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Abstract—Suppose that the Riemann hypothesis holds. Suppose that

b= Y AW,

n<z

{(1/2)m*/*}<1/2

where c¢ is a real number, 1 < ¢ < 2. We prove that, for H > N1/2+10€, e > 0, the following
asymptotic formula is valid:

1N + H) = 61 (N) = %(uo(NL))
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In 1940, to illustrate the application of his method, Vinogradov [1]| studied the problem of the
distribution of numbers of the form {f,/p}, where p is a prime, p < N, and [ is an arbitrary
positive constant.

In 1945, Linnik [2] proposed another approach to the solution of this problem related to the
application of the explicit formula for the Chebyshev function and of theorems on the density of
the distribution of zeros of the zeta function in the critical strip.

In 1979, Kaufman [3] applied Linnik’s approach to the solution of a similar problem.

In 1986, Gritsenko [4] obtained an asymptotic formula for «.(M), the number of primes p such
that p < M, {(1/2)p'/°} < 1/2, where ¢ is an arbitrary real number, 1 < ¢ < 2. Obviously,
m.(M) is the number of primes not exceeding M and belonging to the intervals [(22)°, (2z + 1)¢)
x =1,2,.... Note that the lesser is ¢, the shorter are the intervals. It is not clear whether each
of these intervals contains at least one prime. For 1 < ¢ < 4/3, Gritsenko proved that

+O(MYF 24y 250, (1)

If Linnik’s method is applied and the Riemann hypothesis, instead of the density theorems,
is used, then it is not possible to obtain a remainder in this asymptotic formula better than
O(M'/?+1/2¢+2) " without invoking additional considerations.

For H < NY/?t1/2¢ it does not follows from the asymptotic formula (1) that the closed interval
[N, N 4 H] contains at least one prime satisfying {(1/2)p'/¢} < 1/2.

In the present paper, we solve the problem of the number of primes satisfying the condition
{(1/2)p"/¢} < 1/2 on a short interval. The main result is the following theorem.



Theorem 1. Suppose that H > N'/?+10¢ = > 0. If the Riemann hypothesis is valid, then the
following asymptotic formula holds:
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2 N n<x
{(/2)nl/e}<1/2
and ¢ is a real number, 1 <c <2,

Note that, for ¢ > 2, the theorem is no longer valid, because the length of an interval of the
form [(2x)¢, (2z + 1)°) is greater than H .

Proof. Let us introduce the notation

o (x) = Z A(n).

n<z
{1/2017°}>1/2

Then ¥1(x) + ¥2(x) = ¥(x), where ¥(x) is the Chebyshev function.
We define Q(N, H) by the equality

QIN, H) = > {920 +2)) = 20(2x +1)%) + ¥((20)°)}

INVe<g<i(N+H)/e
Obviously,
QN H) = [2(N + H) = tra(N)] = [n(N + H) = g1 (N)] + O(N'!=He4),
As is well known, if the Riemann hypothesis holds, then
YN + H) —(N) = H + O(N/*+9),
Therefore, to prove the theorem, it suffices to estimate Q(N, H) as O(H/N®). The idea of an
estimate (presented below) of a quantity similar to Q(N, H) belongs to Linnik [2].

Let us use the representation of the Chebyshev function as the sum over nontrivial zeros p of
the zeta function, choosing T = N/**¢1n? N' (see for example, [3, p. 54]):

> {(2x+2)0 —2(2x +1)° + (22)°

%N1/0<I§%<N+H>1/C

-y (22 +2)% — 2(2x + 1) + (22)°° +O<N1n2N>}.

[v|<T p r

Accepting the Riemann hypothesis, we express p as 1/2+iv. Let us estimate the contribution
of the leading terms:

> {20 +2)° — 222 + 1)° + (22)°}
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Let us estimate the contribution of the remainder:

Z O<N1n2N> < H
.
INVe<az<F(N+H)/e T N

It remains to estimate the sum

> > (22 +2)? — 22 + 1) + (22)°°
INVe<a<I(NHH) Ve |7IST g
Denote 2 2)er — 2(2 )P 4 (2x)°P
x4 2)P — 220 + 1) + (22)°
Q1= Z Z P 7
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where T} = N'/¢=¢ and

(2¢ + 2)» — 2(2x + 1) + (22)°
Q2 = Z Z '
INVe<g<i(N+H)/e Ti<|y|<T g

Let us estimate Q. To do this, we use the fact that, in this sum, the order of « is less than that
of x. Factor out (2x)/p; then the expression in parentheses will be of order O(|p?|/2?). Let us
apply the integral Abel transformation:
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where '
C(x) = Z n'7.

%Nl/c<n§z

To the sum C(x), we apply the well-known lemma on its approximation by an integral (see, for
example, [5, p. 44]). We obtain

Nl/c

C(m) < Q) < Z N1/2_1/C<<N1/2+2€.

_7
|,7| [v|<Th

Further, let us estimate 2. Consider the sum

W Z Z (2£E+9)Cp7

T <|y|<T INVe<a<I(N+H)/e P

where 6 = 0, 1, 2. Applying to it the integral Abel transformation, we find

1 N1/2
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where

C(x) = Z n'.

%Nl/c<n§z



Suppose that, for 2 from the interval [$N/¢, (N + H)1/¢], the expression

|C(x)|
2 7]

T <|y|<T

takes the largest value at x = x5. We obtain

N1/2
W< > |Cx) o
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Denote ¢
flz) = % Inx.

Choose k so that ||f/(3NVe)|| = |f/(ANY¢) —k|. Let fi(x) = f(zx) — kx. Since

1
A

on the narrow interval [%Nl/c, %(N + H)l/c] , it follows that the sum over = of the exponential
function on this interval can be approximated by the integral

[fi(@)] <

/ / 1 1/0 1 11 & 2
N < N < 5

C(xo) = Z e?mifi(@) /1N1/ 2N @) de + O(1).

%Nl/c<z§zo

Let us split the sum W into at most O(N®In® N) sums, in each of which the summation is
performed over values of v such that

Let us estimate the sum

/ ™) dy 1 O(1)).

N1/2
Z ol iN1/e

k<3

‘le/C -
For k=0 and z from the interval, we have [sNVe L(N + H)Ye],

@ =17@)] > =

therefore, the integral of the exponential function can be estimated by using the first derivative
(see, for example, [6, p. 73 of the Russian translation]):
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N1/2 H
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Next, suppose that k # 0. Let us take into account the fact that
/ / 1/c H €12
fi(x) = f(1/2N*/ ¢y + O WN In“ N ).
First, consider the sum

1/2
Si(k) = Z ]TT

/ ™1 dy 4 0(1)‘.
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oy _k‘<100HN51n3N
| k| 200

Let us estimate the integral using the second derivative (see, for example, [6, p. 73 of the Russian
translation]) as O(N'/¢/\/]]). We obtain

HN5+1/20—1/2 1114 N

Si(k) < =7

Without loss of generality, we can set
N€+1/20—1/2 1n4N < N—2€

and we obtain the estimate

|k|<<N®In® N
k40

Next, let us estimate the sum

1/2
Sa(k) = Z A
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We split Sa(k) into at most O(In N) sums, where the summation is performed over values of +
such that
100H N¢ In® N

N
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On each such interval, using the first derivative, we can estimate the integral as
O(N/(HN® In® N2™ 1))

and obtain

N1/2

Sy(k) < 7

Finally,

Y Sak) = 0(%). O

|k|< N In® N
E#0
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