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 Abstract. This article presents some of the main points of the study for the practical 

application of various hyperoperations in engineering practice. The authors examined the use of 

hyperoperations in mathematical formalization of analytical solutions of branching algorithms, 

the use of new number formats for encoding information based on large numbers. The methods 

of applying hyperoperations considered by the authors allow them to be effectively used on 

modern microprocessor-based computers with a built-in mathematical coprocessor, which is an 

integral part of the processor core, which allows implementing algorithms based on operations 

of the order higher than “addition” and “subtraction”. 

 Keywords: hyperoperations, homomorphism, number formats, superlogarithm, tetration, 

zeration, Ackermann function.  

1. Introduction 
In connection with the mass distribution of microprocessor computing in recent decades, increasing its 

productivity and lowering prices, mathematical modeling and digital processing of information are 

widespread in engineering practice. The use of mathematical modeling as a special case of sign 

modeling, in which the description of the modeling object is carried out in the mathematical language, 

and model research is carried out on the basis of mathematical methods, is currently one of the most 

productive and frequently used methods of scientific knowledge. The low cost of high-performance 

microcontrollers, signal processors and FPGAs (programmable logic device, PLD) allowed for mass 

production of various industrial and household equipment based on digital algorithms for processing 

information and signals. The emergence of new powerful hardware information processing allows the 

use of algorithms, previously difficult to implement. One of the ways to create new algorithms is 

homomorphism [1]. Such algorithms are widely used in mathematical logic and cybernetics [2]. This 

article considers another aspect of the application of mathematical formalism in engineering practice - 

the application of new functions based on the expansion of the classical mathematical basis: addition-

subtraction, multiplication-division, power-exponential function, root function and logarithmic 

function.  

2. Methods 

The works [3, 4] present a mathematical description of homomorphism. The work [5] describes a 

homomorphic method for constructing individual mathematical objects: numbers, operations, 

functions, differentials, derivatives, integrals, series, numerical methods, and differential equations. 

Each object can have an infinite number of homomorphisms. Based on the homomorphism, it is 

possible to create new methods of studying functions on the basis of existing methods, new numerical 

methods, and expand the set of classes of solved differential equations [6]. The basis for the 

construction of hyperoperations is the recursive Ackermann function [7]. Ackermann function finds 
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practical application for testing the compiler's ability to optimize recursion. The first who used the 

Ackermann function for this purpose was Yngve Sundblad [8]. 

3. Problem statement 
This article considers the main directions of research on the use of hyperoperations for engineering 

practice: the construction of number formats that can encode large numbers, the use of the 

hyperoperation zeration for writing in the form of a single formula of functions previously defined as a 

system with conditions.   

4. Main part 
4.1 Ackermann function and hyperoperator 

In 1928, William Ackermann, a student of David Hilbert, published his function 
( )pnm ,,ϕ

, which 

was defined for 
2,1,0=p

 and corresponded to the well-known operations of addition, 

multiplication, raising to a power: 
( ) nmnm +=0,,ϕ

, 
( ) nmnm ⋅=1,,ϕ

, 
( ) n

mnm =2,,ϕ
 [7].  

In 1948, Rafael Robinson presents a function with two arguments constructed on the basis of the 

Ackerman function [9]. Currently, this variant of the Ackerman function is the most popular. 

According to Robinson, Ackerman's function is defined recursively for N∈nm , : 

 

( ) ( )
( )( )








>>−−

=>−

=+

=

.0,0,1,,1

;0,0,1,1

;0,1

,

nmnmAmA

nmmA

mn

nmA

 (1) 

In 1976, Donalt Knuth expanded the Ackermann function 
( )pnm ,,ϕ

 for 
2>p

, who proposed to 

write down a sequence of operations higher in rank than degree in the form of arrows [10],[11]. This 

notation was called Knuth's up-arrow notation. Its meaning was that multiplication can be represented 

as a repetition several times of addition, and raising to a power is a multiplication performed several 

times. This notation made it possible to compactly record the repeated exponentiation, called super-

degree or tetration. The idea of the existence of tetration, an operation with a rank higher than the 

degree was described as far back as 1844, and in 1901 a record of the tetration was proposed as a 

“degree to the left” [12, 20]. In fact, the Ackeramann function 
( )pnm ,,ϕ

 at 
2>p

 allows 

describing an infinite number of operations with a rank higher than a degree - tetration, pentation, 

hexation, etc. The whole set of operations formed using the Ackermann function and denoted by a 

single operator is called a hyperoperator. Operations obtained with the help of a hyperoperator are 

called hyperoperations. In an extended version, the hyperoperator also describes the inverse 

operations. In 1989, K.A. Rubtsov proposed writing such a hyperoperator 

n
m

i
p R

 as a function of four 

arguments (
3,2,1=i

), which in the case of non-commutativity has two inverse functions (
3,2=i

) 

[13]. For degree, this is the root and logarithm, for tetration (superdegree) it is the superroot and 

superlogarithm [13]. In the same work, the notation of the function of superlogarithms as "
logs

" was 

proposed. Tetration and its inverse functions are currently still at the stage of research and 

development of algorithms for their exact calculation [14, 15]. 

