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Abstract
The magnetic properties of oriented CdSb single crystals doped with
2 at% of Ni are investigated. From measurements of magnetic irreversibility
defined by deviation of the zero-field-cooled (ZFC) susceptibility from
the field-cooled (FC) susceptibility, the value of the mean anisotropy field
BK ∼ 4 kG is obtained. The ZFC susceptibility displays a broad maximum
at a blocking temperature, Tb, depending on B according to the law
[Tb(B)/Tb(0)]1/2 = 1 − B/BK with Tb(0) ∼ 100 K. The field dependence
of the magnetization exhibits saturation above ∼20–30 kG with values of
Ms different for B along the [1 0 0], [0 1 0] and [0 0 1] axes. The temperature
dependence of Ms is weak, increasing slightly upon cooling the sample
below ∼100 K. The temperature dependence of the coercive field, Bc(T ),
is weak above Tb but is enhanced strongly with decreasing temperature
below Tb. The anisotropy of Bc is inverted with respect to the anisotropy
of Ms. Such behaviour can be attributed to spheroidal Ni-rich Ni1−xSbx
nanoparticles with a high aspect ratio, broad size distribution and distribution
of the orientation of the major axis around a preferred direction. The relation
Bc � BK and the anisotropies of Ms and Bc are consistent with reversal
of the magnetization by the curling mode, whereas the Tb(B) dependence
is typical of the coherent rotation mode. This difference is connected
to the proximity of the average transversal cluster radius to a critical
value for transition between the two magnetization reversal modes within
a wide crossover interval, due to broad distribution of the cluster sizes.

1. Introduction

Interest in the II–V group semiconductor cadmium
antimonide, CdSb, having the energy gap Eg ∼ 0.56 eV
and an orthorhombic crystal structure, is connected to its
strongly anisotropic transport properties [1] attractive for
designing devices as anisotropic thermoelectric sensors [2].
Unintentionally doped (briefly undoped) CdSb is a p-type
semiconductor with non-degenerate charge carriers and
activated conductivity [1, 3]. Doping of CdSb with different

elements influences strongly its transport properties like
changing the type of dominating charge carriers from holes
to electrons in CdSb:In [1, 4] or inducing a metal–insulator
transition and degenerate hole gas in CdSb:Ag [5]. Cyclotron
[6] and magnetophonon [7] resonances were investigated in
undoped p-CdSb, anisotropic quantum oscillations of the
resistivity in p-CdSb:Ag [8] and in n-CdSb:In [9] as well
as anomalous anisotropic magnetoresistance due to weak
localization of the holes in p-CdSb:Ag [10, 11]. Recently,
anisotropic hopping conductivity and complex hole transfer
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between the shallow acceptor bands and the valence band
maxima were observed in undoped p-CdSb in a strong
magnetic field [12, 13].

Undoped CdSb is diamagnetic with different values of
magnetic susceptibility χ = M/B along the crystallographic
axes [1 0 0], [0 1 0] and [0 0 1] [1], and contributions of the
anisotropy of the lattice and the hole gas to χ have been
observed [14]. It was established that the anisotropy of
χ in CdSb doped with group I elements did not depend
on the kind of impurities but only on their concentration
[14, 15]. Fe and Ni substituting for Sb in the lattice were
found to act as acceptors [4]. The acceptor impurities Mn
and La partially dissolve in CdSb as substitutional impurities
forming with Sb a new strongly paramagnetic phase that fully
exceeds the diamagnetism of the parent compound [1, 4].
The anomalously large diamagnetic susceptibility found in
CdSb crystals doped with Fe was interpreted by formation of
impurity clusters [16].

The limited solubility of Ni in the CdSb lattice leads
to formation of an eutectic composition CdSb + NiSb at
∼2 mol% of NiSb [17]. The microstructure of the eutectic
composition consists of needle-like NiSb inclusions of length
∼30–40 µm and diameter ∼1–1.5 µm in the CdSb host
matrix. In addition, the orientation of the needles is distributed
around a preferred direction at some angle with the growth
direction of the ingot [17]. Therefore, at smaller doping
levels of Ni formation of nanosize non-randomly oriented
spheroidal Ni-rich Ni1−xSbx clusters with a high aspect ratio
m = l/r, where l and r are the semi-lengths of the major and
the minor axes, respectively, can be expected. Because the
Ni1−xSbx compounds are ferromagnetic at x � 7.5% [18, 19],
a system of Ni-rich Ni1−xSbx nanoclusters in CdSb should
exhibit interesting magnetic properties, including blocking of
the magnetic moments as typical of an assembly of magnetic
nanoparticles and anisotropic features due to large m and
preferential orientation of the clusters.

