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Abstract—The study considers diffraction radiation, which is excited when an electron moves near a cluster
of two interacting subwavelength particles. The interaction is manifested in the fact that the radiation field
from each particle is determined not only by the external field of the electron, but also by the field of the
neighboring particle. Based on the obtained expressions for the radiation field, the function of cluster polar-
izability is determined. It characterizes the cluster response to the field of the electron as a whole. It is inter-
esting that the obtained response function of the cluster to an external field, even in the framework of linear
theory, generally depends on the external field itself.
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1. INTRODUCTION

Polarization radiation is any radiation from
charged particles that is excited not by changing the
modulus or direction of velocity, as in the case of
bremsstrahlung or synchrotron radiation, but by
inducing the dynamic polarization of matter by the
particle’s own field. In other words, the direct source
of radiation is not a charged particle, but a substance.
The polarization type of radiation involves transition
radiation, diffraction radiation, Vavilov–Cherenkov
radiation, Smith–Purcell radiation (SPR), which is a
special case of diffraction radiation from a periodic
target, and parametric X-ray radiation.

In general, this study is devoted to polarization
radiation, and the calculation was carried out using
diffraction radiation (DR) as an example [1]. For
brevity, below we will talk only about DR, bearing in
mind that everything that was said refers to polariza-
tion radiation in general everywhere, where otherwise
it is not specified separately. A necessary condition for
the excitation of this type of radiation is the presence
of target inhomogeneity along the particle trajectory.
The key feature is that the trajectory of charged parti-
cles passes outside the target, and the radiation pro-
cess itself is not a direct consequence of scattering of
charges on the target material. When exciting DR, the
properties of the beam of charged particles practically
do not change, which opens the possibility of using
DR for non-disturbing diagnostics of bunches [2–4].

DR also is the basis of an efficient, powerful source
of electromagnetic radiation [5], including SPR-based
free electron lasers [6]. SPR, like DR, finds applica-
tion in diagnostics of charged particle bunches [7].
This is due to such characteristic properties of the SPR
as monochromaticity and large characteristic angles of
observation relative to the particle trajectory.

An active investigation of DR from ordered arrays,
whose elements are much smaller than the wavelength
of radiation, started with the development of nano-
electronics and nanotechnology [8–11]. In the litera-
ture, such one-dimensional, two-dimensional, or
three-dimensional periodic targets are often called
photonic and plasmonic crystals, metasurfaces.
Exploring these problems is mainly related to new pos-
sibilities for diagnostics of substances and medical
applications.

In recent years, a series of studies appeared in
which the authors investigated SPR from single-
period gratings with simultaneous excitation of surface
plasmons, which significantly enhance the radiation
[12, 13]. In [14], on an example of a cluster of two par-
ticles, it was shown that radiation enhancement is pos-
sible not only due to the excitation of plasmons on the
surface of such structures, but also due to the interac-
tion between elements. The interaction effect mani-
fests itself in the shift in radiation frequencies, splitting
of maxima, and the appearance of new intensity max-
ima. It is noteworthy that the interaction effect takes
place not only at close distances between particles, but
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Fig. 1. Scheme of the DR excitation by an electron flying
past a cluster of two particles.
also their “long-range” interaction is observed. This
means that the interaction should be considered not
only between nearest elements, as is traditionally done
in the transition to a macroscopic description, but
between all elements. For chaotically located and
infinitely large arrays of particles, averaging can be
performed over the position of all particles in the clus-
ter with a certain weight function. This is difficult for a
limited number of strictly ordered particles in the clus-
ter. The radiation field calculation with allowance for
all interactions between particles is reduced to solving
a large number of self-consistent equations, which is
difficult for clusters with the number of particles start-
ing, for example, from 10.

In this paper, with an example of two particles, we
will show how the interaction between particles in a
cluster can be considered by introducing effective
polarizability of particles. The essence of introducing
effective polarizability is to consider the field from
neighbouring particles in the response function of one
particle.