4.2 Zeration and its application 

The Ackerman function 
( )pnm ,,ϕ

 for 
0=p

 corresponds to addition. In Robinson's notation 

according to formula (1), 1=m  corresponds to addition, 2=m  - to multiplication, 3=m  - to 

degree, 4=m  - to tetration, etc. It should be noted that formula (1) is defined for 0=m . It is logical 
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to assume that formula (1) for 0=m  gives the result of computing an unknown operation with a rank 

less than addition. Such an operation was called “zeration” and was first described in 1989 as a “zero-

action” paper [13]. Ackerman's function in Robinson's record gives only the result of this operation, 

and to determine it, it is necessary to consider addition as a result of repeating zeration: 

 

nmmmm

n

+=
4434421

oKoo

  (2) 

Formula (2) for natural numbers produces the definition of zeration [13, 15]: 
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Formula (2) does not contradict the Ackermann function (1) for 2>n . In table 1, zero rank should be 

written as 
( ) 332 −+no

. Given that the level of operation of zeration is lower than addition, then its 

priority is lower than addition and subtraction. Then 
( ) nnn ooo 2332332 =−+=−+

. From (3) 

it follows that for 2>n : 12 += nno . It was proposed to supplement definition (3) so that it 

corresponds to the value of the Ackermann function 1+n  for 
2,1,0=n

. However, such additions 

contradict the definition of the operation of zeration according to the formula (2). 

 

Table 1. Ackermann function values and operations used. 

Level Ackermann function Value Operation 

0 ( )nA ,0  
1+n  Zeration 

1 ( )nA ,1  
( ) 332 −++ n  Addition 

2 ( )nA ,2  
( ) 332 −+⋅ n  Multiplication 

3 ( )nA ,3  32 3 −+n

 Degree 

4 ( )nA ,4  323 −+n

 Superdegree (tetration) 

… … … … 

k  ( )nkA ,  33

21 −+nk
R  

k-rank operation [1] 

 

It is now accepted that elementary arithmetic operations are addition and subtraction. The remaining 

arithmetic operations are their repetition. Addition and subtraction refer to operations of the first level; 

multiplication and division is the second level; exponentiation, root extraction and logarithms - the 

third level; tetration, superroot, and superlogarithm - the fourth level. Formulas (2, 3) determine the 

arithmetic operation of the zero level. In fact, addition and subtraction cease to be elementary 

arithmetic operations. 

Addition and subtraction are the most commonly used arithmetic operations. Even the simplest 

microprocessor contains integer addition instructions. After determining zeration, the questions arise: 

“Where can zeration be used?”, “Why is it needed if there is mathematics and computer technology?”.  

In practice, most processes cannot be described by a single mathematical formula without the use of 

systems with conditions. For example, the relationship of the transition of a car from a state of rest to 

movement and subsequent changes in its speed to a stop. Using a finite number of arithmetic 

operations, it is impossible to write a single formula for the process of motion. To solve this problem, 

systems with the condition were introduced into mathematical formalism. When creating algorithms 

for solving practical problems in computer technology, it was necessary to use Boolean algebra 

operations (priority below addition and subtraction), since the arithmetic operations available are not 

enough to describe real processes. In mathematical formalism a lot of functions have also appeared 

that cannot be written by a finite number of arithmetic operations without using conditional systems. 
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For example, the module function 
x

, the function of the sign of the number "
xsgn

", the maximum 

and minimum of two numbers, and others. Zeration solves this problem in the framework of arithmetic 

operations. We shall consider examples of writing some functions [15]. 

Real value module:  

 
( )( ) ( )( ) ( )( ) ( )( )02102001 oooo xxxxx −−⋅−+−⋅−−=

.  (4) 

Number sign function: 

 
( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )200120001202sgn −−−⋅−−−−⋅−−= oooooo xxxxx .  (5) 

Within the framework of arithmetic operations, zeration describes the elements of Boolean algebra - 

the basis of modern computing systems. We shall consider the description of the basic set of 

operations: disjunction 
( )cba =∨ , conjunction 

( )cba =∧ , negation 
( )cb =¬  [15]. 

 
( ) ( )10 +−=¬= bbbc o  ,  

( ) 32 ++−+=∨= obababac ,  
( ) ( )( )baba ¬∨¬¬=∧ . (6) 

In some cases, zeration is not enough. For example, to describe the Dirac function −δ . In this case, 

it is possible to use the inverse operation - “deltation” [15]. 

