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PLASMA INVESTIGATIONS
On the Theory of the Plasma Capillary Effect
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Abstract—From the condition of the minimum energy of a three-phase system in an equilibrium stable state,
it is shown that the plasma capillary effect occurs due to the electrification of the meniscus when the liquid
comes into contact with the plasma. The presence of an electric charge on the meniscus leads to an increase
in the wettability of the capillary walls by the liquid. It was additionally established that a second stationary,
but unstable state of the system appears in this case. The calculation results are consistent with the observa-
tional data.
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Fig. 1. Geometry of the capillary rise of the wetting liquid.
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INTRODUCTION

The work [1] reports on the discovery of a new
physical effect consisting of an increase in the height
of the liquid column in a capillary when the gas-dis-
charge plasma touches the meniscus of the liquid and
is called the plasma capillary effect. According to [1],
the height of the liquid column (30% aqueous solution
of copper sulfate) increases abruptly at the moment of
the spark discharge in the gap between the needle elec-
trode and the meniscus of the liquid, which is initiated
by a single, high-voltage, nanosecond pulse, and then
the height of the column does not change, at least, for
a few hours. According to the authors of [1], the liquid
rises due to the electrification of the meniscus by a
spark discharge, which leads to an increase in the wet-
tability of the capillary walls by the liquid. However,
this conclusion was based only on a qualitative discus-
sion of the results of their own observations and simi-
lar experiments described in a number of other works
(references are given in [1]). Therefore, the goal of this
work is to substantiate the mechanism of the plasma
capillary effect proposed in [1] based on a simple
mathematical model.

MODEL

A three-phase system “liquid–solid (capillary)–
gas” limited by the walls of a cylindrical capillary is
considered. It is believed that the liquid wets the cap-
illary, and, thus, the capillary effect is realized: when
the capillary is lowered into in a wide vessel, the liquid
in the capillary rises relative to the main liquid level in
the vessel (Fig. 1).

It is also taken into account that the curved surface
of the capillary liquid can be charged with electricity.
The meniscus is considered in the approximation of
the charged surface of an “ideal” liquid conductor,
77
inside which the electric field is disregarded. The
applicability of such a simplified representation of an
electrified liquid (water and aqueous solutions) is jus-
tified in electrostatics by its “large” dielectric constant
and in the electrohydrodynamics of charged surfaces
by the rapid relaxation of charges [2]. The electric field
from the gas side is perpendicular to the meniscus at
any point. Otherwise, as experience shows, f luid
motion occurs [2]. The tangential component of the
field on the meniscus is zero due to the distribution of
electric charges ensuring its equipotentiality. Such an
electric field leads to an electric pressure drop, which
is equivalent to an increase in the surface tension of the
liquid for a concave meniscus. As a result, the height of
the liquid column in the capillary can increase.

The stationary steady state of the considered sys-
tem “liquid—capillary–gas” corresponds to the mini-
mum of its energy, which is composed of the surface
3
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energy, the potential energy of the liquid column in the
capillary in a uniform gravitational field, and the inter-
action energy of electric charges located on the equi-
potential meniscus:

(1)
where α is the coefficient of surface tension at the con-
tact boundary with the area  of the two phases indi-
cated by subscripts; L is a liquid; S is a capillary; G is a
gas (Fig. 1);  is the mass of the liquid column in the
capillary;  is the height of the center of gravity of the
liquid column relative to the main liquid level in a wide
vessel; and  and  are the external electric charge and
electric capacity of the meniscus.

In the approximation of the axisymmetric menis-
cus, the problem of energy minimization is simplified
if we take into account in (1) the conditions of
mechanical equilibrium of the meniscus apex and the
common line of contact of the three phases on the
capillary wall. These conditions for an uncharged
meniscus, respectively, are expressed with the Laplace
formula (the equality of capillary and hydrostatic pres-
sures at the apex of the meniscus, the main radii of
curvature of which are the same) and by Young’s for-
mula (the balance of the component forces tangential
to the capillary wall acting on a unit element of the
contact line from the side of three interface surfaces
(Fig. 1)). For a charged meniscus, the Laplace for-
mula is supplemented with allowance for the electrical
pressure; therefore, the conditions of mechanical
equilibrium are written in the form

(2)

Here, ρ is the density of the liquid (the density of
the gas is disregarded in comparison with ρ);  and 
are the height and radius of curvature of the meniscus
at its apex; σ0 is the surface density of the electric
charge at the top of the meniscus; and θ is the contact
angle (Fig. 1).