In this work we investigate magnetic properties of CdSb
weakly doped with Ni, giving evidence for the presence of
Ni-rich Ni1−xSbx nanoclusters, and analyse their properties.

2. Experiment

Single crystals of CdSb doped with Ni (2 at%) were prepared
by the modified Bridgman method (slow cooling of a melt in
the presence of a temperature gradient in the furnace) using a
two-stage process. At the first stage Ni was dissolved in Cd
annealing the melt at the temperature of 700 ◦C for 8 h. At the
second stage stoichiometric amounts of Sb (purity 99.999%)
and Cd:Ni were loaded into a quartz ampoule covered with
a thin layer of graphite and filled after evacuation with Ar
gas to p = 0.1 atm. After keeping the material for 12 h at
the temperature of 460 ◦C the ampoule was cooled down at
the rate of 0.5 ◦C h−1. According to x-ray diffraction the
ingots of volume ∼1 cm3 were of single phase material with
orthorhombic structure (space group D15

2h), and had the same
lattice parameters as undoped CdSb. The growth direction of
the ingots deviated by an angle of 50◦ ± 5◦ from the [1 0 0]
crystal axis.

For magnetic measurements, rectangular prisms of
dimensions 6.0 × 2.0 × 2.2 mm3, 6.0 × 1.8 × 2.4 mm3

χ

χ

χ

χ

χ

χ

Figure 1. Temperature and magnetic field dependences of χFC

(open symbols) and χZFC (closed symbols) of CdSb doped with
2 at% Ni. For convenience some of the curves are shifted along
the vertical axis by the values shown in parenthesis in units of
10−7 emu g−1 G−1.

and 6.0 × 2.1 × 2.0 mm3 with the longest edge along the
[1 0 0], [0 1 0] and [0 0 1] axes, respectively, were cut from
the ingots providing approximately the same angle between
each crystallographic axis and the growth direction. The
measurements were made with a SQUID magnetometer in
fields of 0 � B � 6 T parallel to the crystallographic axes
of the three samples defined above. The magnetization M(T )

was measured in a field of 50 G–10 kG after cooling the sample
from 300 K down to 5 K in zero field (MZFC or zero-field-cooled
magnetization) or in the field of the measurement (MFC or
field-cooled magnetization). Thermoremanent magnetization
(TRM) was investigated after cooling the sample from the
room temperature down to 5 K in a magnetic field and reducing
the field to zero.

3. Experimental results

In figure 1 are shown the plots of the magnetic susceptibilities
χZFC(T ) = MZFC(T )/B (closed symbols) and χFC(T ) =
MFC(T )/B (open symbols). Here and thereafter the
temperature-independent diamagnetic contribution having a
linear dependence on B is subtracted from the magnetization
data. The magnetic irreversibility or deviation of χZFC(T )
from χFC(T ) in the smallest fields is observed already below
300 K. In addition, χZFC(T ) has a broad maximum around

229



R Laiho et al
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Figure 2. Temperature dependences of TRM/B (open symbols) and
�χ ≡ χFC − χZFC (closed symbols) in different magnetic fields. For
convenience some of the curves are shifted along the vertical axis by
the values shown in parenthesis in units of 10−7 emu g−1 G−1.

a temperature Tb ∼ 100 K. With increasing B the magnetic
irreversibility is damped and becomes unobservable above
BK ∼ 4 kG whereas Tb is shifted to lower temperatures. One
can also see that for B ‖ [1 0 0] and [0 1 0] the values of χZFC(T )
and χFC(T ) are comparable and systematically lower than
those for B ‖ [0 0 1]. Also the difference between χZFC and
χFC decreases with increasing field. The TRM(T ) shown in
figure 2 (open symbols) follows a similar relation with respect
to the crystallographic axes and decreases with temperature.
It can also be noted that the temperature dependence of
TRM is enhanced when T is decreased and the onset of the
enhancement is shifted to a lower temperature when the field
is increased.

