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Abstract 
Background: Autism is a common psychiatric disorder in children. Since autism is a 

multifactorial disease, the genetic predisposition plays a significant role in the patho-

genesis. However, numerous studies focused on genomic abnormalities in autism are 

unable to provide reproducible information about pathogenic processes causing this 

devastating disorder. The aim of the study: Theidentification of candidate genes by bi-

oinformatic analysis of recurrent copy number variations (CNV) (5p15.33 duplications) 

revealed by molecular karyotyping in a clinical cohort. Materials and methods: Mo-

lecular karyotyping of 296 children with idiopathic autism, intellectual disability was 

performed by SNP-array. Bioinformatic analysis was made using an original algorithm. 

Results: Molecular karyotyping genome-wide analysis revealed 3 cases of 5p15.33 du-

plications. Bioinformatic analysis identified a candidate gene TPPP for brain dysfunc-

tion. TPPP is highly expressed in the brain; the gene encodes a protein catalyzing tubu-

lin polymerization, which is important for oligodendrocytes myelination. Interactome 

analysis was performed to identify pathogenic processes associated with CNV involving 

TPPP. Expanded TPPP interactome network encompasses 37 proteins, 19 of which are 

associated with the synaptic plasticity and axonal guidance involved in the normal de-

velopment and functioning of the brain. Changes in these processes may lead to autism 

and intellectual disability. Interestingly, clinical genetic databases have not previously 

associated this gene with a disease condition. Conclusion: Bioinformatic analysis of 

5p15.33 CNV allowed us to show that TPPP is a candidate gene for alterations to the 

development and functioning of the brain. Accordingly, possible disease mechanisms 
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leading to the development of autism with intellectual disability have been proposed. 

Since data on candidate processes is useful for personalized treatment, we conclude that 

molecular karyotyping complemented by our original in silico analysis of epigenome, 

proteome and metabolome is to become an important component for basic and applied 

research in psychiatric genetics. 

Keywords: copy number variants; chromosome 5; bioinformatics; molecular karyotyp-

ing; TPPP; autism; intellectual disability 
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Introduction. Autism spectrum disor-

ders and intellectual disability are common in 

children and adolescents. Average incidence 

of autism varies from 1 to 10 cases per 1000 

individuals around the world [1, 2]. The main 

symptoms of autism include speech and 

communication abnormalities, impaired social 

adaptation, motor function alterations, and 

stereotypies. Autism research shows that ge-

netic predisposition plays a significant role in 

the etiology [3]. Autism may be associated 

with large chromosomal aberrations (2-10%), 

copy number variations (CNV) (5-15%) [3-5], 

and single-gene mutations (5-10%) [4]. In to-

tal, genomic pathology affects no less than 

25-35% of patients with autistic disorders. 

However, focusing on autism predisposition 

genes is limited to expanding the list of can-

didates. Available data indicate high hetero-

geneity and low penetrance of mutations as-

sociated with this disease. Moreover, there are 

speculations about reducing autism risks by 

variations in a number of genes. Apparently, 

autism is not associated with single genes, but 

with a variety of molecular and cellular pro-

cesses [3, 6, 7]. Determining the mechanism 

underlying the pathogenesis of autism repre-

sents an important area of biological psychia-

try and medical genetics. Consequently, bio-

informatic analysis of genomic variations in 

individuals with autism and/or intellectual 

disability to uncover altered molecular and 

cellular processes is a significant step forward 

for unraveling mechanisms of the disease and 

providing the evidence-based therapeutic op-

portunities. 

Aim of the study. Here, we have at-

tempted to characterize microduplications 

(large CNV) affecting chromosome 5p15.33 

by a bioinformatics analysis of molecular 

karyotyping data.  