It is seen from (2) that the presence of electricity at
the meniscus is equivalent to an increase in the surface
tension coefficient at the apex. To estimate the order
of the increase  with respect to the electrical
charge, the meniscus is assumed to be hemispherical
with a uniform distribution  on its surface. Then the
share  =  is the
ratio of the characteristic values of the electric and sur-
face energies of the charged hemisphere, and  is the
radius of the capillary. For example, for water in a cap-

illary with a radius of 1 mm, we get  ~  i.e., at
 = 1 nC,  doubles (effectively). Therefore, in

order to avoid the self-consistent formulation of
mechanical and electrostatic problems for a liquid col-
umn in a capillary, which is necessary for a rigorous
approach, the electrification of the meniscus is further
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assumed to be small so that the contribution of the
electric pressure can be disregarded in (2) and it is
assumed that  and that  is the
capillary constant for the top of the meniscus. Young’s
formula is used to exclude  from (1) by
replacing  where θY is the contact angle in
the case of an uncharged meniscus, similar to the the-
ory of electrowettability on a dielectric (e.g., [3]). In
this case, the presence of electricity on the meniscus is
taken into account only in the expression for the
energy (1) for the considered system, the minimum of
which is realized at some contact angle θ different
from θY.

Further simplification of the model consists of an
approximation of the meniscus with a spherical seg-
ment, the acceptability of which is discussed below.
Then, taking into account the geometric formulas for
a constant radius of curvature of  of the
spherical segment, the areas of the interphase surfaces
are   and 
(  is the segment height, 
and  are the area of the inner surface of the capillary),
the height  is the center of gravity on the axis of an
axisymmetric homogeneous ( ) of the liquid
column as the center of gravity of its volume  from
the formula  – 

where  is the volume of the spheri-
cal segment, and formulas for the electrical capacity

 of the spherical segment
[4]. The energy expression (1) is reduced to the depen-
dence of  on the contact angle θ in the form of

(3)

Here,  is the variable part
of the dimensionless energy of the considered system;

 =  is the square of the ratio of
the capillary radius to the capillary constant or the
ratio of potential energy  of a straight, circu-
lar, cylindrical column of liquid with the same radius
and height equal to  in the field of gravitation to the
surface energy  of its upper base (note that  is
half of the Bond number).
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Fig. 2. Position of the points of energy extrema (4) of the
three-phase system “liquid–capillary–gas” with respect to
the parameters  and  solid lines indicate stable, sta-
tionary states with minimum energy, and dashed lines
indicate unstable states with maximum energy.
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Fig. 3. Column height (solid lines) and contact angle
(dashed lines) with respect to the variable part of the energy
E' of the three-phase system “copper sulfate aqueous solu-
tion–glass capillary–air,” when charged on a spherical menis-
cus (capillary radius of 0.85 mm) q = 0.8 (1) and 1 nC (2).
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Thus, the problem of minimizing energy (1) is
reduced to the determination of the contact angle θ
corresponding to the minimum of function (3).

ANALYSIS
When  expression (3) for energy is noticeably

simplified:

(4)

and its minimum is realized at the contact angle θ,
which satisfies the equation

(5)

It is seen that θY is the root of this equation only for
an uncharged meniscus. This means that the approxi-
mation of the meniscus by a spherical segment is
acceptable if two conditions are met simultaneously:

 and  In particular, the famous Jurin’s law,
 which was obtained for a spherical

meniscus from the conditions of mechanical equilib-
rium of the apex of an uncharged meniscus and the
common line of contact of three phases on the capil-
lary wall, strictly speaking, does not agree with the
condition of the minimum energy (1) of the liquid co-
lumn in a capillary in a stationary state for a spherical
meniscus. Then, the closeness of the value θ corre-
sponding to the minimum (3) to θY is taken as an a pos-
teriori estimate of the acceptability of the approxima-
tion of an uncharged meniscus by a spherical segment.

