the global economy develops, there is growing
demand for all kinds of mineral resources, of which
the most important is iron ore. By 2024, mineral
extraction in Russia will have increased by 10–15%
and demand for iron ore will rise from 331 to 380 mil-
lion t (by 14.8%), according to the predictions in [1].

Enrichment plants process iron ore and produced
concentrate with high iron content. The processing
costs depend greatly on the crushing of the minerals in
special equipment.

The principles for determining the operational effi-
ciency of such equipment and identifying means of
increasing the efficiency are well known. Besides tradi-
tional methods—based on physicochemical models
[2‒6] and standard methods of optimal process control
[7–11]—smart data analysis may be employed [12–14].

However, problems associated with predicting the
operational efficiency of crushing equipment are often
superficially discussed. If the assessment of the pro-
ductivity fails to take account of the ore’s mineral
composition, which is a key factor, the results are of no
practical value.

In that context, we need to develop a reliable
method of predicting the productivity of mills with
different composition and properties of the incoming
ore, on the basis of appropriate research. Satisfactory
analysis of the relation between crusher performance
and the parameters of the incoming ore permits pre-

diction of the output, which is extremely important in
economic planning at enrichment enterprises, espe-
cially on switching to different ore.

We have developed models for predicting the oper-
ational efficiency of mills at enrichment enterprises on
the basis of regression analysis. Specifically, we con-
sider an enrichment enterprise in the Belgorod region,
which is known as a world leader in iron production.

The operational characteristics of the mills are col-
lected for primary statistical analysis. A database cov-
ering all the necessary parameters is created. Shift and
daily data in which even one of the necessary parame-
ters is missing are disregarded.

After verifying that the data are correct and consis-
tent, we eliminate the shift characteristics and create a
database solely of daily data. Then this database is
divided into four parts containing the general opera-
tional characteristics of specific production sections.
In each subdivision of the database, days on which the
mills operate for less than 24 h are disregarded.

By assessing the pair correlations of the granulo-
metric composition and all the ore-processing param-
eters with the mill productivity Q, we are able to select
the most significant characteristics. For each one, we
determine the pair correlation coefficient with the fac-
tors Q, Q0.5, Q1.2, Q2, Q3, and Q0.2.
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Fig. 1. Mean daily values of the actual productivity and
the predicted Q curve for the aggregate data in mill sec-
tions 1 and 2.
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Then, in order to derive an adequate regression
relation, we eliminate possible multiple correlations.
As a result, we select the following parameters: the
content (by mass) of specific mineralogical types; the
ease of enrichment (W); and the content of the ≤0.045
mm class in the concentrate ( . The mineralogical
types chosen are micaceous hematite–magnetite ,
biotite–hematite (B), and magnetite (M)

To assess the applicability of standard correlation
analysis and multiparametric regression analysis, we
verify that the model parameters conform to a normal
distribution (by means of Statistica 6.0 software). The
assumption of a normal distribution is confirmed.

In the next stage, in order to assess the relation between
Q and the selected parameters, we analyze the depen-
dences of , , , , 3, and 0.2 on the corre-
sponding combination of characteristics, in the form Qi =

 where
i, j, k, l, m, and n may take the values 1, 0.5, 1.2, 2, 3,
and 0.2; and Az are the regression coefficients.

The best result for the first data subdivision is Q2 =

, with

determination coefficient R = 0.77.
A dependence of this form is also satisfactory for

the second data subdivision. In that case, we may
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combine the data in these two subdivisions and ana-
lyze the resulting aggregate database. The same
dependence is obtained, with R = 0.785.

After analyzing models with different coefficients,
we select a model with the minimum possible mean
deviations and the maximum R
)(= − + + − − −3/2 2 2 2 2
13280533 25Fe 877 58 15 600 .Q W C M B

The predicted and calculated Q values are in good Analogously, the regression formula for the third

agreement for this model: the mean deviation ΔQme is
no more than 0.25%. In Fig. 1, we show the mean
daily values of the actual productivity and the pre-
dicted Q curve.
data subdivision is 

.
We obtain the model
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The mean deviation ΔQ  is no more than 0.2%. In Fig. 2, we show the mean daily values of the
me

Since the operational system for these three sec-
tions is the same, we may attempt to formulate a com-
mon model. However, regression analysis shows that
this is unsatisfactory.

For the fourth data subdivision, the best result is
Q1/5 = A0 + A1M1/5 + A2(B)1/5 + A3W2/3 +

.

The model takes the form
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actual productivity and the predicted Q curve for the
fourth data subdivision. The mean discrepancy over
the period is no more than 0.35%.

With model parameters close to the mean, the
regression formulas correspond to the following confi-
dence levels: with 0.95% probability, the actual pro-
ductivity is within ±1% of the calculated value
(around ±2% for the fourth subdivision). However, at
the boundaries of this interval, higher values are seen:
±5, ±8, and ±15% for the three models describing all
the sections.

As a result, the models are applicable when M =
80.28–89.03, B = 4.77–9.93, W = 67.96–68.27, and

 = 72.33–88.63.1C
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Fig. 2. Mean daily values of the actual productivity and the
predicted Q curve for the fourth mill section.
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Estimates show that the compliance  with a nor-
mal distribution is no more than 13.5 for all the regres-
sion models, with a critical value of 31.

CONCLUSIONS
(1) We have developed mathematical models char-

acterizing the causal relations between the mill pro-
ductivity at an enrichment enterprise and the mineral
composition of the incoming ore and verified their
adequacy and accuracy.

(2) We have obtained predictive models of the mill
productivity with R = 0.8 for the first and second sec-
tions; R = 0.68 for the third section; and R = 0.7 for the
fourth. This indicates that the models provide satisfac-
tory predictions.

(3) The proposed models permit effective assess-
ment and prediction of the expected daily mill pro-
ductivity, which may be used as the main parameter in
economic planning of plant output.
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