Materials and methods. Among 296 

children with autism, intellectual disability 

and congenital malformations/developmental 

delays (age: 2-13 years (average age: 5.5 

years); sex ratio: 128/168 (females/males) or 

1/1.3), three individuals have been found to 

demonstrate CNV manifesting as duplications 

at 5p15.33. Duplications encompassed same 

genomic loci in three children with autism 

and intellectual disability. All three children 

had been diagnosed to have autism, intellec-

tual disability and developmental delays. Mo-

lecular karyotyping using Affymetrix Cy-

toScan HD Arrays platform has been per-

formed with an average resolution of ~1000 

bp. In silico analysis of the phenotype out-

come has been performed using original bio-

informatic techniques allowing modulating 

consequences of genome imbalances at tran-

scriptome, proteome and metabolome levels. 

The technique has been previously described 

in details [8-11]. 

Results and discussion. Clinically, all 

three children demonstrated an idiopathic au-

tism assessed by the Child Autism Rating 

Scale (CARS) and intellectual disability. In 

addition to autistic traits, two children had 

congenital anomalies. The first patient had a 

hydrocephalic shape of the skull, lowered 

outer corners of palpebral fissures. The se-

cond had severe microcephaly, a triangular 

face, wide distal finger phalanges, protruding 

auricles, a flat bridge of the nose, skin rashes 

mailto:svorsanova@mail.ru
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and corpus callosum hypoplasia. The third 

child demonstrated exclusively wavy hair, 

which was not observed in other members of 

his family.  

The first patient exhibited 5p15.33 du-

plication (genomic location: 448542-676847, 

size: 228305 bp) affecting 7 genes: EXOC3, 

PP7080, SLC9A3, MIR4456, LOC100996325, 

CEP72, TPPP. The second patient demon-

strated 5p15.33 duplication (genomic loca-

tion: 448542-819920), size 371378 bp) affect-

ing 8 genes: EXOC3, PP7080, SLC9A3, 

MIR4456, LOC100996325, CEP72, TPPP, 

ZDHHC11. The third patient showed 5p15.33 

duplication (genomic location: 448542-

1175479, size: 726937 bp) affecting 14 genes: 

EXOC3, PP7080, SLC9A3, MIR4456, 

LOC100996325, CEP72, TPPP, ZDHHC11, 

BRD9, TRIP13, MIR4635, NKD2, SLC12A7, 

LOC100506688. Further characteristics of the 

duplications are given in Figure 1 and Table 

1. No other detectable CNV have been associ-

ated with the phenotypic features in these 

children. 

 

 

Fig. 1. Duplications at chromosome 5p5p15.33 detected in three cases of autism and intellectual 

disability (https://genome.ucsc.edu GRCH37/hg19) 

 

Table 1 

5p15.33 duplications: localization, size and genes 

№ 
Localization Size Genes 

Chromosomal  Genomic   

1 5p15.33 448542-676847 228305 EXOC3, PP7080, SLC9A3, MIR4456, 

LOC100996325, CEP72, TPPP 

2 5p15.33 448542-819920 371378 EXOC3, PP7080, SLC9A3, MIR4456, 

LOC100996325, CEP72, TPPP, ZDHHC11 

3 5p15.33 448542-1175479 726937 EXOC3, PP7080, SLC9A3, MIR4456, 

LOC100996325, CEP72, TPPP, ZDHHC11, BRD9, 

TRIP13, MIR4635, NKD2, SLC12A7, 

LOC100506688 

 

Regardless of differences in length of 

duplications and the number of affected 

genes, the overlapping region exists. It is im-

portant to note that distal breakpoint is the 

same in all three cases. Since 

CNV/duplications result from alterations to 

recombination, replication, and DNA repair in 

specific genomic loci [12, 13], one can sug-

https://genome.ucsc.edu/
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gest a recombination hotspot localized at 

5p15.33.  

Previously, essential genetic process-

es/changes mediating brain diseases were de-

fined as those occurring directly in cells of the 

diseased brain [14, 15]. Therefore, in silico 

gene expression analysis may provide infor-

mation for prioritizing candidate 

genes/processes for brain dysfunction [9]. Our 

analysis has demonstrated that TPPP has the 

highest expression in the brain as to remain-

ing duplicated genes. Moreover, the relative 

expression is increased in almost all analyzed 

areas of the brain (Fig. 2). 

