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Study o f the motion o f a droplet in an electromag
netic field is an important and urgent problem [1, 2]. 
This motion is caused by a nonuniform distribution of 
temperature along the droplet surface. In this case, 
additional tangential stresses appear owing to the tem
perature dependence o f the droplet surface-tension 
coefficient; these stresses are responsible for the 
ordered motion o f the droplet. The nonuniform distri
bution o f temperature can be induced by various fac
tors, for example, by an external constant gradient of 
temperature [3, 4], a chemical reaction on the droplet 
surface [5], the presence o f surface-active substances in 
a fluid [6], etc. If  the droplet moves due to the nonuni
form distribution o f inner heat sources, this motion is 
called photophoretic [7].

In the past few years, interest in the droplet motion 
for considerable temperature drops in their neighbor
hood has grown [8-10]. In this paper, in contrast to pre
vious studies, we took into account the exponential 
temperature dependence o f the coefficient o f dynamic 
viscosity in the thermocapillary drift o f a droplet and 
the influence o f fluid motion on the temperature distri
bution.

The analysis carried out in this work showed that, 
along with the temperature dependence o f the coeffi
cient of dynamic viscosity, the convective transport can 
also substantially influence the thermocapillary drift of 
droplets heated by inner heat sources. In particular, it 
was shown that, if  the droplets absorb radiation as a 
blackbody, two qualitatively different motions o f the 
particle are possible: in the direction o f propagation of 
radiation and in the opposite direction. This circum
stance is caused by a marked influence o f the convec
tive motion o f fluid (large Prandtl numbers) on the 
angular nonuniformity o f the temperature distribution
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in the neighborhood of a droplet for significant radial 
temperature drops.

PROBLEM FORMULATION
We consider the steady motion o f a nonuniformly 

heated spherical droplet o f radius R. density p,. and heat 
conductivity in an immiscible viscous incompress
ible fluid with a density pt, and a heat conductivity Xe 
filling the whole space. The fluid is at rest at infinity. As 
a heated particle, we understand that the particle’s 
mean surface temperature considerably exceeds the 
environment temperature.

The heated surface o f the droplet can have a sub
stantial effect on the thermal characteristics o f the envi
ronment and, thus, on the distribution o f velocity fields 
and pressure in its neighborhood.

Among the parameters o f fluid transport, only the 
viscosity coefficient depends strongly on temperature. 
Taking the temperature dependence o f viscosity into 
account, we used formula (1) proposed in [3] (for 
F„ = 0, this formula can be reduced to the Reynolds for
mula [11]):

'LF\ f - x ■ CD

Here, A  and Fn are constants, /'„ is the temperature of 
the fluid far from the heated droplet, |i„, = here
after, the subscripts e and i refer to the external fluid and 
the droplet, respectively.

The fluid viscosity is known to decrease with tem
perature according to the exponential law [11]. Analy
sis o f the available semiempirical formulas showed that 
expression (1) makes it possible to best describe the 
change in viscosity in a wide range o f temperatures 
with an arbitrary desired accuracy. For illustration, we 
list in Table 1 the values o f Fn for water (A = 5.779, =
-2.318, F 2 = 9.118, and = 273 K); |Xcalcd is the 
dynamic viscosity calculated from formula (1) and |iexpt 
is the experimental value o f the dynamic viscosity. The 
relative error is less than 2%.
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The heat-conductivity coefficient o f a droplet is 
assumed to considerably exceed the heat-conductivity 
coefficient o f the medium; the density (p), heat capacity 
(Cp), and heat conductivity (k) are considered to be con
stant values; droplet motion is reasonably slow (small 
Peclet and Reynolds numbers); the surface-tension coef
ficient a  is an arbitrary function of temperature [a = 
c(7)]; and the droplet is assumed to retain its spherical 
shape (this assumption is valid under the condition 
|xeU o

< —, where U is the droplet drift velocity [12]).

Table 1

R R

It is convenient to introduce a reference system 
related to the center of the moving droplet. In this case, 
the problem is reduced to analysis o f the steady flow 
around the droplet by a homogeneous fluid whose 
velocity at infinity (LL) is to be defined (U„ = -U).