The field dependence of the magnetization M(B) for
each axial direction is similar to that shown in figure 3
for B ‖ [0 0 1] (large scattering of the data above ∼1 T is
connected to subtraction of the diamagnetic contribution).
A rapid saturation of M(B) can be seen already above B ∼
2–3 T. The hysteresis loops show decreasing values of the
coercivity and the remanence when T is increased. In
figure 4 is shown the saturation magnetization M

(j)
s (T ),

the coercivity filed B
(j)
c (T ) and the remanent magnetization

M
(j)

R (T ) where j = 1, 2 and 3 corresponds to the direction
of B along the [1 0 0], [0 1 0] and [0 0 1] axes, respectively.
One can see that all of them display the same tendency of
enhancement below ∼100 K. In addition, a large difference
is observed between the values of M(1)

s < M(2)
s and M(3)

s

and the anisotropy of B
(j)
c (T ), B(1)

c (T ) > B(2)
c (T ) > B(3)

c (T )

is inverted with respect to that of M
(j)
s . A non-zero anisotropic

Figure 3. Magnetic field dependence of the magnetization at
different temperatures for B ‖ [0 0 1]. Inset: hysteresis loops
measured at T = 200 K for B ‖ [0 0 1]. The dashed lines are to guide
the eye.

Figure 4. Upper panel: temperature dependences of the coercivity
and remanence (inset) for different directions of the magnetic field.
Lower panel: temperature dependence of the saturation
magnetization for different directions of the magnetic field. The
lines are to guide the eye.

coercivity field exists up to 300 K. It is worth mentioning that a
weak temperature dependence of the saturation magnetization
(as in the bottom panel of figure 4 at T > 100 K) persists in our
samples at least up to 460 K, which is the highest temperature
attainable in our magnetometer.
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4. Analysis of the experimental results

The magnetic irreversibility of the samples (figure 1) suggests
formation of nanosize magnetic particles. Because at high
doping levels the NiSb needles are segregated in the CdSb
host, it may be expected that at low doping levels like 2 at%
nanoparticles consist of Ni1−xSbx which is ferromagnetic at
x � 7.5% (TC = 284 K at x = 7.5%), with TC decreasing
with increasing x [18, 19]. Since no steep variation of
χ (T ), characteristic of a ferromagnetic transition, is observed
in our samples up to 460 K, it can be concluded that the
Ni-rich nanoclusters are below 460 K in the ferromagnetic
state. However, for the nanoparticles this means strong
correlations of the internal ion spins due to exchange
interaction, but no certain direction of the whole cluster
magnetic moment, µ. The moment of a particle can be
switched spontaneously between different directions with a
frequency f = f0 exp(−KV/kT) with f0 ∼ 109 s−1, provided
that the anisotropy energy barrier ∼KV, where K is the density
of the anisotropy energy and V is the volume of the particle,
can be surmounted by the thermal energy kT, which yields
to superparamagnetic behaviour. However, with lowering the
temperature the thermal excitations ∼kT become insufficient
to overcome KV and the spontaneous switching of the moments
is transformed into a slow relaxation towards equilibrium
or blocking when the moments do not change appreciably
during the time of τ e ∼ 102 s for static observations [20, 21].
Then the temperature, corresponding to transition from the
superparamagnetic to a blocking state, is given by [20]

Tb ≈ KV /(25 k). (1)

Therefore, the deviation of χZFC(T ) from χFC(T ) and the
maximum of χZFC(T ) at Tb (figure 1) are attributable to
blocking of the moments of the Ni-rich Ni1−xSbx clusters.
A broad distribution of the sizes of the clusters explains the
broadness of the maximum and the large difference between
the values of Tb ∼ 100 K and the onset temperature of
the magnetic irreversibility ∼300 K observed in weak fields
(figure 1). An applied magnetic field reduces the anisotropy
energy barriers leading to decreasing of Tb according to an
approximate relation

[Tb(B)/Tb(0)]1/2 = 1 − B/BK, (2)

where BK is the mean anisotropy field [22]. As B → BK the
magnetic irreversibility decreases and vanishes for B ∼ BK,
which explains the damping of the difference between χZFC(T )
and χFC(T ) and shifting of Tb(B) to lower temperatures as may
be observed in figure 1. This data yields BK ∼ 4 kG. In addition,
the values of BK and Tb(0) are related to the equation BK/Tb(0)
≈ 2k/µ(21 + ln τ e) [22] which gives at τ e ∼ 102 s

BK/Tb(0) ≈ 50kB/µ. (3)

For an assembly of spherical clusters the relation TRM(T ) ≈
MFC(T ) − MZFC(T ) should be fulfilled. Therefore, the large
difference between TRM(T )/B (open symbols) and χFC(T ) −
χZFC(T ) (closed symbols) in figure 2 suggests a considerable
non-sphericity of the Ni-rich clusters [23] in CdSb:Ni. In
turn, the large difference of χFC, χZFC and TRM for B ‖ [1 0 0]
or [0 1 0] in contrast with B ‖ [0 0 1], suggests non-random
orientation of the clusters around a preferred direction.

