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A B S T R A C T

This study reports the structure and mechanical properties of a new refractory Ti40Nb30Hf15Al15 (at.%) high
entropy alloy. The alloy was fabricated by vacuum arc melting and had a density of 7.07 ± 0.03 g/cm3. After
annealing at 1200 °C for 24 h, the alloy possessed a single-phase B2 structure. Further annealing at 600 °C for
24 h resulted in the formation of Widmanstatten (Ti, Al)-rich orthorhombic particles (O-phase) in a bcc matrix.
The single-phase B2 alloy demonstrated high (> 50%) compressive ductility and a pronounced work hardening
capacity. The precipitation of the O-phase particles led to a 50% strength increment at 22 and 600 °C, with some
sacrificing in the compressive ductility at 22 °C. The obtained results suggest new approaches to the development
of precipitation-strengthened refractory high entropy alloys with a balanced combination of the room- and high-
temperature properties.

1. Introduction

High entropy alloys (HEAs) represent a new class of metallic alloys
with a multicomponent design philosophy [1–3]. This concept endows
numerous opportunities to develop alloys with a variety of micro-
structures and properties [4–7]. Recently, HEAs based on refractory
elements (RHEAs) have attracted considerable attention due to superb
strength at extremely high temperatures [8,9]. RHEAs can possess ei-
ther a single-phase bcc/B2 structure or multi-phase structures com-
prising the bcc/B2 phases and intermetallic compounds like the Laves
and other phases [9–11]. The conventional approach to the develop-
ment of high-temperature materials, based on the successful Ni-based
superalloys experience, suggests that alloys composed of a disordered
matrix and coherent, ordered precipitates can offer balanced properties.
In this context, RHEAs consisted of the bcc and B2 phases seem an at-
tractive option. Indeed, some of the alloys with the bcc/B2 phases have
demonstrated remarkable specific strength at temperatures up to
1200 °C [12].

However, most of bcc/B2 RHEAs are brittle since the B2 phase is a
continuous matrix with bcc precipitates [12,13]. Only some RHEAs can
have a ductile bcc matrix with embedded B2 strengthening particles
after proper treatment [14,15]. Note that these alloys were obtained by
compositional adjustments that pursued different goals, like density
reduction or strength increment [12,16]. Meanwhile, exploration of the

vast composition space of (R)HEA requires using efficient computa-
tional tools to predict the structure and properties of alloys. The CAL-
PHAD (CALculation of PHAse Diagrams) approach can provide data on
structures of thousands of different alloys in a reasonable time and is
suited for (R)HEAs research [17]. However, the available databases
lack an accurate description of the B2 phase in refractory alloys [10].
Thus, a precise prognostication and optimization of the bcc/B2 RHEAs
by CALPHAD tools are impossible so far.

We used another way to design precipitation-strengthened RHEAs
with promising mechanical properties. Some common elements in
RHEAs, like Ti, Zr, or Hf, exhibit the β (bcc) → α (hcp) phase trans-
formation during cooling at 882, 863, or 1743 °C, respectively. In the
case of a sufficient amount of these elements in a RHEA, besides the
presence of bcc-stabilizing elements of Nb or Ta, the high-temperature
single-phase bcc structure can decompose into a mixture of the bcc and
hcp phases at a specific temperature [18,19]. Also, if a strong com-
pound-former, like Al, is added, the hcp phase can become an ordered
one, thereby providing sufficient strengthening [20].

In this work, the search for bcc-hcp RHEAs was conducted in the Ti-
Nb-(Zr, Hf)-Al system using the CALPHAD method. The concentration
of each component varied from 5 to 40 at.% with a step of 5 at.%. Based
on the analysis of several dozens of calculated equilibrium phase dia-
grams, the alloys with a high-temperature single-phase bcc field fol-
lowed by a bcc + hcp field at lower temperatures were found, and a
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Ti40Nb30Hf15Al15 (at.%) alloy was chosen as a proof of concept.

2. Materials and methods

An ingot of the Ti40Nb30Hf15Al15 alloy with dimensions of
10 × 15 × 40 mm3 was produced by vacuum arc melting of pure (≥
99.9 wt%) elements in a high purity argon atmosphere; the actual
chemical composition is listed in Table 1. Rectangular samples mea-
sured 6 × 4 × 4 mm3 were cut from the as-cast ingot and annealed at
1200 °C for 24 h. Some samples were further annealed at 600 °C for
24 h. Before the annealing, the samples were encapsulated in vacuumed
(10−2 Torr) quartz tubes filled with titanium chips to prevent any
oxidation. Cooling after the annealing was carried out in laboratory air.

