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1. INTRODUCTION

The compound LaMnO

 

3 + 

 

δ

 

 belongs to hole-doped
mixed-valence (Mn

 

3+

 

–Mn

 

4+

 

) perovskite manganites
exhibiting colossal magnetoresistance [1]. The mag-
netic phase diagram of these compounds includes the
high-temperature paramagnetic, ferromagnetic, and
spin glass regions [1, 2].

The hole doping of LaMnO

 

3 + 

 

δ

 

 differs from that
used for close analogs of this compound, for instance,
La

 

1 – 

 

x

 

Ca

 

x

 

MnO

 

3

 

. In the latter materials, holes are cre-
ated by substituting Ca

 

2+

 

 ions for La

 

3+

 

 ions in the lat-
tice. Because excess oxygen cannot occupy interstitial
sites in the perovskite structure [3, 4], the nonstoichi-
ometry of LaMnO

 

3 + 

 

δ

 

 can be associated with the forma-
tion of cation vacancies. The concentration of cation
vacancies 

 

δ

 

' = (2/3)

 

δ

 

 corresponds to the relative hole
concentration (or the Mn

 

4+

 

/Mn

 

3+

 

 ratio) 

 

c

 

 = 2

 

δ

 

. The
absence of Ca ions leads to a decrease in the degree of
disorder in the lattice and to a more uniform hole distri-
bution in LaMnO

 

3 + 

 

δ

 

 as compared to that in
La

 

1 

 

−

 

 

 

x

 

Ca

 

x

 

MnO

 

3

 

 [5].

In compounds exhibiting colossal magnetoresis-
tance, one observes hopping conduction of small-
radius polarons (associated with local Jahn–Teller lat-

tice distortions) over nearest neighbors above room
temperature, which obeys an Arrhenius-type equation
[1]. Below room temperature, hopping conduction
depends strongly on the specific features in the density
of localized states 

 

g

 

(

 

ε

 

) near the Fermi level 

 

µ

 

 [6]. Scan-
ning tunneling spectroscopy of La

 

0.8

 

Ca

 

0.2

 

MnO

 

3

 

 films
revealed a complex structure of the density of localized
states near the Fermi level 

 

µ

 

, which includes the range
characterized by a quadratic dependence 

 

g

 

(

 

ε

 

) with a
width 

 

∆

 

 ~ 0.5 eV (soft gap) and the range with 

 

g

 

(

 

ε

 

) = 0
and 

 

γ

 

(

 

T

 

) ~ 0.11 eV (rigid gap) [7]. The soft gap was
explained by the effect of Coulomb interaction of
charge carriers (the Coulomb gap [8]), whereas the
rigid gap was attributed to the Jahn–Teller effect [7].

As the temperature decreases, it becomes increas-
ingly more favorable energywise for carriers to hop
beyond the region of nearest sites, thus giving rise to
variable-range hopping conduction [8, 9]. The Mott
conduction occurs under the conditions where the den-
sity of localized states near the Fermi level 

 

µ

 

 is constant
and finite [9]. The existence of a Coulomb gap brings
about another kind of deviation from the Arrhenius law,
namely, the Shklovskii–Efros (SE) variable-range hop-
ping conduction [8]. Moreover, the rigid gap also
affects the variable-range hopping conduction [6]. A
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Abstract

 

—The temperature dependence of the electrical resistivity 

 

ρ

 

(

 

T

 

) for ceramic samples of LaMnO

 

3 + 

 

δ

 

(

 

δ

 

 = 0.100–0.154) are studied in the temperature range 

 

T

 

 = 15–350 K, in magnetic fields of 0–10 T, and under
hydrostatic pressures 

 

P

 

 of up to 11 kbar. It is shown that, above the ferromagnet–paramagnet transition temper-
ature of LaMnO

 

3 + 

 

δ

 

, the dependence 

 

ρ

 

(

 

T

 

) of this compound obeys the Shklovskii–Efros variable-range hopping
conduction: 

 

ρ

 

(

 

T

 

) = 

 

ρ

 

0

 

(

 

T

 

)exp[(

 

T

 

0

 

/

 

T

 

)

 

1/2

 

], where 

 

ρ

 

0

 

(

 

T

 

) = 

 

AT

 

9/2

 

 (

 

A

 

 is a constant). The density of localized states

 

g

 