It should be noted that the above discussion and
equations (1)–(3) are valid without restrictions only for an
assembly of single-domain particles and the magnetization
reversal process by coherent rotation, when all spins of the ions
in the cluster remain parallel to each other. Such a situation
takes place when the conditions r � rsd and r � rc are fulfilled,
where rsd and rc are the critical radii of a single-domain particle
and the coherent rotation, respectively, given by the equations

(Nc/6A)(M∗
s )2r2

sd = ln(4rsd/a) − 1 and

rc = q(2/Na)
1/2A1/2/M∗

s .

(4)

Here M∗
s , a and A are the zero-temperature saturation

magnetization, the mean distance between the magnetic ions
and the exchange stiffness constant of the cluster material,
respectively, and Na(m) is the demagnetization factor of the
cluster [24, 25]. In the case of spheroidal particles Nc(m) and
Na(m) refer to the major and minor axes, respectively, and are
given e.g. in [26]. Another condition is that the intercluster
interaction energy W � KV is not important for blocking.

As can be seen from the top panel of figure 5 the field
dependence of Tb is close to that given by equation (2) for any
direction of B without displaying a measurable anisotropy.
The parameters Tb(0), BK and µ, obtained with linear fits of
the plots in figure 5 for different orientations of B are the same
within the limits of error (see table 1). In addition, the value
of µ is typical of a nanosize magnetic particle, whereas that
of BK agrees with the above estimation from vanishing of the
magnetic irreversibility with increasing B.

The temperature dependence of the coercivity of an
assembly of blocked nanoparticles is given by

B(j)
c (T ) = B(j)

c (0){1 − [T/Tb(0)]n}, j = 1, 2 and 3,

(5)

where B
(j)
c (0) and n depend on the magnetization reversal

mode [27]. For coherent rotation n = 1/2 [21]. For rsd 	
r 	 rc the magnetization reversal by curling would set in.
This is connected to the case that the neighbouring spins of the
cluster ions are not constrained to be parallel, leading to n =
2/3 in equation (5) [27]. Finally, for r > rsd the magnetization
reversal by motion of weakly pinned domain walls would yield
n = 1 [28].

For coherent rotation of an assembly of randomly oriented
spheroids, B

(j)
c (0) = α(j)BK with α(j) = 0.479 for any j

[29]. If there is a preferred orientation, characterized by the
angle θj between the major axis of a spheroid and the jth
crystallographic axis, one has α(j) = (cos2/3 θj +sin2/3 θj )

−3/2

for 0 < θj < 45◦ and α(j) = sinθj cos θj for 45◦ < θj < 90◦

[26], where the values of θj are constrained by the equation

cos2 θ1 + cos2 θ2 + cos2 θ3 = 1. (6)

As follows from table 1 and the upper panel of figure 4 we
have B

(j)
c (T ) � BK for any j and T. Therefore, the relation

B
(j)
c (0) � BK should be fulfilled, too, due to the absence of

a discontinuity in the function B
(j)
c (T ) at T → 0 as follows

from equation (5). This corresponds to α(j) � 1. However,
it is easy to see that equation (6) and the equations for α(j)

above exclude an orientation or a set of θj when all α(j)

are simultaneously much smaller than unity. Therefore,
independently of the exact value of n in equation (5) it is
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Table 1. The values of the zero-field blocking temperature Tb(0), the anisotropy field BK, the mean cluster moment µ, the zero-temperature
values of the coercive field B(j)

c (0), the mean angles θ
(B)

j and θ
(M)

j and the widths of the angular distribution �
(B)

j and �
(M)

j , obtained from
the coercivity and the magnetization data, respectively.