The phase composition and microstructure of the alloy were studied
using X-ray diffraction (XRD), scanning electron microscopy (SEM), and
transmission electron microscopy (TEM). Samples for SEM and XRD
analysis were prepared by careful mechanical polishing. XRD analysis
was performed using a RIGAKU diffractometer and Cu Kα radiation
having the wavelength 1.5406 Å and a scanning rate of 3°/min from 20°
to 125°. SEM investigations were carried out on an FEI Quanta 600 FEG
or Nova NanoSEM 450 microscopes equipped with an energy-dispersive
(EDS) detector. Mechanically pre-thinned to 100 μm foils were pre-
pared for TEM analysis by conventional twin-jet electro-polishing at a
temperature of −35 °C and an applied voltage of 29.5 V in a mixture of
600 ml of methanol, 360 ml of butanol, and 60 ml of perchloric acid.
TEM investigations were performed using a JEOL JEM-2100 micro-
scope equipped with an EDS detector.

The density of the alloy, determined by the hydrostatic weighing
method, was 7.07 ± 0.03 g/cm3. Isothermal compression of rectan-
gular samples measured 6 × 4 × 4 mm3 was carried out in air at 22 °C
or 600 °C using an Instron 300LX test machine equipped with a radial
furnace. The samples tested at 600 °C were placed into the preheated
furnace and held for ≈10 min to equilibrate the temperature before
testing. The temperature of the samples was controlled by a thermo-
couple attached to a side surface of the specimen. The initial strain rate
was 10−4 s−1.

Thermodynamic modeling of the alloy was performed using a
Thermo-Calc (version 2020a) software and a TCHEA3 (high-entropy
alloys) database.

3. Results

Fig. 1 illustrates the equilibrium phase diagram of the
Ti40Nb30Hf15Al15 alloy. The alloy should solidify through a bcc phase at
temperatures of 1595–1800 °C; meanwhile, a (Ti, Zr)-rich hcp phase is
expected at 760 °C. At lower temperatures (685°С and 545°С), Hf3Al2
and Ti3Al phases with the chemical compositions close to the stoi-
chiometric ones should precipitate, respectively.

Fig. 2 presents the XRD patterns of the Ti40Nb30Hf15Al15 alloy. After
annealing at 1200 °C, the alloy had a single-phase B2 structure with the
lattice parameter a = 0.3304 ± 0.0004 nm. The microstructure

consisted of coarse (~400 μm) polygonal-shaped grains with clear
boundaries (see a magnified insert in Fig. 3a); the average chemical
composition of the grains corresponded closely to the nominal com-
position (Fig. 3a, Table 1). TEM analysis confirmed the B2 ordering and
revealed numerous anti-phase boundaries in the matrix grains (denoted
in Fig. 3b as APBs); no secondary phases were detected.

After further annealing at 600 °C, which was found to increase the
hardness of the alloy noticeably according to preliminary studies, the
structure, however, consisted of the bcc and orthorhombic (Cmcm –
space group; hereafter denoted as the O-phase) phases (Fig. 2). The
lattice parameters of the bcc and O-phases were determined as
a = 0.3311 ± 0.0003 nm and a = 0.6068 ± 0.0002 nm,
b = 0.9648 ± 0.0003 nm, c = 0.4710 ± 0.0003 nm, respectively.

The microstructure after annealing at 600 °C comprised profuse fine
Widmanstatten second phase particles inside large (~400 μm) matrix
grains (Fig. 3c). The precipitates were somewhat coarser in regions
adjacent to the grain boundaries. Both phases were identified using
TEM analysis: the matrix had the bcc structure, and the needle-like
particles were the O-phase; no signs of other phases were found
(Fig. 3d). Some round O-phase particles were also observed (dark dots
in Fig. 3d); the variation in the shape of the particles could be asso-
ciated with different orientations with respect to the cross-section sur-
face (so-called stereological effect). The average transversal and long-
itudinal sizes of the O-phase particles were 22 ± 8 and 230 ± 70 nm,
respectively. The volume fraction of these particles was 35 ± 3%. The
selected area electron diffraction (SAED) pattern at the insert in Fig. 3d
indicated a [001]bcc||[100]O, (110)bcc||(001)O orientation relationship
(OR) between the bcc matrix and O-phase particles. A TEM dark-field
image revealed that the O-phase also had an additional
[021]bcc||[112]O, (112)bcc||(110)O OR with the bcc matrix (Fig. 3e).
According to EDS analysis, the O-phase was enriched with Ti and Al and
depleted of Hf and Nb (Table 1).