(

 

ε

 

) near the Fermi level is found to have a Coulomb gap 

 

∆

 

 and a rigid gap 

 

γ

 

(

 

T

 

). The Coulomb gap 

 

∆

 

 assumes
values of 0.43, 0.46, and 0.48 eV, and the rigid gap satisfies the relationship 

 

γ

 

(

 

T

 

) 

 

≈

 

 

 

γ

 

(

 

T

 

v

 

)(

 

T

 

/

 

T

 

v

 

)

 

1/2

 

, where 

 

T

 

v

 

 is
the temperature of the onset of variable-range hopping conduction and 

 

γ

 

(

 

T

 

v

 

) = 0.13, 0.16, and 0.17 eV for 

 

δ

 

 =
0.100, 0.125, and 0.154, respectively. The carrier localization lengths 

 

a

 

 = 1.7, 1.4, and 1.2 Å are determined for
the same values of 

 

δ

 

. The effect of hydrostatic pressure on the variable-range hopping conduction in LaMnO

 

3 + 

 

δ

 

with 

 

δ

 

 = 0.154 is analyzed, and the dependences 

 

∆

 

(

 

P

 

) and 

 

γ

 

v

 

(

 

P

 

) are obtained. 
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comprehensive analysis of the electrical resistivity [6]
and thermopower [10] in La

 

0.7

 

Ca

 

0.3

 

Mn1 – yFeyO3 above
the Curie temperature TC led to ∆ ≈ 0.4 eV and γ(T) ≈
γ(Tv)(T/Tv)1/2, where γ(Tv) = 0.16–0.12 eV decreases
with increasing y and assumes values close to those
obtained in [7].

In this work, we studied the electrical conductivity
and magnetoresistance of LaMnO3 + δ samples with the
aim of obtaining information regarding the conduction
mechanisms and the carrier energy spectrum, including
data on the structure of the density of localized states
near the Fermi level. 

2. PREPARATION OF SAMPLES
AND THEIR CHARACTERIZATION

Ceramic samples of LaMnO3 + δ with δ = 0.100,
0.125, and 0.154 (referred to as S100, S125, and S154,
respectively) were prepared by standard solid-phase
technology. The specific features of this technology and
subsequent annealing in Ar, O2, and air were described
in considerable detail in [5]. X-ray powder diffraction
analysis revealed that sample S100 has a cubic structure
(space group Pm3m) with small rhombohedral distor-
tions, whereas samples S125 and S154 have a rhombo-
hedral structure (space group R-3c). The parameter δ,
which is related to the La and Mn vacancy concentration

δ' and determines the hole concentration c, was deter-
mined by iodometric titration [5].

3. RESULTS AND DISCUSSION

3.1. Temperature Dependence 
of the Electrical Resistivity

The electrical resistivity was studied by the four-
point probe technique in the transverse magnetic field
configuration in the range of magnetic fields B = 0–10
T. The samples were contained in a helium gas-
exchange Dewar, where their temperature could be var-
ied in the range 4.2–350 K with an accuracy of 0.5%.
The temperature dependences of the electrical resistiv-
ity of samples S100, S125, and S154 are shown in Fig.
1 (with magnetic fields applied to one of the samples).
Open triangles in Figs. 1 and 2 identify the paramag-
netic–ferromagnetic phase transition temperatures TC.

3.2. Analysis and Discussion of the Dependences ρ(T)

The electrical resistivity of LaMnO3 + δ above TC

was analyzed by fitting it with a universal relationship,

(1)ρ T( ) ρ0 T( ) T0/T( ) p[ ],exp=

109

107
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ρ,
 Ω

 c
m
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105
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S154

S100
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T, K

Fig. 1. Temperature dependences of the electrical resistivity
measured for the LaMnO3 + δ sample (S125) in magnetic
fields B = 0, 4, and 10 T and for samples S100 and S154 in
a zero field (inset).
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Fig. 2. (a) Dependences of ln(ρ/T9/2) on T–1/2 for
LaMnO3 + δ samples (S100, S125, and S154). Two curves
are shifted along the y axis by ±5 units. (b) Dependences of
(1) ln(Ea/kT + 9/2) on ln(1/T) and (2) ln(ρ/T9/2) on T–1/2 for
the LaMnO3 + δ sample (S125).
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where T0 is the characteristic temperature; and p = 1 for
conduction over the nearest sites (in this case, T0 is usu-
ally replaced by the activation energy E0 ≡ kT0), p = 1/4
for the Mott-type variable-range hopping conduction
[9], and p = 1/2 for the Shklovskii–Efros variable-range
hopping conduction [8]. If the condition Γ ≡
[kT(T0/T)pa/(2�s)]2 � 1 is met, the preexponential fac-
tor in Eq. (1) can be written in the form

