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Abstract—In this paper, an analog of the mean-value theorem for harmonic iunctions is proved
for an elliptic operator on the stratified set of “stratified” spheres whose radius is sufficiently small.
In contrast to the classical case, the statement of the theorem has the form of a special differential
relationship between the mean values over different parts of the sphere. The result is used to prove
the strong maximum principle.
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The strong maximum principle for elliptic inequalities V(pVu) — qu > 0 on an arbitrary stratified set
is not established in the most general form at present. Its proof in the case where the dimension of the
strata is less than or equal to two is considered in [1], [2]. But the proof is rather tedious even in this
case, although it is based on the well-known construction belonging to O. A. Oleinik and E. Hopf. The
difficulties arise mainly due to the complicated geometry of stratified sets. This leads one to apply the
barrier functions method in order to solve the problem.

In this paper, we consider a narrower (but meaningful) class of stratified sets. More precisely, we
suppose that all strata are “flat”. Moreover, the coefficient p is considered as a so-called stratified
constant. Under these assumptions, the mean-value theorem for solutions of the equation V(pVu) = 0
can be established. Although this analog of the mean-value theorem is more complicated than the
classical one, it provides, in some cases, simple proofs of the strong maximum principle without
constraints on the dimension of the stratified set.

1. BASIC DEFINITIONS

The reader can find the definition of a stratified set adapted to applications to differential equations on
this set as well as definitions of other related notions, for example, in [3]—[5]. Hence we restrict ourselves
here to a short review of the basic definitions needed for a consistent exposition.

By a stratified set we mean a connected subset €2 in the Euclidean space R™ consisting of a finite
number of smooth maniiolds (strata) o;. In the notation oy, the first index, as usual, indicates the
dimension of the strata oy; and the second one comes from the autonomous numbering of k-dimensional
strata. We impose the following two conditions:

(1) the boundary dog; = Tx; \ ok, of the stratum oy, is the union of some strata o,,,; with m < k;

(2) it X € o and 0414, .,0k41,5, are all the (k + 1)-dimensional strata adjacent to oy;, then
there exists a neighborhood Ux C R™ and a diffeomorphism ¢ of this neighborhood such that the
image of the intersection Ux with the union of the strata oy, with all adjacent strata oy ; is
the union of a part of the k-dimensional plane (which is the image of o; N Ux ) and parts of the
(k + 1)-dimensional subspaces (which are the images of o441 ;, N Ux). An example is given in
Fig. 1.
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by continuity to the point X of the restriction u‘gkj to ox; of the function u. Of course, we assume
that such an extension exists; this assumption holds, for example, when the above restriction is a
function uniformly continuous on oy;. If u is not continuous on € in the large, then, generally speaking,
u‘k—j(X) # u(X). One can prove that the divergence defined by formula (2) is the density of the flow of

the vector field F with respect to the measure defined by formula (1).

Formula (2) implies that, for the existence of the divergence of the vector filed F', it suffices to suppose
that the field F belongs to the class C'! on each stratum oy, (this yields the existence of the classical part
of the divergence) and to require the existence of the previously described extensions (in order to define
the “nonclassical” part of the divergence). The class of such fields will be denoted by C1(€2).

Suppose that the function u: g — R is continuously differentiable in the interior of each stratum.
Then one can consider the vector field Vu whose restrictions to each strata op; C Qg coincide with the
field of the gradient Viu. Note that we do not suppose any relationships between the restrictions of
the function u to separate strata; hence the gradient Vu is, in fact, a collection of independent vector
fields. If Vu belongs to the class C'(€g), then one can consider the operator Au = V(Vu); one can
naturally call it the Laplace operator. As usual, we use the same symbol V for the gradient and for the
divergence. We will keep in mind that the divergence acts on the vector field and the gradient acts on
scalar functions. Further, we suppose that u is continuous on Qq. If, moreover, Vu € C''(€y), then we
write u € C%(Qp).

2. THE MEAN-VALUE THEOREM

In this section, we suppose that each stratum oy; is a k-dimensional polyhedron, although some
results from this section remain valid in the general case. Consider the operator A,,, acting by the formula

Apu = V(pVu),

where the function p: £y — R can possess discontinuities on €y, but it its restrictions to each stratum
are constants; we call such a function a stratified constant. It can be easily seen that if F' € C(p),
then pF* € C'1(€), and hence the expression A,u is meaningful for any function u € C?(€y).