 

Fig. 2. Expression profiles of duplicated genes in various brain areas (http://biogps.org [35]) 

 

The first duplication affected exons 3 

and 4 of TPPP, which encode phosphorylated 

protein domains, which are involved in the 

regulation of the protein activity. In the se-

cond and third cases, TPPP is completely du-

plicated. The gene has 4 exons and encodes a 

protein catalyzing the polymerization of tubu-

lin, a component of microtubules. Microtu-

bules are essential components of cellular 

processes, such as intracellular transport and 

cell division (chromosomal disjunction in mi-

tosis and meiosis). In addition, microtubules 

play a role in myelination of oligodendrocytes 

[16, 17]. Previously, possible roles of TPPP 

in the development of neuropsychiatric disor-

ders in children have been suggested [9]. Tak-

ing these data into account, TPPP has been 

associated with autism and intellectual disa-

bility. 

To gain further insights into mecha-

nisms of phenotypic outcomes of the duplica-

tions, an interactome analysis was carried out. 

As a result, TPPP was found to interact with 7 

proteins: SCNA, GAPDH, CDK5, CDK5R1, 

TMED3, LIMK1, ROCK1 (Fig. 3). These are 

involved in cell cycle regulation, metabolism, 

and development of the nervous system. Fig-

ure 3 shows TPPP interactome.  

To describe ontologies associated with 

alterations to the interactome due to TPPP 

duplications, a brief overview of proteins in-

volved in this network is given. 

— SNCA (alpha-synuclein) protein belongs to 

the synuclein family. SNCA expression is 

high in brain cells. Alpha-synuclein is as-

sociated with the membrane of vesicles in 

neurons. The protein is involved in the 

control of the transport to presynaptic 

membrane. SNCA is associated with Park-

inson's disease [18]. 

— GAPDH (glyceraldehyde-3-phosphate de-

hydrogenase) is an enzyme required for 

oxidative phosphorylation. It is involved in 

the nitrosylation of nuclear proteins and 

regulation of mRNA stability, as well [19]. 

http://biogps.org/
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Fig. 3. TPPP protein interactome generated using STRING [36] 

 

 

— Cyclin-dependent kinase 5 (CDK5) — un-

like other members of the cyclin-dependent 

kinase family the protein does not directly 

regulates of cell cycle. Instead, CDK5 is 

associated with synaptic plasticity and neu-

ronal migration. This enzyme phosphory-

lates proteins. The phosphorylation is in-

volved in regulation of cytoskeleton, endo-

cytosis, exocytosis, and apoptosis. CDK5 

expression is increased in postmitotic cells 

of the central nervous system [20]. 

— CDK5R1 (p35) is a neuron-specific activa-

tor of the cyclin-dependent kinase CDK5 

by calpain-based proteolytic cleavage of 

p35 to form the p25 form. CDK5-p25 

complexes cause changes in kinase struc-

ture and activity [21]. 

— TMED3 (transmembrane protein p24 con-

taining domain 3) is encoded by TMED3, a 

gene, which is not indexed in the OMIM 

database [22]. 

— LIMK1 regulates actin remodeling by 

phosphorylating cophilin and converting it 

into an inactive form. This rearranges den-

drite spines and axon modifications to 

form synaptic plasticity [23]. 

— ROCK1 (serine/threonine kinase) is a Rho-

associated kinase activated by binding be-

tween Rho and guanosine triphosphate 

(GTP). This protein is involved in biopro-

cesses mediated by modification of the ac-

tin cytoskeleton and formation of actomyo-

sin complexes [24]. 

Apparently, LIMK1 and ROCK1 are 

involved in pathways of axonal guidance and 

cytoskeleton regulation. These pathways play 

a key role in the formation and functioning of 

the nervous system [25, 26]. The improper 

regulation causes a decrease in the viability 

and functional activity of cells, and leads to 

genomic (chromosomal) instability, which is 

an element of pathogenic cascades in a wide 

spectrum of brain diseases [27-29]. Interac-

tome analysis shows that TPPP is involved in 

brain development and functioning. There-

fore, TPPP copy number changes leading to 

altered gene dosage may have negative effects 

on neurodevelopmental diseases (i.e. autism 

and intellectual disability). 