(2)

Here,

(3)

a is the carrier localization length, s is the velocity of
sound, and C is a constant [6]. For the Shklovskii–Efros
variable-range hopping conduction, we have m = 9/2 or
5/2, while for the Mott variable-range hopping conduc-
tion, m = 25/4 or 21/4, if the localized-carrier wave
function has the form ψ1(r) ~ exp(–r/a) for q = 0 or
ψ2(r) ~ r–1exp(–r/a) for q = 4 in Eq. (3), respectively.
The wave function ψ2 is used in the case where the fluc-
tuating short-range potential associated with lattice dis-
order strongly affects the carrier localization [8]. For
(adiabatic) conduction over the nearest centers, we
have m = 1 for any values of ψ, q, and Γ [9]. In Eq. (1),
T0 = T0M or T0SE for p = 1/4 or 1/2, respectively, where

(4)

κ is the dielectric constant, βM = 21, and βSE = 2.8 [8].
If the rigid gap is present, i.e., γ < ∆, the variable-range
hopping conduction satisfies Eq. (1) with p = 1/2, in
which T0 [6] is given by the relationship

(5)

As can be seen from Eq. (4), T0SE and T0M do not depend
on T for constant a or g(µ)a3, respectively. As follows
from Eq. (5), T0 does not depend on T if, in addition,
one of the following conditions is met: (1) γ/(2kT) �
(T0SE/T)1/2 and γ ~ T or (2) γ ~ T1/2. For case 1, we have
T0 = T0SE because (T0/T)1/2 ≈ (T0SE/T)1/2 + γ/(2kT) and, if
γ ~ T, the second term does not depend on T and can be
included in the preexponential factor, whereas the rela-
tionship T0 ≠ T0SE holds for case 2.

Equation (1) allows a better fit to the temperature
dependences of the electrical resistivity for constant T0
if we set p = 1/2 and m = 9/2 in the range limited by a
temperature close to TC (Fig. 2a). The fact that ρ(T) of
the samples studied is consistent with the Shklovskii–
Efros variable-range hopping conduction mechanism,
which satisfies the Γ � 1 and ψ = ψ1 conditions for the
above values of p and m, is borne out by an analysis of
the local activation energy Ea(T) ≡ δlnρ(T)/d(kT)–1 [8].
As can be seen from Eq. (1), if T0 does not depend on

ρ0 T( ) AT
m

.=

A Ca
11

T0
7 q+( ) p

,=

T0M βM/ kg µ( )a
3[ ], T0SE βSEe

2
/ κka( ),= =

T0
γ

2k T
-------------- γ 2

4k
2
T

------------ T0SE++
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

.=

T, the dependence Ea(T) can be written in the form
ln[Ea/(kT) + m] = lnp + plnT0 + pln(1/T). Figure 2b
suggests that the dependence of ln[Ea/kT + 9/2] on
ln(1/T) is linear in the same temperature range as in
Fig. 2a, with the slope corresponding to p = 1/2. The
linear parts of the graphs in Fig. 2 were used to find the
values T0 = 9.8 × 104, 10.8 × 104, and 11.3 × 104 K and
the temperatures of the onset of the variable-range hop-
ping conduction Tv = 250, 250, and 270 K for samples
S100, S125, and S154, respectively. By substituting
these parameters into the equation [6]

, (6)

we obtained the following values of the Coulomb gap:
∆ = 0.43, 0.46, and 0.48 eV for the same samples.