Minimization (4), in contrast to the analogous
problem for (3), has two parameters; therefore, transcen-
dental equation (5) is solved numerically in the interval

 at a fixed contact angle θY for a set of param-
eter values  Figure 2 shows the calculation results.

It can be seen from Fig. 2 that there are sets of para-
meter values at which two states of a three-phase system,
which are extreme in energy, are realized: stable ones
with a minimum energy (e.g., state A is at θ = 52° at

= 0.5 and θY = 60°) and unstable ones with a maxi-
mum energy (state B is at θ = 23° for the same  and θY).

RESULTS AND DISCUSSION
A numerical estimate of the effect of meniscus

electrification on the height of the liquid in the capil-
lary was carried out based on the experimental data
[1], according to which the height of a 30% aqueous
solution of copper sulfate prior to meniscus electrifi-
cation was about 6 mm in a capillary with a radius of
0.85 mm. After the discharge pulse, it increased
abruptly by 0.5–3 mm. Coefficient  was taken as
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equal to 74 mN/m according to [5]. Then,  ≈ 0.06,
and the contact angle corresponding to the height of
the column before electrification, according to Juren’s
formula, was θY = 64°. Figure 3 shows the results of
calculation of these data with formula (3) as the
dependences  and  for two values of the
meniscus charge.

The calculation shows that the minimum  of a
three-phase system prior to meniscus electrification
corresponds to θ and h, which practically coincide
with the experimental values of these quantities.
Therefore, the approximation of the meniscus by a
spherical segment is acceptable in the considered case.
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At a 0.5 nC charge on the meniscus, the wettability
increases: the contact angle decreases by 2°, and the
column height increases by 0.5 mm. Moreover,
depending  (and , respectively), an addi-
tional extremum is realized: it is a local maximum,
which indicates the emergence under these conditions of
a second stationary but unstable state of the system. The
energy of an unstable state exceeds the energy of a stable
state by 35%. It can be seen in Fig. 3 that with an
increase in the meniscus charge to 0.8 nC, the contact
angle of the stable state of the system becomes equal to
57°, the height is 7.4 mm, and the parameters of the sta-
ble and unstable system states (extrema ) approach
each other. Further, the noted tendencies persist; thus,

= 8.6 mm and the energies of states differ only by 0.3%
at a charge of 1 nC θ = 51°. At  > 1 nC, there are no sta-
tionary states in the considered system.

The calculated value of the additional rise of capil-
lary liquid by 2.8 mm due to the charge on the menis-
cus agrees with the observational data [1].

The existence within the framework of the consid-
ered model of a critical electric charge, above which
the system has no stationary states, corresponds to the
general pattern of behavior of charged surfaces of liq-
uids: when a critical electric field exists, the surface
becomes unstable [2]. The calculated critical charge
does not exceed the charge falling from the plasma
onto the liquid surface, which is roughly estimated as
the product of the pulse duration and the conduction
current ∼10 A from the oscillogram of the discharge
current [1].

The presence of the second, stationary, unstable
state can explain why the previous experiments carried
[1] only recorded a short-term increase in wettability
due to the charge introduced to the meniscus in the
form of sharp jumps in the height of the liquid column
at the moments of current pulses.

CONCLUSIONS
A simple mathematical model of the stationary

state of the three-phase system “liquid–capillary–gas”
was used to demonstrate the role of meniscus electrifi-
cation in the mechanism of the plasma capillary effect.
The results of this work may be useful in the further
development of the theory of the plasma capillary
effect within the framework of a self-consistent for-
mulation of mechanical and electrostatic problems for
a liquid column in a capillary.
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