Orientation Tb(0) (K) BK (kG) µ (104 µB) B(j)
c (0) (G) θ

(B)

j (◦) �
(B)

j (◦) θ
(M)

j (◦) �
(M)

j (◦)

B ‖ [1 0 0] 107 ± 5 3.9 ± 0.5 2.0 ± 0.2 320 60 3 66 3
B ‖ [0 1 0] 105 ± 5 4.7 ± 0.5 1.7 ± 0.2 271 54 4 62 5
B ‖ [0 0 1] 110 ± 3 4.5 ± 0.5 1.8 ± 0.2 244 49 7 39 6

Figure 5. Upper panel: dependence of T
1/2

b on the magnetic field
for different directions of B. The lines are linear fits. For
convenience two plots are shifted along the vertical axis by the
values shown in parenthesis in K1/2. Lower panel: dependence of
B(j)

c on T/Tb(0) for different directions of the magnetic field. The
solid lines are calculated with equation (5) and n = 2/3 as described
in the text, the dotted lines are to guide the eye.

evident that the coercivity in the bottom panel of figure 5
within the blocking regime (i.e. at T definitely below Tb) does
not satisfy the conditions of coherent rotation of the moments
of single-domain particles.

Our attempts to fit the data of B
(j)
c (T ) using equation (5)

with n = 1/2, 2/3 or 1 were partially successful only within a
narrow temperature interval of T = 5–20 K. A typical example
of the calculations using n = 2/3 is shown with the solid lines
in the bottom panel of figure 5, which does not allow us to
obtain a correct value of n for establishing the origin of the
coercivity in this way. An obvious reason for such a situation
is the broad distribution of the parameters of Ni-rich clusters
in CdSb around their mean values, including the radius, the
aspect ratio and the orientation of the spheroids. In particular,
this reason is likely to be responsible for the non-zero
coercivity of the material even at T 	 Tb (figure 4, top panel).
Another reason may be strong intercluster interactions, when

equation (5) is not applicable. The role of such interactions in
blocking of the cluster moments will be discussed further in
section 5.

Next we analyse the coercive field B
(j)
c (0), assuming the

single-domain model and magnetization reversal by curling.
This is useful to do along with the corresponding analysis of
M

(j)
s (0). For the approximative zero-temperature coercivity

data we take the values obtained by fitting of B
(j)
c (T ) to

equation (5) with n = 2/3, collected in table 1. For the
zero-temperature magnetization we utilize the values at 200 K
lying within the interval of weak variation of M(T ) as shown
in figure 4 (the reason for such a choice will be discussed in
section 5). In the case of magnetization reversal by curling we
have

Bj
c (0) = 2πM∗

s

× (2Dc − κ/S2)(2Da − κ/S2)√
(2Dc − κ/S2)2 sin2 ϑj + (2Da − κ/S2)2 cos2 ϑj

,

j = 1, 2 and 3, (7)

where Da(m) ≡ Na(m)/(4π), Dc(m) ≡ Nc(m)/(4π), S = r/r0,
r0 = A1/2/M∗

s , κ = q2/π and q is the smallest solution of the
Bessel functions having the limiting values of q = 1.8412 for
m → ∞ (the infinite cylinder) and q = 2.0816 for m = 1 (the
sphere) [26], whereas the distributions of θj , r and m around
their mean values are neglected. In this approximation and
for a high enough aspect ratio the magnetization of a spheroid
is directed close to its major axis and the components of the
zero-temperature saturation magnetization can be given as

M(j)
s (0) = ηM∗

s [1 − D(θj )] cos θj , j = 1, 2 and 3, (8)

where η is the volume fraction of the Ni1−xSbx phase and
D (θj ) = Da sin2 θj + Dc cos2 θj for a spheroid, satisfying the
constraint equation

D(θ1) + D(θ2) + D(θ3) = 1. (9)

Generally, at arbitrary m the magnetization may not be parallel
to the major axis of the spheroid, having an angle ϕj (j = 1,
2 and 3 corresponding to different orientations of the field)
connected to θj with the equations

tan ϕj = (X/Y )1/2 tan θj /[(X/Y )1/2 + tan2 θj ], j = 1, 2, 3,

(10)

where X = (2Dc − κ/S 2)2 and Y = (2Da − κ/S 2)2.
M∗

s can be excluded with equations (6) and (7) and
we find cos2 θj = (2X + Y − ZjX)/[Zj(Y − X)], where

Zj = [
B

(j)
c (0)

]2 ∑3
j=1

[
B

(j)
c (0)

]−2
(Zj = 4.13, 2.95 and 2.39

for j = 1, 2 and 3, respectively). Hence, for X � Y (see
section 5) we have cos2 θj ≈ Z−1

j and θj ≈ acos
(
Z

−1/2
j

)
. The

values of θj obtained with this expression with the coercive
field data, θ

(B)
j , are displayed in table 1. The product of ηM∗

s
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can be excluded from equations (8) by taking the ratios of
M

(j)
s

/
M(i)

s for j �= i, yielding two equations for θj . Solving
the system of these equations and equation (6) numerically, we
find for m 	 1 the values of θj obtained with the saturation
magnetization data, θ

(M)
j , collected in table 1.