The existence of a temperature range within which
T0 is constant (Fig. 2) implies that we are considering
one of the cases commented on when we discussed
Eq. (5). To pinpoint this case, we studied the tempera-
ture dependence of the electrical resistivity in a mag-
netic field. The localization length of small-radius
polarons in the paramagnetic phase varies in a field as
a(B) = a(0)(1 + b1B2), where b1 ~ χ(T) [11]. As follows
from Eqs. (4)–(6), for b1B2 � 1, we have T0(B) =
T0(0)(1 – b2B2), where b2 = b1T0SE(0){T0(0) –
[T0(0)/T]1/2γ/(2k)}–1, provided γ does not depend on B.
Hence, we arrive at the relationship

(7)

Close to Tv � TC, the magnetic susceptibility χ varies
very little with temperature [5]. Hence, the depen-
dences of T0 and A on B in the temperature range near
Tv can be derived from a linear approximation of the
ln(ρ/T9/2) versus T–1/2 graphs obtained in a magnetic
field. The a(B)/a(0) ratio can be found from Eq. (3). It
was established that the dependences of a(B)/a(0) on B2

and T0(B)/T0(0) on B2 are linear functions up to B =
10 T for samples S100 and S125 and almost up to 8 T
for sample S154 (these dependences are illustrated for
sample S125 in Fig. 3). The ratios b1/b2 = 1.24 ± 0.04,
1.26 ± 0.06, and 1.28 ± 0.05 for samples S100, S125,
and S154, respectively, are above unity and outside the
error limits. According to Eq. (7), this implies the exist-
ence of a nonzero rigid gap that depends on T as

(8)

where γ(Tv) = 0.13, 0.16, and 0.17 eV for samples
S100, S125, and S154, respectively.

The carrier localization length was found using the
expression for the density of localized states outside the
Coulomb gap: g0 ≈ N0φση/W [12], where N0 = 1.74 ×
1022 cm–3 is the Mn site concentration, W is the width
of the localized-state band, η ≈ c, φ ≈ 0.5 is the geomet-
ric factor, and σ ≈ 1 – c [12]. The values of W were cal-
culated from the expression kTC ≈ 0.05Wc(1 – c) [11],

∆ k T0Tv( )1/2≈

γ T( ) 2 b1/b2 1–( )/ 2b1/b2 1–( )[ ]k T0 0( )T[ ]1/2
.=

γ T( ) γ Tv( ) T /Tv( )1/2
,≈
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where the temperatures TC were derived from magneti-
zation measurements [5]. Next, the relationship g0 =
(3/π)(κ3/e6)[∆ – γ(Tv)]2 [6] was used to obtain κ ≈ 3.5.
The values a = 1.7, 1.4, and 1.2 Å were found from
Eqs. (4) and (6). The values of a and T0 obtained by us
here show directly that the condition Γ � 1 is met for
all the LaMnO3 + δ samples studied.

The value κ ≈ 3.5 is close to the values found earlier
for La1 – xBaxMnO3 [13], La0.7Ca0.3Mn1 – yFeyO3 [6], and
LaMnO3 + δ [14]. The values of κ in these cases are sub-
stantially smaller than the static dielectric constant κ0 =
16 [15]. On the other hand, κ is much closer to κp than
to κ0, whereas we have κ = κ0 for doped semiconduc-
tors [16]. The point is that, in the perovskite mangan-
ites, the concentration of carriers (which is equal to that
of holes) is much higher than that in doped semicon-
ductors. Moreover, carriers in the perovskite mangan-
ites are polarons of small radius and, in nonmagnetic
semiconductors, the contribution from polarons of
small radius is very small [8]. As a result of the high
concentration of polarons, their average separation is
comparable to the lattice parameters. On the other
hand, the major contribution to ∆ comes from interac-
tion among the nearest carriers. The space around a
polaron is characterized, however, not by the parameter

κ0 but by the quantity κp = (  – )–1, where κ∞ is
the high-frequency permittivity [9, 17]. The electro-
static interaction between polarons at a distance R does
not obey the conventional Coulomb relationship and
can be written in the form U ≈ e2/(κpR), i.e., assuming
κ ≈ κp. The Coulomb gap widths ∆ in LaMnO3 + δ
obtained by us are close to those found for
La0.8Ca0.2MnO3 [7] and La0.7Ca0.3Mn1 – yFeyO3 [6].