The explicit expression for Aju at the point X € o,_1; by (2) has the following form:

Apu(X) = Vi 1(pVie—1u)(X) + Z pVu - ﬁ‘k—j(x)-

Ok 0k—1,i

Those strata which are not adjacent to strata of higher dimension (such as strata of maximal
dimension) are called free. Further, we assume that the coeliicient p is positive on such strata (generally,
p > 0). It is obvious that, on free strata, the operator Ayu reduces to the standard (k — 1)-dimensional
Laplace operator: Apu = pAg_ju. Itis also obvious that the union of the closures of iree strata coincides
with €.

Suppose that Xy € ox; C o, and r > 0isless than the distance to all other strata (with the exception
of or;) whose dimension is less than or equal to k, and B,(Xjy) is the ball in the space R”. The
intersection Qo N 9B, (Xy) = S,(Xo) is called a stratified sphere in g, or simply a sphere. An example
of such a sphere is shown in Fig. 2.

The sphere S, (when we consider an arbitrary sphere, we do not specily its center) can be considered
as a stratified set; more precisely, we declare that intersections of the form S, N oy; are the (k —
1)-dimensional strata of S,. The union of all k-dimensional strata of the sphere S, will be denoted by S¥.
The measure on a stratified sphere is defined (as above) in the same way as on an arbitrary stratified set.
All integrations below over spheres involve this measure.

The following analog of the second Green formula is proved in [5]: for arbitrary sufficiently smooth
functions u and v (for example, C%(g)-smoothness in the interior of € is sufficient), the following
formula holds:

/ (vApu — uApv) = / (u(pV'U)V — ’U(qu),,), (3)
Qo
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By using the finite-difference formula in the integral, we obtain the expansion

Ar

AMgi(u) = SFL
rip

/ pVu(Z) - Vdu, + o Ar)
Sy

which proves the statement of the lemma. O

[t worth noting that formula (5) can be rewritten in the following form:

d
awr* M) = [ Vu(z) P
Sk

where «ay, is independent of the radius. An explicit expression for ay, is now obvious. Note that if p =0
on all k-dimensional strata intersecting the considered sphere, then o = 0. The summation of all these
formulas over all k from k = 0to k = d — 1 yields

d—1
Zakrk %Msﬁ(u) = / pVu(Z) - Vdu, = / (pVu), dpy. (6)
k=0

T S’I‘
Using formula (4 ) for the solution of the equation
Apu =0, (7)

we obtain an analog (in differential form) of the classical mean-value theorem (a special case of such a
statement was also considered in [8]).

Theorem 1. Suppose that u is a solution of Eq. (7). Then, for any X € Qy and any stratified
sphere, the following relation holds:

Zakr Msk xoy(u) = 0. (8)

Note that this formula holds for any stratified constant, i.e., p can vanish on strata of any dimension
(but not on iree strata). In particular, Theorem 1 allows one to deduce the mean-value theorem in the
standard integral form (not as a statement concerning the local differential form) for the case in which p
differs from zero only on free strata of the same dimension d.

Indeed, in this case, all the summands in Eq. (8), with the exception of the summand corresponding
to k = d — 1, vanish and we have (for brevity, we again skip the notation of the center of a sphere)

d
d 1
aRr Cl?" S;ifl(’ll/) = 0.

This proves that Mga-1(u) = const. But, in this case, Mga-1(u) = Mg, (u). It now remains to pass

to the limit as r — 0 to obtain the desired result. In particular, the classical mean-value theorem for
harmonic functions follows from our proof.

3. APPLICATIONS OF MEAN-VALUE THEOREM

In this section, we consider applications of the mean-value theorem related to the maximum principle.
In the case considered below, the solution of the inequality A,u > 0 can possess points of local maximum
on £y without being a constant on ©y. However, such a solution cannot possess any so-called points
of nontrivial maximum; a point Xy € Qg is called a point of nontrivial maximum if the inequality
u(X) < u(Xp) holds in the neighborhood of the point Xy, but u is not a constant function in any
neighborhood of this point.



Lemma 2. Suppose that u € C?*(Qy), X is a point of nontrivial local maximum of the function u,
and uw(X) = 0. Further, suppose that

1
lim —— / pudyp = 0. 9)
Sr(X)

r—0 T’d 1

Then there exists an arbitrarily small positive v such that

Zakr Msk xoy(u) <0. (10)
Proof. Inthe obvious formula
d—1 d d d—1
k _ k—1
kzoakr %Msf(u d—(;()akr Mgr(u ) ;k;akr Mgr(u), (11)

the expression in parentheses is equal to

/ pudps = o(r).