4.3 Notation of numbers based on homomorphism 

The use of hyperoperations of the fourth level of tetration, superroot and superlogarithm is difficult 

due to problems with limiting the format of numbers like 
n

adD ⋅= , where −d  is the mantissa, −a  is 

the base of the number system, and  
−n  is the exponent. For compact coding of large numbers in the case of applying level 4 

hyperoperations, new number formats are needed [16, 17]. 

In [18],[19], the use of number formats based on the hyperoperations RRH1, RRH2, RRH3, and 

RRH4, called hyperformats, was proposed. 

RRH1 format 
( )

[ ]
( )adaD

n
a

dn a ∗== +slog

1RRH . For calculations, the base 10=a  or 2=a  is used. The 

main feature of this format is its similarity with the well-known floating point format: 
n

adD ⋅= . 

RRH1 hyperformat is constructed by increasing the rank of operations of the classical floating-point 

format: multiplication is replaced by the addition homomorphism based on the superlogarithm, and the 

degree by tetration. The algorithm for converting a standard real number 
n

adD ⋅=  to RRH1 is very 

simple. To do this, it is necessary to perform a logarithm or antilogarithm with a base a  until we get a 

number 
[ [aD ,1∈ , then Dd =: . Initially 0:=n , with each logarithm, numbers D  should be 

incremented 1: += nn , and with antilogarithm 1: −= nn . Thus, we can write numbers in RRH1 as 

follows: 10 0000001,00000000100 -2∗=− , 10 0230261,0000000010 -2∗=− , 10 1794171,258925411 -2∗=− , 

10 0480462,071227325,0 -2∗=− , 10 10 -1∗= , 10 0168383,162277665,0 -1∗= , 10 11 0∗= , 10 55 0∗= , 

10 110 1∗= , 10 2100 1∗= , 10 110 210 ∗= , 10 210 2100 ∗= , 10 841142,00302502105 2100 ∗=⋅ , 

10 3101 21000 ∗=⋅ , 10 2776063,00030345105 21000 ∗=⋅ . 

RRH1 can encode negative numbers without the additional sign bit. However, this case poses 

problems with accuracy. For negative numbers, the RRH2 format is used, which has the sign of a 

number. 

RRH2 format 
( )

[ ]
( )adaD

n
a

dn a ∗⋅−+=⋅−+= +
:},,,{:},,,{

slog

2RRH . In fact, RRH2 is the RRH1 format with the 

addition of one or more characters in front of the number 1RRHD . A number in RRH2 is encoded 

according to the rules of RRH1 if 0≥D . If 0<D , then RRH2 is presented as 

[ ]
( )adD

n
a

∗−=2RRH , 

and the calculation d  and n  is performed similarly to RRH1, after calculating the module of the 

number 
D

. The use of the sign 
""−

 eliminates the problem of accuracy of the RRH1 format for 
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negative numbers. However, if one or more signs of the number are used (advanced RRH2), the 

accuracy of RRH1 increases for given ranges of numbers. For RRH2, the range 10 << D  is written 

in the reciprocal of the number and the sign 
:""

 is put. For example, a number 5,0  can be written as 
2:2:1215,0 === , by analogy with 

220 −=−
. For positive numbers, by default, the sign 

""+
, for 

numbers 1≥D , by default, the sign "multiplication": 5505 +=+=  and 
5515 ⋅=⋅=

. Such a 

mathematical formalism made it possible to increase the accuracy of RRH2 in the range of numbers 
11 <<− D . 

RRH3 hyperformat of the number D  is a complex number. This format consists of two numbers: the 

real part is a floating point number or in the RRH1 format, the imaginary part is a pseudo-character 

number, i.e. calculation history of the function 
xln

. The algorithm for converting a real number to 

RRH3 format will be performed according to the scheme given for RRH1. With a negative argument 

in the function xln , we perform the calculation 
xln

, while incrementing the imaginary part of the 

number and multiply by 2. If the argument is positive, then we calculate xln  and multiply the 

imaginary part of the number by 2 without increment. Thus, the imaginary part of the number 

accumulates information about the history of negative arguments in the function 
xln

. 

For example, we need to calculate 1034,60−

 using an approximation based on the approximation 

( ) ( )xx lnsln ≈  for 
[ [ex ;1∈ . In this case, we can write: ( ) ( ) 1slnsln −≈ x

ex  at 0≤x , 
( ) 1sln −≈ xx  at 

10 ≤< x , 
( ) ( )( ) 1lnslnsln +≈ xx  at x<1  [6, 14]. 