In terms o f the above assumptions describing this 
flow, the dimensionless conservation equations and 
boundary conditions can be reduced to the form [12]

T1..AV,. = VA , divV,. = 0, r, = -j—; (2)
l-Loo

V p e = rigAVg + 2 (V r|eV )V e + [V r|e x  ro tV J, 

divV„ = 0;
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(6)

(7)

T , K Mealed? S M.\pi ■ P& s
iM'calcd M'exptj w

M'calcd 
100, %

279 0.0017525 0.0017525 0.00
293 0.0010089 0.0010015 0.74
313 0.0006433 0.0006513 1.22
333 0.0004581 0.0004630 1.06
353 0.0003556 0.0003509 1.35
363 0.0003199 0.0003113 2.76

The variables are made dimensionless by using the 
following characteristic values: R  (the droplet radius),

7':„, |i,„, and (/,,,
T P  U

t= — ’P = ] T ’ m d V =  J f

For Re„, ^  1, the incoming flow exerts only a per
turbing action. Therefore, the solution to the equations 
of hydrodynamics and heat transfer can be sought in the 
form

V = V (0) + Re V(1)-
(0 )

P = P - Re ,/; 

RCoJ

( i ) (8)

When finding the force acting on a nonuniformly 
heated droplet and its thermocapillary-drift velocity, we 
restrict our consideration to first-order corrections with 
respect to Re„,.

The form of boundary conditions (5)-(7) makes it 
possible to seek the solution as follows:

V(r0) = G(y) cos0, = -g (y)sin0, 

p {0) = 1 + h(y) cos 0.
(9)

Here, Vr and Ve are the radial and tangential compo
nents o f the mass velocity, while e,. and ee are the unit 
vectors in the spherical system of coordinates, respec-

Ftively; y  = — is the dimensionless radial coordinate;

Re„, = ———  and Pr„, = p are the Reynolds and 
^  K

Prandtl numbers, respectively; and (/,,, = |U,:„|.

Taking into account the inequality Xe < k,. we can 
ignore the dependence o f the coefficient o f dynamic 
viscosity on the angle 0 in the droplet-fluid system and
assume that |i e{te(y, 0)) = ). Using this fact and
substituting (8), (9) into Eqs. (2)-(4), we make sure that 
the variables are separated and obtain, as a result, linear 
partial differential equations for perturbed values. In 
finding the distribution o f temperature in the vicinity of 
a heated droplet, we used the method of joining asymp
totic expansions [8]. As a result, the following expres
sions were obtained for the velocity fields and the tem
peratures outside and inside a particle:

V^fy, 0) -  co s0 (l + A 1G 1 + A 2G2),
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Ve(y>6)  s in0 (l + A 1G3 + A 2G4),

V'r(y,<d) = CO S0(^3+^4/ ) ,

V'e(y, 0) = -s inQ (A3 + 2A 4y  ),

te(y, 0) = t(°'> + R e J e ’, tt{y,Q) = t ^ ’ + ReJ;  

where

-  /°). ( 0 ) 
i  5

G, = -
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y  „=n(« + 3 )y

Ga = G . + 4 G

1 °” A(2)
g 2 = - - " V  ———  
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G3 -  G! +^G Î,

“ S (« + 3 ) l n j -  1
^  „ = 0

.(1)/ W /  ■. s  , I r
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(y, 0) = — (1 - jO  + j —+ œ^4tT*j-cos0 ,
LJ k  = 1

= B° + 4 n R T .\ly \ q'dV + Jf*» -
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47ti?2r ooÀî/

j'qtzdV
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Vi.(v) = ~YTyl^ T ^  J^«(cos0)d(cos0),
-i

P„(cos0) are the Legendre polynomials, y = t s - \ , t s = 
Ts
j r , and Ts is the mean temperature of the heated drop

let surface determined by the formula

k r h - " -  (11)
T
—  = 1 +T„ 4nR/,,7\,

In (10), Glk , Gj1, and (/)'' are the first, second, and 
third derivatives o f the corresponding functions with 
respect to y  (k = 1, 2). The values o f the coefficients
Â ,11 and A I,2' can be obtained using the following 
recurrence relations:

n

l— Y [ ( n  + 4 - k )
n(n + 5)

k  = 1

x { U k \ n + 5 -  k ) -  a k} + a ^ l Y ^ A ^  ( « > 1 ) ,

M2) = - , - 6 a i4V
( 12)

(10)

(n + 3 ) ( n - 2 )

n

+ X « «  + 2 -  k)[(n + 3 -  k )a ir) -  a [2)] + a f  }} j kA f I k
k  = 1

n

+ a X  {(2« + 5 -  2 £ )a i1) -  a [2)}YkA ^ t _2
k  =  0

( n> 3).