It can be seen that both θ
(B)
j and θ

(M)
j satisfy the relation

θ1 > θ2 > θ3, however differing by ∼10–20% for the
same direction of the field. These differences between
θ

(B)
j and θ

(M)
j cannot be attributed to the influence of the

demagnetizing field. Indeed, the relative differences of the
demagnetization factors for our samples, estimated using
their sizes and equations for a prolate ellipsoid [21, 27], lie
between ∼2 and 4% yielding negligible corrections to θ

(M)
j ,

while the demagnetization factors for rods are even smaller
[29]. Below we show that this disagreement between θ

(B)
j

and θ
(M)
j can be explained by a distribution of θj around the

mean values, which can be taken into account by changing
θj → θj + αj in equations (6)–(8), where αj is a random
deviation from the mean angle θj satisfying the conditions
−�j < αj < �j and �j is the width of the distribution of
θj (j = 1, 2 and 3). The distribution function is taken in
a stepwise form f (αj ) = 1/(4�ϕj�j sin θj ) for −�j <

αj < �j and f (αj ) = 0 otherwise, where �ϕj is the width
of the distribution of the polar angle ϕj around the jth axis.
Then the mean value of the magnetization averaged over the
above angular distribution,

〈
M

(j)
s (0)

〉 = ∫
M

(j)
s (0) f (αj ) d�,

satisfies the expression

〈
M(j)

s (0)
〉 = Cj

∫ ϕj +�ϕj

ϕj −�ϕj

dϕj

∫ �j

−�j

dαj

× [ξ − λ cos2(ϑj + αj )] cos(ϑj + αj ) sin(ϑj + αj ), (11)

where Cj = ηM∗
s /(4�ϕj�j sin θj ), ξ = 1 − Dc and λ =

Dc − Da. The integration in equation (11) yields

〈
M(j)

s (0)
〉 = ηM∗

s

2�j

sin(2�j) cos ϑj

× [ξ − λ(cos2 �j cos2 ϑj + sin2 �j sin2 ϑj )]. (12)

In a similar way we find under the condition of X � Y the
expression for the mean value of the coercive field,

〈
B(j)

c (0)
〉 = 2πM∗

s X1/2

2�j sin ϑj

ln

(
1 + tan �j tan ϑj

1 − tan �j tan ϑj

)
. (13)

The widths of the distribution of θ
(B)
j and θ

(M)
j , labelled

as �
(B)
j and �

(M)
j , respectively, are evaluated by solving

the equations for the ratios of
〈
M(i)

s (0)
〉/〈

M(k)
s (0)

〉
and〈

B(i)
c (0)

〉/〈
B(k)

c (0)
〉
(i �= k, i, k = 1, 2 and 3), respectively,

under the condition of equation (6). As can be seen from
table 1, the values of �j calculated with the coercivity and
the magnetization data are close to each other and lead to
overlapping intervals of θ

(B)
j ± �

(B)
j and θ

(M)
j ± �

(M)
j . It can

also be mentioned that the angular distribution is increased
with decreasing θj , which is consistent with the expected
orientations of the cluster spheroids along or near the growth
direction of the ingot.

Finally, we evaluate a set of parameters which depend
only weakly on a narrow distribution of the angles and can
be calculated by neglecting the scattering of θj above. With
equations (8), (9) and the expressions η = NV and µ = M∗

s V

we find the concentration of the clusters N = (2µ)−1G ≈
1.8 × 1014 cm−1, where G = ∑3

j=1 M
j
s (0)