Fig. 4 depicts the engineering stress-strain curves of the
Ti40Nb30Hf15Al15 alloy obtained during compression at 22 and 600 °C;

Table 1
Measured chemical composition of the structural constituents in the
Ti40Nb30Hf15Al15 alloy.

Constituent Elements, аt.%

Ti Nb Hf Al

Alloy composition 40.0 28.2 15.1 16.7

Annealing at 1200 °C, 24 h
B2 matrix 40.1 28.6 15.1 16.2

Annealing at 600 °C, 24 h
Bcc matrix 37.9 32.7 17.8 11.6
O-phase articles 43.3 21.0 10.1 25.6

Fig. 1. Equilibrium phase diagram of the Ti40Nb30Hf15Al15 alloy.

Fig. 2. XRD patterns of the Ti40Nb30Hf15Al15 alloy after annealing at 1200 °C
and further annealing at 600 °C.
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Table 2 summarizes data on the mechanical properties of the alloy.
After annealing at 1200 °C, the alloy demonstrated the yield strength of
830 MPa and high compressive ductility (> 50%) at room temperature
(Fig. 4a, Table 2). Note, the alloy showed pronounced work hardening.

At 600 °C, the yield strength decreased to 635 MPa, but the alloy re-
tained the same work hardening capacity and high ductility (Fig. 4b).

Annealing at 600 °C changed the mechanical properties of the alloy
noticeably (Fig. 4, Table 2). At 22 °C, the yield strength increased by

Fig. 3. Microstructure of the Ti40Nb30Hf15Al15 alloy after annealing at 1200 °C (a, b) and further annealing at 600 °C (c-e); a, c – SEM-BSE images; b, d – TEM bright-
field images; e – TEM dark-field image taken from a diffraction spot (220) in [112] zone axis of the O-phase (corresponding selected area electron diffraction (SAED)
pattern) is shown in the inset).
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~50% to 1250 MPa; the ductility reduced but maintained at a moderate
level of 16% (Fig. 4a). At 600 °C, the alloy exhibited higher ductility
(> 50%) and a strength increment (~45%) comparable to room-tem-
perature; as a result, the yield strength raised to 920 MPa (Fig. 4b).

4. Discussion

The presented results demonstrate that the predicted and experi-
mental structures of the Ti40Nb30Hf15Al15 RHEA differ a lot (Figs. 1-3).
As the CALPHAD approach fails to prognosticate the B2 and O-phases,
we try to analyze the observed phase compositions and transformations
using existing data on simpler systems. The B2 and O-phases can be
found in the ternary Al-Nb-Ti system [21]; however, the Hf-containing
ternaries, like Al-Nb-Hf or Al-Hf-Ti, are available for only narrow
concentration and temperature ranges [22,23]. Note, the TCHEA3 da-
tabase lacks the description of Al-Nb-Ti and Al-Nb-Hf ternaries and
tentatively assesses only the Al-Hf-Ti [24]. Replacing Hf with other
elements of the Ti40Nb30Hf15Al15 RHEA can generate the following
hypothetical alloys: Ti55Nb30Al15, Ti40Nb45Al15, and Ti40Nb30Al30. In
the high-temperature field (1200 °C), only the Ti40Nb30Al30 should
contain the B2 phase (and the σ phase), according to the Al-Nb-Ti phase
diagram [21], whereas the Ti55Nb30Al15 and Ti40Nb45Al15 should have
single-phase bcc structures. It indicates that Hf plays a significant role,
along with Al, in stabilizing the B2 structure in the Ti-Nb-Hf-Al system.
This finding seems essential in the context of further search for B2-
strengthened RHEAs.

Meanwhile, the B2 phase decomposes into the bcc + O mixture at
600 °C. Various scenarios of transformation pathways in the program
alloy can be proposed, including (i) B2 → bcc + O; (ii) B2 → bcc →

bcc + O; (iii) B2 → B2 + O → bcc + O. Both data on the Al-Nb-Ti
system and the resemblance of microstructure features of the
Ti40Nb30Hf15Al15 RHEA to those of Ti2AlNb-based alloys [25] suggest
the B2 → bcc + O transition as the most probable one. Furthermore,
two of the above mentioned hypothetical alloys, namely Ti55Nb30Al15
and Ti40Nb45Al15, locate in a bcc + O field at 700°С (the lowest ac-
cessed temperature in the ternary Al-Nb-Ti system) [21]. In turn, the
Ti40Nb30Al30 alloy should belong to a single O-field. This analysis
means that Hf in the Ti-Nb-Hf-Al system behaves somewhat identically
to Ti or Nb in terms of the effect on phase stability at relatively low
temperatures, contrary to the high temperature of 1200 °C, where Hf
stabilizes the B2 phase, like Al.