When calculating the coefficients A ^  and Â 2) 
from formulas (12), it is necessary to take into account 
the following equalities:



FEATURES OF THE THERMOCAPILLARY DRIFT FOR A HEATED DROPLET

a  = - ^ { [ 3 ( 4 a (11) -  a (!2)) + a i3)]Ai2)

-  [ 2 ( 3 -  o42)) + a 23)]y -  6 a 24)y

a i3) = 2A F n_l - 2 ( 2  + n )F n

A|2) = - ^ [ 6 a (14) + 2 (3 a (11)- a (12)) + a (13)],

The integration constants A  1; A 2, A 3, A 4, B0, B, and T  
are determined from the corresponding boundary con
ditions on the droplet surface.

Our prime interest is the solution for the asymmetric 
part o f perturbed values, which will enable us to deter
mine the force and velocity o f the thermocapillary- 
drift. For this purpose, we specify the nature o f the ther
mal sources. The heating o f a particle is assumed to 
take place through the absorption o f electromagnetic 
radiation, and the droplet absorbs the radiation as a 
blackbody. In this case, the radiation is absorbed in a 
thin layer o f thickness d R < R  adjoining the heated area 
o f the particle surface. The thermal-source density 
within the layer of thickness bR is determined from the 
following formula:

q,(r, 0) =
— cos0,  ^ < 0 < 7 t ,  R - b R < r < R  

o k  2

o, o < 0 <^,

where I  is the incident radiation intensity.
The expression for the total force acting on the par

ticle is obtained by integrating the stress tensor over the 
droplet surface. This expression is made up o f the vis
cous force Ffl and the force Fph, whose appearance is 
caused by the nonuniformity o f the distribution of ther
mal-source density in the body o f the particle with 
allowance for the convective terms in the heat-conduc- 
tivity equation. In the general case, these expressions 
can be represented in the form

F = F M + Re00F ph? (13)

where

F = 6?i R ^ U ^ e , ,  Fph = -6  n R [ i^ fphez,

A  = 3A
}K

3^;
■n a e x p l-^ y } ,

3 n ' 3 n ;6 n .^ ; ' 2 ’V

fph

2xk + xk, k  1,2 

4

9|4A
r a t & 9 a

e x p l - ^ y } — ^Ph^r ,

t  R IÇPh GJ  2T j

and ez is the unit vector along the z-axis.

In estimating the coefficients and /ph. it is neces
sary to take into account that the subscript 5 designates 
values o f physical quantities taken at a mean droplet- 
surface temperature Ts , which is determined from for
mula (11); the functions 0 1; 0 2, G1; G2,N u N2,N 3, and

N4 are taken for v = 1 [jV, = G, G\ -  G2G \ , As =

G2(2GÏ + G1/ )  -  Gx(2G2 + G2 ), N 3 = - G \ ,  and

N4 = 2G\ + G1/] .

In the case when droplet-surface heating is reason
ably weak, i.e., when the mean droplet-surface temper
ature differs insignificantly from the environment tem
perature at infinity (y — ► 0), the temperature depen
dence o f the viscosity coefficient can be ignored. In this
case, Gx = 1, G\ = -3 , G? = 12, G2 = 1, G2 = -1 ,

G\ = 1, G2 =2,7V1 = 2,7V2 = 6,7V3 = 3,7V4 = 6 , t 1 = - ^ ,

i 3 l , i  1 
Tl = 4 ,T2= 2 ’ 2 = ~2'

Setting the total force equal to zero, we obtain the 
expression for the thermocapillary-drift velocity:

U = -Re* 'ph
, _  /ph
Ph f  • 

J  LI

(14)

Formulas (13) and (14) enable us to estimate the 
force acting on a spherical droplet heated by an electro
magnetic field in a viscous fluid and its tiiermocapil- 
lary-drift velocity. These estimates are made for arbi
trary temperature drops between the droplet surface and 
the region far from this surface with allowance for the 
temperature dependence o f the viscosity coefficient 
represented in the form o f an exponential series and for 
the influence o f fluid motion on the droplet drift.

