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SINGULAR INTEGRAL OPERATORS
AND ELLIPTIC BOUNDARY-VALUE PROBLEMS.
PART I

A. P. Soldatov UDC 517.968

ABSTRACT. The monograph consists of three parts. Part I is presented here. In this monograph, we
develop a new approach (mainly based on papers of the author). Many results are published for the
first time here.

Chapter 1 is introductory. It provides the necessary background from functional analysis (for com-
pleteness). In this monograph, we mostly use weighted Holder spaces; they are considered in Chap. 2.
Chapter 3 plays the key role: in weighted Holder spaces, we consider estimates of integral operators
with homogeneous difference kernels, covering potential-type integrals and singular integrals as well as
Cauchy-type integrals and double layer potentials. In Chap. 4, similar estimates in weighted Lebesgue
spaces are proved.

Integrals with homogeneous difference kernels will play an important role in Part III of the mono-
graph, which will be devoted to elliptic boundary-value problems. They naturally arise in integral
representations of solutions of first-order elliptic systems in terms of fundamental matrices or their
parametrices. The investigation of boundary-value problems for second-order and higher-order elliptic
equations or systems is reduced to first-order elliptic systems.
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Introduction

The theory of one-dimensional singular integral equations appeared in works of D. Hilbert and
H. Poincaré at the end of the XIXth century. Foundations of this theory were created by F. Noether
and T. Carleman. Since the beginning of the 1930s, this theory is substantially developed by Soviet
mathematicians. The main investigation method for singular equations and boundary-value problems
for analytic functions is the technique of Cauchy-type integrals; its final form (in a way) is presented
in the well-known monographs [45] and [17].

Further, various directions of the theory of singular integral equations and boundary-value problems
were developed; for example, the requirements were weakened for the class of desired functions (the
Lp-theory) and for coefficients of the equations and boundary-value problems or these coefficients
are replaced by more general function operators with translations. Ideas and methods of functional
analysis are broadly applied in investigations of singular equations. A close relation of the specified
equations with the Wiener—-Hopf equations is found (see [7, 24, 39, 44, 54, 78]).

The present monograph is specified by a new approach; in a substantial part, it is based on works
of the author. Many results are published for the first time. The monograph consists of three parts;
the first part is the content of the present volume. Chapter 1 is an introduction. It contains necessary
preliminary data from the functional analysis (to make the explanation as close as possible). In
further chapters, we mainly deal with weight Holder spaces C*; Chap. 2 is devoted to such spaces.
Chapter 3 is especially important: it provides necessary estimates of integral operators in Holder spaces
with homogeneous-difference kernels, covering potential-type integrals, singular integrals, Cauchy-type
integrals, and double-layer potentials. In the last chapter, similar estimates in weight Lebesgue LP-
spaces are considered.
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Integrals with homogeneous-difference kernels are important for the third part of the monograph,
devoted to elliptic boundary-value problems. They naturally arise in integral representations of so-
lutions of first-order elliptic systems in terms of fundamental matrices or their parametrices. The
investigation of boundary-value problems for elliptic equations and system of order two and higher
orders is reduced to the investigation of first-order elliptic systems. Note that a similar direct approach
is undertaken in works of Fichera and his disciples (see [15, 16]) directly for high-order elliptic systems
(analogs of simple-layer potentials are used).

The second part of the monograph contains the technique of singular integrodifferential equations.
The approach explained in [65, 67—69] is developed: an operator algebra containing the singular Cauchy
operator and integral operators with fixed singularities at singular point of a piecewise-smooth curve
is investigated. Elements of this algebra arise in a natural way in the study of elliptic boundary-
value problems in planar domains with piecewise-smooth boundaries (including nonlocal boundary-
value problems and problems on stratified sets) and in applications to mixed-type elliptic-hyperbolic
equations.

CHAPTER 1

BANACH SPACES AND ALGEBRAS

1.1. Banach Spaces

The majority of the content of the present chapter is well known: it can be found in any guidebook
on functional analysis (see, e.g., [56, 79]). To make our explanation closed whenever it is possible, we
provide a brief proof for any assertion. Theorems without proofs are supplied by separate comments.

Let us describe main notions related to normed vector spaces and bounded linear operators. Unless
the opposite is stated, these spaces are considered over the field C of complex numbers. First, we
recall general notions regarding vector spaces.

A subset X C X is called a subspace of a vector space X if \jz1 + Aaxg € X for any x; from X;
and any complex A;. The intersection X; N X5 and the sum X; + Xy = {1 + 22, z; € X;} of any
subspaces X7 and Xy are also subspaces. If the relation x1 + xo = 0 implies the relation 1 = 29 = 0
provided that z; € X, then we say that the sum X; + X is direct and denote it by X; ® Xo. If
it coincides with X, then we say that X is expanded into the directed sum of the subspaces X; and
Xo; also, the notation Xo = X © X7 is used in such a case. For any pair X; and Xs of spaces,
the direct product X; x X5 is a vector space with respect to the coordinate-wise linear operations
Mz, 22) = (Ax1, Azg) and (21, 22) + (y1,y2) = (1 + y1,22 + y2). The direct product X7 x ... x X,
has a similar sense. For any subspace Y C X, one can introduce the quotient space X/Y . Its elements
are cosets & = {x +y, y € Y} and its linear operations are Az = \x and & + g = :17/—1\—/y