Probably, the complex interactions between the elements in the Ti-
Nb-Hf-Al system, with tentatively accessed ternary compositions, have
resulted in considerable differences between the predicted phase dia-
gram (Fig. 1) and the experimental results (Figs. 2, 3). Nevertheless, the
initial goal of the development of new RHEA with the bcc matrix pre-
cipitation-strengthened by other than the B2 phase was successfully
achieved.

Note that the O-phase precipitation instead of expected hcp is not
necessarily harmful in terms of mechanical properties. In Ti2AlNb-
based alloys, the O-phase is the main strengthening phase [26]. In the
Ti40Nb30Hf15Al15 alloy, annealing at 600 °C resulted in a substantial
increase in strength (Fig. 4, Table 2), most probably, due to the pre-
cipitation of the O-phase particles. The contribution of the O-phase to
the overall strength can be estimated following a modified Ashby-Or-
owan equation [27]:

⎜ ⎟∆ = ⎛

⎝

⎞

⎠ −
−

−( )
σ Gb

π
ln DS

b V DS

0.538
2.36

0.57 1

0.92 1.14
O phase

1
3

1
3

1
3 (1)

where G is the shear modulus (G = 37.4 GPa) calculated using the rule
of mixture; b is the Burgers vector (b = 0.287 nm) estimated using the
experimental bcc lattice parameter; S is the aspect ratio of O-phase
particles (S = 10.5); D is the transversal size of the O-phase particles; V
is the volume fraction of the O-phase particles. The D and V values were
given above.

The calculated strength increment was ΔσO-phase ≈ 445 MPa. This
value is in good agreement with the experimental increase in strength
(420 MPa at room temperature) and proves a dominant role of O-phase
particles in strengthening. Note, the O-phase in the Ti40Nb30Hf15Al15
alloy remains an effective reinforcement even at elevated temperature.

Another interesting finding of this work is associated with the high
ductility of the program alloy with the single-phase B2 structure.

Fig. 4. Engineering stress-strain curves of the Ti40Nb30Hf15Al15 alloy after annealing 1200 °C (a) and further annealing at 600 °C (b) obtained during compression at
22 and 600 °C.

Table 2
Mechanical properties (σYS – yield strength, σp – peak strength, ε – compressive
ductility) of the Ti40Nb30Hf15Al15 alloy after annealing 1200 °C and further
annealing at 600 °C obtained during compression at 22 and 600 °C.

Condition Compression temperature, °C

22 600

σYS, MPa σp, MPa ε, % σYS, MPa σp, MPa ε, %

Annealing at 1200 °C,
24 h

830 – >50 635 – >50

Annealing at 600 °C,
24 h

1250 1630 16 920 – >50
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Preliminary studies (results not shown here) have revealed that the
alloy with the B2 structure can be easily thermomechanically processed
by cold rolling and subsequent annealing. Usually, RHEAs with such a
structure suffer from brittleness at room temperature [28,29]. How-
ever, there are some examples of relatively ductile alloys with nearly a
single-phase B2 structure [28,30,31]. The present study confirms that
RHEAs with the B2 structure are not necessarily brittle. Yet, identifi-
cation of the nature of unexpected ductility of the Ti40Nb30Hf15Al15
alloy with the single-phase B2 structure is beyond the scope of the
current paper.

5. Conclusions

The introduced Ti40Nb30Hf15Al15 alloy demonstrated some unique
for RHEAs features. The alloy after annealing at 1200 °C composed of
the single B2 phase that transformed after further annealing at 600 °C
into a mixture of the bcc matrix and Widmanstatten (Ti, Al)-rich O-
phase particles with the [001]bcc||[100]O, (110)bcc||(001)O and
[021]bcc||[112]O, (112)bcc||(110)O ORs. The single-phase B2 structure
had surprisingly high compression ductility along with moderate
strength at room and elevated temperatures. The O-phase precipitation
resulted in a considerable increase (~50%) in yield strength both at 22
and 600 °C. Even after precipitation of the O-phase, the alloy had suf-
ficient ductility at room temperature. The obtained results suggest new
approaches to the development of precipitation-strengthened RHEAs
with a balanced combination of the room- and high-temperature
properties. Meanwhile, further studies are required to evaluate the ef-
fect of composition on the stability of the bcc + O structure and
properties, including mechanical properties at room and elevated
temperatures and environmental resistance, of the Ti-Nb-Hf-Al-based
RHEAs.
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