We consider the expression
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Table 2

^ph Sph /, 102 W/cm2

0 0 0
0.167 -0.0429 1.2
0.346 -0.0882 2.4
0.534 -0.1356 3.7
0.730 -0.1846 5.1
0.934 -0.2355 6.4
1.142 -0.2871 7.8
1.354 -0.3395 9.3
1.566 -0.3921 10.7
1.780 -0.4451 12.2

which contains two terms entering it with opposite 
signs. Consequently, there are qualitatively different 
droplet motions along the direction o f propagation of 
radiation and in the opposite direction. This is due to 
the contribution o f convective terms to the total force 
and velocity entering the heat-conductivity equation 
[the term proportional to Pr„, in formula (4)]. Moreover, 
the contribution from the former term can be so impor
tant that it can be comparable to the major effect (the 
latter term). From (15) it follows that this term is pro
portional to the product o f the Prandtl number and the 
relative temperature drop y. Taking into account that the 
Prandtl number in a fluid can be large and the motion 
for considerable temperature drops in the droplet 
neighborhood is investigated, this effect can be signifi
cant in the proper choice o f the fluid.

To illustrate the contribution o f the fluid motion to 
the force and velocity o f the thermocapillary-drift, we

list in Table 2 data relating the values qph and c*, to the 
intensity I  for large-size mercury droplets with radius 
R = 2 X 10 5 m moving in water at /'„ = 273 K. The val

ues o f qph were estimated from formula (15), while q*h 
were estimated from formula (15) for y=  0; i.e., no fluid 
motion was taken into account. The molecular transport 
coefficients were taken at the mean surface temperature 
(Te = In Table 3, we give numerical estimates for 
the influence o f droplet-surface heating and the convec
tive terms in the heat-conductivity equation on the ther- 
mocapillary-drift velocity o f the droplet. The value of

/?ph was estimated from formula (14); the value of hph, 
from formula (14) without convective terms (i.e., for 
co = 0). The value o f /?*, was determined for low rela
tive temperature drops (y — ► 0), the molecular-trans
port coefficients being taken at = 7'v. The coefficient 
of dynamic viscosity for water is described by the val
ues^! = 5.779, F 1 = -2.318, and F2 = 9.118 in the tem
perature range from 273 to 363 K with a relative accu
racy to within 2%; PrM = 12.99. If  we consider the 
motion o f a mercury droplet in glycerin, this effect is 
especially significant because, for example, the Prandtl 
number PrM = 4753 at 71 = 303 K.

From the above numerical estimates it follows that 
the convective terms should be taken into account in the 
heat-conductivity equation when the mean temperature 
of the surface o f heated droplets differs significantly 
from the environment temperature. For low relative 
temperature drops, this effect must be taken into 
account for fluids with high Prandtl numbers. In this 
case, the contribution can be as high as 20%. In a gas, 
this effect should not be taken into account because the 
Prandtl number for most gases is on the order o f unity.

Table 3

T„ K ^ph / BhPh
*

hPh
, B *
V

273 0 0 0 0
283 -3.032 x KT4 7.785 x 10-5 -2.017 x 10-4 8.108 x KT5
293 -6.658 x 10~4 1.700 x 10-4 -2.944 x 10~4 1.828 x 10-4

303 -1.080 x 10-3 2.743 x 10~4 -3.101 x 10-4 3.025 x 10-4
313 -1.538 x 10~3 3.891 x 10~4 -2.707 x 10~4 4.367 x 10~4

323 -2.039 x 10~3 5.141 x 1 0 4 -1.913 x 10-4 5.841 x 10~4
333 -2.575 x 10~3 6.473 x 10~4 -8.426 x 10-5 7.408 x 10~4
343 -3.143 x 10~3 7.883 x 10~4 4.303 x 10-5 9.060 x 10~4

353 -3.734 x 10-3 9.350 x 10~4 1.885 x 10~4 1.077 x KT3
363 -4.342 x 10~3 1.086 x 10-3 3.414 x 10 4 1.252 x KT3
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