T

The assumptions of the lemma imply that u(Y") < 0 in a sufficiently small neighborhood of the point X;
therefore, Mgr < 0. Hence Eq. (11) justifies the following estimate:

d—1

& d d d—1
];akrk %Msf( u) < — o (ZakrkMsk )——Zakr Mg (u

=0 - o - (45, 12)

r

Suppose that, in spite of the statement of the lemma, the sum on the left-hand side of this inequality is
nonnegative for all sufficiently small ». Then the function

¢(r)
Y(r) = yd—1

is nondecreasing. By assumption,
liH(l) Y(r) = 0.

Hence ¢(r) > 0 for all sufficiently small ». But then

o(r) = / pudp > 0.

On the other hand, it is obvious that this integral is nonpositive. Thereiore,

/ pudp =10

for all sufficiently small ». This yields v = 0, at least on those parts S¥ of the sphere S, which are
the intersections of this sphere with free strata (recall that p > 0 in these parts). But then v = 0 on the
entire sphere S,, because the function u is continuous and the union of the closures of the above parts S¥
coincides with S,.. Since this is valid for all sufficiently small r, then « = 0 in some neighborhood of the
point X; this leads to a contradiction with the existence of a nontrivial maximum at the point X. O

As an illustration to this assertion, consider a simple proof of the strong maximum principle for a
solution of the inequality Ay,u > 0 in some special cases. The first of these cases will be described in the
next theorem; it clearly contains the classical strong maximum principle for subharmonic functions.



Theorem 2. Suppose that u € C*(Q) is a solution of the inequality Apyu > 0. Suppose thatp > 0

only on free strata of the same dimension. Then the function u has no points of nontrivial local
maximum in €.

Proof. Assume the contrary: Xy is a point of nontrivial local maximum. Without loss of generality, one
can assume that u(Xy) = 0 (in the opposite case, instead of u, one can take the function u — u(Xy)).
Green’s formula (3) and the inequality A,u > 0 readily imply that

ou
L = — > 1
/T(pVU) P 2 0 (13)
for any admissible r > 0.

Suppose that d is the dimension of the iree strata in €. Since p = 0 on all strata from Qg whose
dimension is less than d, we have

¢ fST(X) pu fsﬁ*l(X) pu
R A

and since w is continuous and u(X) = 0, the integral in the numerator of the last fraction is of

order o(r?=1). According to Lemma 2 and equality (6), there exists an arbitrarily small » > 0 such
that
ou

— < 0.
Srpal/ <

This contradicts Eq. (13). O

In the general case, it is difficult to verify condition (9). However, for d = 2 (where d is the maximal
dimension of strata from ), Lemma 2 allows one to give a simple proof of the strong maximum
principle. More precisely, the following assertion holds.

Theorem 3. Suppose that the maximal dimension of the strata from in Qg is equal to two.
Suppose that the coefficient p is positive at least on all free strata. Then the solution of the
inequality Apu > 0 can have no nontrivial local maximum in Q.

Proof. Suppose that the converse statement holds. Let Xy be a point of local nontrivial maximum of
the function u. Without loss of generality, we will suppose that u(Xy) = 0. First, we consider the case
in which Xy coincides with one of the zero-dimensional strata; let it be gg,,. Further, we suppose that
all 014, ..., 014 are one-dimensional strata adjacent to og,,. Denote by Xi, ..., X; the intersection
points of these strata with 9B,(Xy). The set of these points forms exactly the part SO of the sphere
Sy = 0B,(Xo) N Q. Let us prove that

l/ pu — 0 (14)

P
asr — 0.
By the definition of the integral, we have
l

1 1 1 1 1
— _ — — [ X — .
r/rpu r/sgpu+7°/s;pu TZZ. ()t ’Hr/s;pu

1

Using the same arguments as in the proof of the previous lemma, one can easily show that the last
integral in the above equality converges to zero as » — 0. Moreover,

I l
Yo = 1 Yo p(u(X) - u(X0).

r
=1 =1



Now it is obvious that

1
—/ pu— Y pVu-Bl(Xo) = Apu > 0 (15)
r S’(f) 014, ™00 »
’Lk T
as r — 0. On the other hand,
1
—/ pu < 0. (16)
r S0
Comparing Egs. (15) and (16), we see that
L i pu — 0
r TE)I(I)])U e

Hence (14) is proved. Now, Lemma 2 implies that there exists an arbitrarily small » > 0 such that

ou
s P 5 < 0.
However, according to what has been said, the inequality Ap,u > 0 yields Eq. (13), and hence we obtain
a contradiction.

The case in which Xy belongs to one or two-dimensional strata can be treated in a simpler way.
Moreover, when X belongs to two-dimensional strata, the situation is classical (u is harmonic in these
strata) and no proof is needed. O
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