/
cos ϑ

(M)
j yielding

the mean intercluster distance 〈R〉 = 2(4πN/3)−1/3 ≈
240 nm. Assuming that all or a greatest part of Ni in CdSb
enters the Ni1−xSx nanoclusters we obtain η ≈ N0/N∗ ≈ 3.8 ×
10−3, where N∗ and N0 are the concentrations of Ni in Ni1−xSbx

for x = 0 (N∗ = 9.1 × 1022 cm−3) and in our samples (N0 =
3.5 × 1020 cm−3), respectively. The mean number of Ni ions
in a cluster and the mean magnetization of the cluster per
Ni are found to be n ≈ N/N∗ ≈ 1.8 × 106 and µion ≈ µ/n
≈ 0.01µB/ion, respectively. Although the values of m and
M∗

s could not be determined in our study, useful information
can still be obtained taking M∗

s within the limits of ∼500–
350 emu cm−3 corresponding to x = 0 and to a minimum
value of x ∼ 3.8% for which TC > 460 K, respectively
[18, 19]. It can be expected that m is large; however, for
the reasons given below (see section 5) we restrict ourselves
to values of m between 3 and 15 when some intermediate
value of Ms = 430 emu cm−3 is taken, and with m = 4 when
using different values of Ms. The mean cluster radius can be
obtained with the expression r = [3M∗

s /(4πmµ)]1/3. Then the
exchange stiffness constant can be evaluated with the formula
A = 2π[M∗

s (κ/S2)r/q]2 where κ/S2 can be found with
equation (7). Next, equations (4) can be used for evaluations
of rc and rsd, and finally the values of the volume fraction η′ =
(2Ms)−1G and the magnetization per Ni ion in clusters, µ′

ion =
µionη/η′, are useful to be calculated for comparison: if all Ni
or most part of Ni enters the Ni1−xSbx nanoclusters, we should
have η ≈ η′ and µion ≈ µ′

ion. In this way we obtain r ≈ 3.1–
2.8 nm, rc ≈ 1.8–1.6 nm, rsd ≈ 130–115 nm, A ≈ (0.5–0.8) ×
10−6 erg cm−1, η′ ≈ (0.9–0.6) × 10−4 and µ′ ≈ 0.4–0.6 µB/ion
for constant m = 4 by varying M∗

s within the above limits. On
the other hand, for constant Ms = 430 emu cm−3 and m =
3, 4, 6, 8 and 15 we have r ≈ 3.2, 2.9, 2.5, 2.3 and 1.9 nm,
rc ≈ 2.2, 1.6, 1.1, 0.7 and 0.4 nm, respectively, and for m =
3–15 rsd ≈ 135–70 nm and A ≈ (1.18–0.03) × 10−6 erg cm−1.
It can also be obtained with equation (10) that the angles ϕj for
j = 1, 2 and 3, coincide with θ

(M)
j already at m � 4.

5. Discussion

As mentioned above the picture of blocking in figures 1 and 2,
and the field dependence of the blocking temperature (see
equation (2) and the upper panel of figure 5), are consistent
with the coherent rotation of the magnetization of nanosize
Ni-rich Ni1−xSbx clusters. On the other hand, the anisotropies
of the saturation magnetization and the coercivity (figure 4 and
the bottom panel of figure 5) give evidence for magnetization
reversal by the curling mode, in conditions of a narrow
distribution of the major axes of the cluster spheroids around
a preferred mean direction (table 1). However, there is no
contradiction between the interpretations of the magnetization
reversal modes. Indeed, estimations at the end of section 4
demonstrate that there is an interval of 4 � m < 6–8 where m
is high enough to provide all the above approximations (e.g.
already at m = 4 we have ϕj coinciding with θ

(B)
j and X/Y ∼

10−4), r is always much smaller than rsd confirming the strictly
single-domain regime and, simultaneously, r is comparable
with rc. On the other hand, the broad maximum of χZFC (T )
(figure 1) gives evidence for a wide distribution of the sizes of
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the clusters around the mean value. Therefore, there should
be a wide crossover region between the two magnetization
reversal modes which removes the above issue.

As mentioned in section 4 the functions TRM(T ), B(j)
c (T )

and M
(j)

R (T ) exhibit two temperature intervals of variation:
one with relatively weak dependence on T at high temperatures
and the other enhancing when T is decreased (figure 4). The
border between these intervals lies near Tb, and therefore
such behaviour is consistent with the picture of blocking
suggested in section 4. However, the analysis in section 4
is valid only when the interaction between the clusters is not
important for blocking. On the other hand, blocking cannot
be a reason for enhancement of the low-temperature saturation
magnetization. If the majority of Ni enters the nanoclusters we
would have quite an opposite picture, a more rapid variation
of M

(j)
s (T ) at high T and slowing down when T is decreased.