Ife; € X and \j € C, j = 1,...,n, then the vector x = Ae; + ... + \pe, is called a linear
combination of vectors ej. The set of all such vectors forms a subspace of X, denoted by [e1,. .., e,].
We say that the vector system {eq, ..., e,} is linearly independent if the relation Aje; + ...+ A\pe, =0
implies the relation \;y = ... = A\, = 0. We say that a subspace Xo C X is finite-dimensional if
there exists a linearly independent system {eq, ..., e,} such that Xy = [eq,...,ey]. If this holds, then
{e1,...,en} is called a base of Xy. The number n of elements of this base depends only on X, is
called the dimension of the space Xg, and is denoted by dim Xy. For infinite-dimensional spaces X,
we write dim X = oo.

Let a subspace X7 C X be such that the quotient space X/X; is infinite-dimensional. Then
the dimension dim(X/X7) is called the codimension of X; and is denoted by codim Xj. In this
case, we say that the vector space X is a finite-dimensional extension of its subspace X; and X3
is a finite-dimensional contraction of X. If vectors é; form a base in X/Xj, then it is obvious that
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the vectors e; € X, ¢ = 1,...,n, are linearly independent and X is expanded into the direct sum
X :Xl@ [61,...,6n].

A nonnegative function z — |z| defined on a vector space X is called a norm if

(1) the relation |z| = 0 is equivalent to the relation z = 0;
(2) the relation |Az| = |A| || holds for any complex \ € C;
(3) the inequality |z + y| < |z| + |y| holds.

The last condition is called the triangle inequality.

It follows from (1)-(3) that X is a metric space with respect to the metric d(z,y) = |z — y|.
Respectively, all the notions of metric spaces are transferred to X. The set B(a,r) = {x € X | |[z—a| <
r} is called the ball of radius r centered at a. We say that the sequence z,, € X, n =1,..., converges
in X if there exists z in X such that for any ball centered at x, only a finite amount of elements
of the sequence are located outside this ball. This requirement is equivalent to the requirement that
|z, — x|x — 0 as n — oo. The vector z is called the limit of the sequence and this is denoted as
follows: x = nh_)rrgo x, (the notation z, — = in X as n — oo is also used). It is clear that converging

sequences are bounded, i.e., their norms satisfy the inequality |z, | < C, where the positive constant
C' is independent of n.

We say that a sequence z;, is a fundamental sequence (or a Cauchy sequence) if |z, — x| — 0 as
n,m — oo, i.e., for any positive ¢ there exists a number N such that |z, — z,,| < e provided that
n > N and m > N. A normed space X is complete if any Cauchy sequence of its elements has a limit.
Complete normed spaces are called Banach spaces.

Frequently, it is convenient to verify the completeness property by means of series. We say that a

o0
series Y xj converges in X if the sequence of its partial sums s, = x; + ... + z,, converges to an

k=1
element s of X. In this case, the element s is called the sum of the series. We recall the following

Bergh-Lofstrom completeness criterion (see [2]).

Lemma 1.1.1. A normed vector space X is complete if and only if the condition
o0
D a] < o0 (1.1.1)
k=1

implies the convergence of the series Y xj in X.

Proof. Assigning s, = z1 + ...+ x,, we obtain that |s, — sp| < |Tmt1| + ... + |z,| provided that
n > m (by virtue of the triangle inequality).

Therefore, the sequence s, is fundamental by virtue of (1.1.1). In particular, the completeness of
X implies the convergence of the series ) z.

Conversely, let the condition of the lemma be satisfied and a Cauchy sequence y, be given in X.
It suffices to verify that there exists its subsequence y,, such that it converges in X. To select this
subsequence, we impose the condition
1
2k
Then the sequence xx = yn, | — Yn, satisfies the condition (1.1.1). Since partial sums of the series
>~ xy, coincide with y,, , it follows that the last sequence converges and, therefore, X is complete.

|y”k+1 - y”k| <

Let X be a normed space and Y be its closed subspace. For elements & = {z + y,y € Y} of the
quotient space X/Y, we assign
|Z| = inf |x 4+ y|x. (1.1.2)
yey

It is easy to see that this relation defines a norm in X/Y. Using Lemma 1.1.1, one can easily show
that the completeness of X implies the completeness of the quotient space X/Y . If the codimension
of a closed subspaces id finite, then we say that it is a finite-codimensional subspace.
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Norms | - | and | -],|" defined on X are said to be equivalent if the exists a positive constant C' such
that
|z < Clz|, |z| < Clz| (1.1.3)
for any « from X. If this holds, then the convergence in X with respect to one of these norms coincides
with the convergence with respect to the other one. In particular, if X is complete with respect to
one of these norms, then it is also complete with respect to the other.

Theorem 1.1.1.

(a) Any finite-dimensional normed space is complete and any two its norms are equivalent.