The values of a are consistent with the assumption
that small-radius polarons are formed in perovskite
manganites [9]. Moreover, a decreases with increasing
δ, as should be expected in accordance with the
increase in the degree of localization with increasing
perovskite structure distortions. The values of γ(Tv) are
similar to those obtained for La0.8Ca0.2MnO3 [7] and
La0.7Ca0.3Mn1 – yFeyO3 [6]. On the other hand, they are
comparable to the activation energy of adiabatic hop-
ping of small-radius polarons over nearest neighbors,
E0 ≈ Eb/2, where Eb is the polaron binding energy [1].
Hence, the origin of the rigid gap in the perovskite man-
ganites can be associated with the polaron nature of the
carriers. In performing a hop, the electron has to anni-
hilate polarization in the initial position and create it in
the final position. It is the existence of a minimum
energy required for a hop to be realized that gives rise
to a rigid gap in the density of localized states near the
Fermi level µ, provided local lattice distortions account
primarily for carrier localization. It is the case of
reduced lattice disorder [5] and of lattice distortions
increasing with increasing δ that is realized in

κ∞
1– κ0

1–

LaMnO3 + δ, and this can account primarily for the
increase in γ with increasing δ.

3.3. Study of the Electrical Resistivity
under Pressure

The measurements of the dependences ρ(T) were
performed by the four-point probe technique under
hydrostatic pressures of up to 11 kbar. The pressure was
generated in a Be–Cu cell with a gasolene–oil mixture
serving as a pressure-transmitting liquid.

As can be seen from Fig. 4a, the electrical resistivity
of sample S154 exhibits activation behavior. The ρ(T)
curve has slight bends near TC, which are identified for
P = 1 bar and 11 kbar by open triangles. The value TC(1
bar) = 129 K is close to TC = 135 ± 1 K, which is derived
from magnetization measurements in the absence of
excess pressure [5]. The dependence TC(P) shown in
Fig. 5 is nearly linear with dTC/dP = 1.6 ± 0.2 K/kbar,
dlnTC/dP = 0.012 ± 0.002 kbar–1, and a maximum
change of ~14% (at 11 kbar). This dependence TC(P)
and the values of dTC/dP are typical of perovskite man-
ganites [18, 19]. As can be seen from Fig. 4a, ρ(T)
decreases with increasing P for all temperatures.

As was already shown before, in LaMnO3 + δ at
atmospheric pressure and for T > TC, the dependence
ρ(T) follows the Shklovskii–Efros variable-range hop-
ping conduction law (Eq. (1) for p = 1/2, m = 9/2, and

A ~ ). Expression (5) for the characteristic temper-
ature T0 can be recast for γv ≡ γ(Tv) in the form

(9)

The quantities ∆ and γv are related to T0 and Tv and
the density of localized states g0 outside the Coulomb

T0
7/2

T0
γv

2k Tv

-----------------
γv

2

4k
2
Tv

--------------- T0SE++
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

.=

1.2

1.1

1.0

0.9

0.8

T 0
(B

)/
T 0

(0
),

 a
(B

)/
a(

0)

12080400
B2, T2

a(B)/a(0)

T0(B)/T0(0)

S125

Fig. 3. Dependences of a(B)/a(0) and T0(B)/T0(0) on B2 for
the LaMnO3 + δ sample (S125).
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gap through Eq. (6) and the expression [6]

(10)

As can be seen from Fig. 4b, the dependence of
ln[ρ(T)/T9/2] on T–1/2 obtained under pressure contains

g0 3/π( ) κ3
/e

6( ) ∆ γv–( )2
.≈

a linear portion below Tv. Deviations from linearity are

observed for T  TC (the values of  are identi-
fied by open triangles for P = 1 bar and 11 kbar). These
dependences were used to derive the values of Tv(P),
T0(P), and A(P) presented in Fig. 5. The values of ∆(P)
derived from Eq. (6) are given in Fig. 6a. The relative
variation in the localization length a(P)/a* (all symbols
with an asterisk refer to P = 1 kbar) was obtained using
Eq. (3) and is shown in Fig. 6b. 