2. DIFFRACTION RADIATION 
FROM A CLUSTER OF TWO PARTICLES
Let us consider the excitation of DR during the

flight of an electron with charge e and constant veloc-
ity v near a cluster of two particles (Fig. 1). The parti-
cles are located in one plane, the electron moves at
constant distance h from this plane. We choose the
coordinate system in such a way that the origin of
coordinates lies on the plane on which the particles are
located, the Ox axis coincides with the direction of the
electron velocity, the Oz axis coincides with the nor-
mal to the plane of particles location, and the electron
moves in the positive half-space, .

Let the microparticles have different sizes rα and rβ
and different polarizabilities  and . The con-
dition that the particle size is small in comparison with
the wavelength of the emitted waves,  makes
it possible to use the dipole approximation to calculate
the radiation field from two interacting particles.
Moreover, let the position of the particles be deter-
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(7)

The resonance conditions follow from expression (4),
i.e., the conditions for a sharp radiation enhancement
due to local field effects caused by the interaction of
particles:

(8)

Similarly to this, solving the problem of radiation
from a single particle with polarizability αeff(ω),
located at point , we obtain the
expression for the i-th component of the radiation
field at large distances

(9)

Let us compare expression (4) with similar expression
(9) for radiation from one particle with effective polar-
izability αeff(ω). From the comparison, we obtain an
expression for αeff(ω):

(10)

Thus, the radiation field from a cluster of two interact-
ing particles is determined by expressions (6), (9), and
(10).

Polarizability αeff(ω) characterizes the response of
a pair of microparticles as a whole to an external elec-
tric field. As we can see, it is remarkable that the effec-
tive polarizability of a cluster of two particles depends
not only on the polarizability of particles forming it
and on their relative position, including the distance
between them, but also on the external field. This fact
is important since in linear theory the response func-
tion of the system is usually assumed to be indepen-
dent of the field of external sources.

Note also that the approach implemented here
enables one to determine only the real part of the
polarizability function, which, generally speaking, has
also, an imaginary component.
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3. EFFECTIVE POLARIZABILITY
IN A PLANE WAVE FIELD

Note that all the formulas obtained above are writ-
ten in terms of an external field, namely the field of
electron . However, when obtaining the
results, we did not use the explicit form of the field of
external sources, therefore, generally speaking, the
external field can be arbitrary. In order to verify
whether the obtained formulas really give a correct
transition to the previously known cases, we consider
a cluster of two noninteracting particles in the external
field of a plane wave. Then, expression (4) remains
valid, but now  is the Fourier image of plane
wave field

(11)

and fields  and  are proportional to
(11). In contrast to the field of the electron, which has
a more complex dependence on the particle coordi-
nates, the coordinate enters only as a phase factor in
the field of a plane wave. It is easy to show in this case
that expression (10) for the effective polarizability
takes form

(12)
Thus, as expected, the effective polarizability of a sys-
tem of two noninteracting particles depends only on
the properties of particles and the distance between
them, determined by vector Rb – Ra, but not on the
external field. It is easy to see that in the case of parti-
cle  and  coincides with  up to a
phase factor, the presence of which is simply due to the
choice of the cluster center at point .

4. CONCLUSIONS
In this study, we considered diffraction radiation,

which is excited during the f light of an electron near a
cluster of two interacting subwavelength particles. In
the case of two particles, the interaction can be taken
into account completely analytically by solving two
self-consistent tensor equations. As shown above, such
a cluster of two particles, or a dimer, can be repre-
sented as a single radiation source with certain effec-
tive polarizability αeff(ω). If the particles interact, i.e.,
the radiation field from each is determined not only by
the external field of the electron, but also by the fields
from neighboring particles, then αeff(ω) is determined
by formula (10). The problem was solved within the
limits of applicability of the dipole approximation,
that is, the size of the cluster is small in comparison
with the wavelength of radiation. Despite the apparent
severity of this limitation, of interest, is the problem of
excitation of terahertz radiation from micro- and
nanoclusters. The obtained conditions for the
enhancement of radiation due to interaction open the
possibility of practical use of the results in generation
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of intense radiation, as well as in the field of diagnos-
tics of relativistic electron beams, nano- and micro-
structures.
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