Expanded interactome analysis was car-

ried out to highlight ontologies or candidate 

processes for neurodevelopmental abnormali-

ties associated with 5p15.33 duplications. As 

a result, 37 proteins were found to interact 

with TPPP: CDK5R1, GAPDH, SNCA, 

LIMK1, TMED3, ROCK1, CDK5, RHOA, 

CCND2, CABLES1, UBC, FYN, ENO1, 

MAPT, SNCAIP, PARK2, SLC6A3, 

CDK5R2, NDEL1, PPP1R1B, RAC1, APP, 

CDC42, MSN, CSNK2A1, RND3, PGK2, 

HSPA4, RPL13A, PARK7, CCNB1, LRRK2, 

CDKN1B, DPYSL2, AMPH, MYH14, 

RHOC (Fig. 4). 
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Fig. 4. Expanded TPPP interactome generated using STRING (for more details, see https://string-

db.org [36]) and selected ontologies or candidate processes marked by colored semitransparent 

shapes (asterisks indicate proteins involved in the pathways to neurodegenerative diseases) 

 

 

According to the largest ontologies, pro-

teins were clustered as follows: proteins asso-

ciated with the glycolysis enzymes, structural 

and functional proteins of synaptic connec-

tions, proteins involved in actin polymeriza-

tion and axonal guidance; proteins regulating 

cell cycle proliferation and cell differentiation 

(Fig. 4). It should be taken into account that 

proteins may be simultaneously involved in 

several processes. Consequently, we have 

clustered proteins according to ontologies rel-

evant to brain development and functioning. 

The proteins of synaptic plasticity (I) and ax-

onal guidance (II) are of the interest in the 

context of brain dysfunction. The first group 

includes APP, SLC6A3, PPP1R1B, TMED3, 

SNCA, AMPH, and the second group includes 

CDKN1B, CDK5R1, CDK5R2, LIMK1, 

DPYSL2, CDK5, NDEL1, MYH14, RND3, 

MAPT, CABLES1, MSN, ROCK1. According 

to the literature, a large number of autism-

associated genes encode proteins involved in 

synaptic plasticity [30]. Axonal guidance is a 

key mechanism for the development of brain 

structures during brain development. Genes 

ontologically associated with axonal guidance 

https://string-db.org/
https://string-db.org/


 
Оригинальная статья 

Original article 

 

Научные результаты биомедицинских исследований. 2020;6(4):466-475 
Research Results in Biomedicine. 2020;6(4):466-475 

472 

 

are occasionally mutated in autism and intel-

lectual disability [31-34]. It should be noted 

that 12 out of 37 proteins of the expanded 

TPPP interactome (GAPDH, HSPA4, 

PARK7, PARK2, LRRK2, CDK5R2, MAPT, 

CDK5, APP, SNCA, SLC6A3, PPP1R1B) are 

elements of the neurodegeneration pathway 

(Fig. 4, marked with asterisks). 

Conclusion. We report on an in silico 

analysis of functional consequences of 

5p15.33 microduplications in 3 children with 

autism and intellectual disability. Using an 

original in silico technology modulating phe-

notypic outcomes of CNV (CNV prioritiza-

tion) at transcriptome, proteome and metabo-

lome levels, we have found that TPPP is a 

candidate gene for autism with intellectual 

disability. Additionally, we have been able to 

propose a number of candidate processes for 

neurodevelopmental abnormalities in individ-

uals with 5p15.33 duplications encompassing 

TPPP. These data are intrinsically useful for 

forthcoming efforts in developing personal-

ized therapeutic strategies for neurodevelop-

mental diseases mediated by CNV. 

Knowledge about consequences of genomic 

variations generated by identifying candidate 

processes based on in silico analysis of tran-

scriptome, proteome and metabolome is an 

important tool for basic and diagnostic ge-

nome research. 
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