This issue suggests the presence of a strong paramagnetic
(PM) subsystem containing small clusters with small magnetic
moments, including probably single Ni ions and remaining
unblocked down to 5 K. The PM contribution of the small
clusters to the net magnetization is negligible at a high T, but
increases to be predominant below ∼100 K. Assuming only
nanoclusters we obtain the value of µion ∼ 0.01 µB/ion, which
cannot exist in the ferromagnetic Ni1−xSbx phase having the
minimum possible value of ∼0.24 µB/ion [18, 19]. It has been
demonstrated above that the quantities η and η′ do not coincide
(see the end of section 4), which is also explained by existence
of a great amount of Ni outside the nanoclusters. The fraction
of Ni in the nanoclusters can be estimated by the ratio of η/η′ ∼
1.7–2.4% for Ms between 500 and 350 emu cm−3. On the
other hand, µ′

ion = µη/η′ is between 0.4 and 0.6 µB/ion,
corresponding to the ferromagnetic phase of Ni1−xSbx with x
varying from ∼3.8% to 0 and TC > 460 K [18, 19]. Hence,
only a small part of Ni in CdSb enters the nanoclusters, while
the majority of Ni forms a PM system of even smaller magnetic
clusters. At this point, it is reasonable to take for M

(j)
s (0) not

the values of the saturation magnetization at the smallest T,
where the PM contribution is largest, but somewhere inside
the temperature interval of a weak variation of M

(j)
s (T ) where

the PM response is negligible, as has been done above (see
section 4) in the analysis of the magnetic anisotropy.

Finally we estimate the intercluster interaction energy.
The mean distance between the clusters, 〈R〉 ≈ 240 nm
allows us to exclude the direct exchange interaction between
the Ni ions in different clusters. If the PM subsystem in
CdSb:Ni contains a minority of single Ni ions and most
of them belong to the small clusters (as follows from the
activated conductivity of CdSb weakly doped with Ni), then
the concentration of the free carriers at the room temperature
would be nf ∼ 1015 cm−3 as typical of undoped CdSb with a
moderate degree of compensation [1], which exceeds N by an
order of the magnitude. However, nf decreases exponentially
with lowering T down to negligible values near 4.2 K, which
corresponds to filling in the acceptor bands of CdSb [1].
This allows us to exclude the long-range RKKY exchange
interaction between the clusters mediated by the free carrier
spins, because the concentration of the free carriers vanishes
rapidly with lowering of T. The dipolar intercluster interaction
has a typical energy W = Wd ≈ zJ µ2/R3 ∼ 0.1 meV,
where the origin of a constant zJ ≈ 33 is connected to the

long-range character of the dipolar interaction [30]. On the
other hand, as can be found from equation (1) using the data
in table 1, the anisotropy energy KV ≈ 25kTb ∼ 102 meV
exceeds considerably Wd excluding any role of the intercluster
interaction in blocking of the cluster moments.

6. Conclusions

We have investigated magnetic properties of oriented CdSb
single crystals doped with 2 at% of Ni. Magnetic irreversibility
or deviation of the susceptibility data measured for the zero-
field-cooled and the field-cooled samples is clearly observed in
low fields below 300 K, but vanishes above BK ∼ 4 kG which
is taken as the anisotropy field of the samples. The zero-field-
cooled susceptibility exhibits a broad maximum at Tb, which
decreases with increasing the field. The thermoremanent
magnetization is observed between 5 and 300 K which deviates
considerably from the difference of the field-cooled and the
zero-field-cooled magnetizations. Magnetic field dependence
of the magnetization displays saturation already above 2–3 T
and has a weak temperature dependence between ∼100 and
300 K, which is slightly enhanced below 100 K. In addition,
Ms has different values along the crystallographic axes [1 0 0],
[0 1 0] and [0 0 1]. The temperature dependence of the
coercivity, Bc(T ), is weak above Tb and is enhanced below
it. The coercive field obeys the relation of Bc � BK and has
crystalline anisotropy inverted with respect to that of Ms.

It is concluded that the observed magnetic irreversibility
and the anisotropic properties of CdSb:Ni are governed by an
assembly of spheroidal Ni-rich Ni1−xSbx nanoparticles with a
high aspect ratio and broad size distribution. The orientations
of these particles are distributed around a preferred direction.
The relation Bc � BK and the anisotropies of Ms and Bc are
consistent with the magnetization reversal mode by curling,
whereas the behaviour of Tb(B) is typical of the coherent
rotation mode. This difference can be explained by proximity
of the average value of the transversal radius, r, of the clusters
to the critical value rc for transition between the two modes and
with the wide crossover interval between these magnetization
reversal processes due to the broad distribution of the cluster
sizes.
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