In Mathematica we get ( )( )( ) i⋅+≈−≈−  0,750583-0,11919334,01lglglg1034,60
K . In the inverse problem, 

we obtain 
( ) ii ⋅−−≈⋅+   0,0161977 0,3347766 0,7505830,119193-slg  instead of the exact value 34,60− . 

Relative module error does not exceed %107,8 3−⋅ . The increase in bit depth does not lead to a 

significant increase in accuracy. For the RRH3 format, we get 

( ) 3RRH

34,60  1919180757167457790,348672-10 i⋅+≈−

. RRH3 is resistant to imaginary rounding. For 

example, we can write ( ) ( ) 3RRH

17

3RRH  105,71670,34867- 1919180757167457790,348672- ii ⋅⋅+≈⋅+ . The 

inverse solution to 
( ) 3398918065,60 105,71670,34867-slg 3RRH

17 −≈⋅⋅+ i , i.e. the relative error does not 

exceed %108,1 4−⋅  and the result of the inverse transformation without the imaginary part. 

In the RRH3 format, complex numbers are used only for storage and compatibility with existing 

program libraries. The rules for working with RRH3 numbers for logarithms and antilogarithms differ 

from Euler's formulas. For example, 
( ) ( ) ( )10ln21lg ni ππ +=−  is known, where Z∈n , for RRH3: 

( ) ( ) 3RRH3RRH 101lg ii =⋅+=−
. Standard calculation: 

( )( ) iπ682188,0134934,01lglg +≈− , and calculation in 

the RRH3 format: 
( )( ) ( ) 3RRH 24,34294-1lglg i⋅+≈− . 

The RRH3 format reduces the error of multiple logarithms using the properties of tetration and 

superlogarithm. 

RRH4 hyperformat of a number D  is a positive number constructed according to the rules of RRH1 

and the positional number system. In fact, in RRH4, the pseudo-sign (imaginary) part of RRH3 was 

converted to a fractional part of the number and an integer part was formed on the basis of the real part 

of RRH3. The algorithm for converting a regular number to RRH4 contains a bitwise calculation of 

the division homomorphism based on the superlogarithm with the accumulation of the result. The 

resulting number is positive real and compatible with all mathematical libraries [18],[19]. 

As an example, we shall write some numbers in RRH4. Translation algorithms are implemented in 

Mathematica: ( ) ( ) 4/RRH24RRH

35629 11010111100100011,00021747,45510846,2!10000 ≈≈⋅≈ , where 
−RRH42  is the designation RRH4 for the binary number system. 
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( ) 4/RRH210101010100100,0100010015 ≈− . The above calculation example 

( ) 3RRH

1734,60  109125,716745770,3478362-10 i⋅⋅+≈−

 in RRH4: 
( ) 4RRH

6134,60 1057095,410 −− ⋅≈ . This number 

can be rounded without serious loss of accuracy: 

( ) ( ) 4RRH

61

4RRH

61 1057,41057095,4 −− ⋅≈⋅ ,     
( ) ( ) 60.34 - 60,3400838 - 1057,4lg1057,4slg 61

4RRH

61 ≈≈⋅≈⋅ −−

. 

The RRH4 format allows compact encoding of large numbers and the creation of unique numerical 

identifiers in sorting algorithms for large data arrays.  

5. Conclusion 
The hyperoperator and the hyperoperations obtained on its basis are a relatively new direction in 

mathematics. The use of the new hyperoperation - zeration - makes it possible to expand the set of 

basic arithmetic operations and the mathematical apparatus as a whole when modeling complex 

physical processes. Using the fundamental principles of mathematics (the concept of numbers and 

operations), zeration unifies the recording of a whole class of functions and algorithms. On its basis, 

one can get a single method for studying special functions, the formation of computing systems and 

algorithms directly related to basic mathematical elements. In the future, such unification will create 

the ability to effectively carry out research on mathematical models of complex objects and processes. 

Tetration is useful for building new number formats. The considered examples of new number formats 

provide a compact record of large numbers with the possibility of using standard formats for real and 

complex floating-point numbers. 

6. Summary 

The authors examined several special cases of the use of hyperoperations of the zero and fourth levels. 

The operation of the fourth level (tetration) is currently being actively studied, but has limited 

application due to the complexity of its calculation. The hyperformats of the considered numbers make 

it easier to apply tetration in practice. Zero-level hyperoperation (zeration) is implicitly used 

everywhere in practice in computing systems in the form of Boolean algebra, condition functions, 

conditional operators in programming languages, and mathematics to describe systems with 

conditions. The authors show the possibility of expanding arithmetic operations to solve the problems 

of engineering practice. In the long term, zeration can be included in the basic instruction set of 

microprocessor technology, since it has the simplest calculation algorithm. This will allow solving 

various classes of problems in engineering practice, using only arithmetic operations. 
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