The macroscopic (T0, Tv, and A) and microscopic
(∆, γv, g0, and a) parameters are interrelated. This inter-
relation is given by Eqs. (3)–(10). Therefore, we
present below a quantitative analysis of the dependence
∆(P) only. Equation (8) can be used to obtain

(11)

and from Eq. (7), we have

(12)

On the other hand, g0(P) = ϕσηN(P)/W(P) [12], where
ϕ ≈ 0.5, σ = 1 – c, and η = c are numerical parameters
which are constant for c = 2δ = 0.308 (see above);
N(P) = N*(1 + 3P/G); N* ≈ 1.7 × 1022 cm–3 is the Mn
concentration in LaMnO3 + δ at P = 1 bar; G = 5 ×
1011 N/m2 is Young’s modulus [20]; and W(P) ≈
20kTC(P)/[c(1 – c)] is the localized-carrier band width
[11]. Hence, the dependence ∆(P) can be found from
Eqs. (6)–(9) using the dependences T0(P), Tv(P), and
TC(P) in Fig. 5a and a(P)/a* in Fig. 6 and two fitting
parameters (a* and κ). The dependence ∆(P) thus cal-
culated is shown in Fig. 6a. The best fit of the ∆(P)
function to experimental data is reached for a* ≈ 1.7 Å
and κ ≈ 3.75; these values are consistent with the values
a* ≈ 1.2–1.7 Å and κ ≈ 3.5 obtained for LaMnO3 + δ (see

TC
1/2–

∆ P( ) γv P( ) π/3( )1/2
e

3
g0

1/2
P( )/ κ3/2( );+≈

γv P( ) k Tv P( )/T0 P( )[ ]1/2
=

× T0 P( ) βe
2
/ κka*a P( )/a*[ ]–{ }.
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Section 3.2) in a different way, i.e., from magnetization
measurements performed with no pressure applied. The
method described above was also employed to calcu-
late  ≈ 0.144 eV (cf. γv ≈ 0.13–0.17 eV, the values
derived above from Eq. (8)) and the γv(P) function plot-
ted in Fig. 6b.

Because TC(P) ~ W(P), the observed effect of pres-
sure on TC should be assigned to the increasing width of
the localized-carrier band. On the other hand, it is
known that the pressure-induced variation in W in per-
ovskite manganites is actually driven by two factors,
namely, (1) spatial effects or an increase in the Mn–O–
Mn bond angles and a decrease in the corresponding
bond lengths, which increases the electron transfer inte-
gral and enhances double exchange interaction; and (2)
the polaron nature of carriers associated with the effect

γv*

of pressure on the electron–phonon coupling and the
corresponding Jahn–Teller distortions [18, 19]. In addi-
tion, in accordance with the assumed origin of the rigid
gap (see Section 3.2), we can write γv = Ep/2 – Ed/2,
where Ep is the depth of the polaron potential well asso-
ciated with the polarization of the medium and Ed is the
width of the electron potential energy distribution gov-
erned by disorder. Because the degree of disorder in
LaMnO3 + δ is small [5], the observed decrease in γv
with pressure should be connected primarily with sup-
pression of the polaron effect by a pressure that
decreases Ep. The decrease in Ep implies a decrease in
the degree of localization, which brings about an
increase in a(P), as is seen in Fig. 6b. On the other hand,
the effect of pressure on γv is weaker (up to ~8%) than
that on TC (up to ~14%), which can be explained by the
absence of an effect of factor 1 on γv(P) or by this effect
being smaller than that on TC(P). 

4. CONCLUSIONS

Thus, we studied the temperature dependences of
the electrical conductivity and magnetoresistance of
ceramic LaMnO3 + δ samples (δ = 0.100, 0.125, and
0.154). An analysis of these dependences suggests that
the behavior of the resistivity of LaMnO3 + δ in the para-
magnetic phase in the temperature range between TC

and Tv, which is ~250–270 K, is governed by the com-
plex structure of the density of localized states near the
Fermi level. We established the presence of a soft Cou-
lomb gap ∆ and a rigid gap γ, whose widths increase
with increasing δ. The increase in the gap width δ is
accounted for by the increasing hole concentration c =
2δ and the corresponding enhancement of the carrier
Coulomb interaction. The existence of the rigid gap γ
should possibly be attributed to the formation of small-
radius polarons, and its increase with increasing δ, to
the enhancement of lattice distortions under conditions
of reduced disorder. The observed dependence of the
localization length a on δ is accounted for by the
increasing hole localization as a result of increasing lat-
tice distortions.

The pressure dependences of the macroscopic
parameters ∆(P), γv(P), and a(P) obtained in the studies
of the effect of hydrostatic pressure on the variable-
range hopping conduction in LaMnO3 + δ can be
explained by the increase in the electron band width
and the decrease in the polaron effect with increasing
pressure.
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