(b) Let a normed space X be a finite-dimensional extension of a Banach space Y and their norms
coincide on' Y. Then X is a Banach space and all its norms possessing this property coincide.

(c) Let X be a Banach space and'Y be a finite-codimensional subspace. Then any subspace X1 DY
possesses this property and codim X; = codimY — dim(X;/Y).

Proof. (a) Consider a basis e, ..., e, of a finite-dimensional normed space X such that any element
x from X is uniquely represented in the form = = &1eq + ... + ey, where § € C (i = 1,...,n). It
suffices to verify that the original norm in X is equivalent to the norm

/ —_ .
2" = max |&].

The following inequality from (1.1.3) is obvious for the norms considered:

o] <> [&lles] < (Z\M) 2|
1 1

To prove the opposite inequality, consider the positive function f(§) = [1e1 + ... + &uen| on the
compact set K = {¢ € C", max|{;| = 1}. Obviously, it is continuous on K and, therefore, achieves its
(3

positive minimum m. Therefore, |x| > m for any x from X such that |z|' = 1. Changing x for x/|z|
with an arbitrary € X, we arrive at the second inequality of (1.1.3).

(b) Let X =Y @& Z and ey,...,e, be a basis of Z. Then any element x € X can be uniquely
represented in the form

r=y+2(&), z(&) =¢&e+...&en, (1.1.4)
where y € Y and £ € C". For definiteness, select the norm in C" by the relation || = max |¢;|. Let us

prove that the vector £ from C” in the expansion (1.1.4) satisfies the estimate
€] < Clal, (1.1.5)

where the positive constant C' is independent of .

Indeed, if no such estimate takes place, then there exists a sequence zF from X such that \mk\ =1
and |£€¥| — +o0o. Denoting x%/|¢¥| by xF again, we obtain the relation z* = 3* + 2(¢F), where 2¥ — 0
and |¢¥| = 1 for any k. Due to the Bolzano-Weierstrass theorem, there exists a subsequence £*s of the
sequence &* such that ¢%s converges to a vector & from C?, |¢| = 1. Therefore, y*s = zFs — 2(¢ks) —
—2(§) as s — oo. On the other hand, by virtue of the completeness of the space Y, the vector
y = —z(€) belongs to Y, which contradicts the uniqueness of the expansion (1.1.4).

Based on the expansion (1.1.4), introduce the norm |z|" = |y| 4 [£| in the normed space X. The
space X is isomorphic to Y x C" with respect to this norm. Hence, X is a Banach space. It suffices to
verify that the norms |z| and |z|" are equivalent, i.e., the inequalities (1.1.3) hold. It is obvious that

2] < (L 4+ M)[al, M = les| +... +|eal:

On the other hand, it follows from (1.1.5) that both terms of the expansion (1.1.4) satisfy the inequal-
ities

2 < MClz|, [yl < (1 +MC)|z],
which leads to the opposite inequality in (1.1.3).
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(¢) The property of the closeness of X follows from (b): we replace X by X;. Assigning 7, = X;60Y
and Zy = X 6 X1, we obtain the expansion X =Y @ Z with the finite-dimensional space Z = Z; § Z5,
which implies the dimensional relation of the lemma.

In the sequel, the norm in X is selected up to an equivalent one. For example, in the direct-product
Banach space X = X X ... x X,,, the relations || = max |z;|x, and |z|' = Y |x;|x, define equivalent
i .

1
norms. In further sections, X is assigned to be various function spaces, e.g., Lebesgue LP-spaces or
Holder CH-spaces. In this case, elements of the direct product X™ = X x ... x X can be treated as
n-vector-functions.

In the sequel, we use the following notation. If a Banach space X of scalar functions is given, then
the symbol X denotes the direct-product space X" equipped with the norm |z| = max |z;|x (or any
other equivalent norm). If such a notation causes a confusion, then we use the accurate notation X™.

According to Theorem 1.1.1, any normed finite-dimensional space is a Banach space. Combining
this fact with the Bolzano—Weierstrass theorem (used to prove Theorem 1.1.1), one can conclude that
the unit ball of any normed finite-dimensional space is compact. The following Riesz theorem shows
that the said property entirely characterizes finite-dimensional spaces.

Theorem 1.1.2. Let a normed space X possess the Bolzano—Weierstrass property, i.e., any bounded
sequence contains a Cauchy subsequence. Then this space is finite-dimensional.

Proof. The following property of normed spaces is used. If a subspace Xg C X is closed, then there
exists a vector e from X such that

lef =1; le—z|>1/2, x¢€ X. (1.1.6)

Indeed, let @ € X and a ¢ Xy. By virtue of the closeness of Xy, there exists a positive r such
that the ball B(a,r) of radius r centered at a does not intersect Xy. Let r be selected such that
the similar ball of radius 2r intersects Xy, i.e., there exists b from Xy such that |a — b] < 2r. Then
le —x| = |a —b|"Ya —b—|a—blz| > |a—b|~tr >1/2 for any x from Xy, where e = (a — b)/|a — b],
which proves (1.1.6).

Now, assume that dim X = oco. Then X contains an increasing sequence of finite-dimensional
subspaces X7 C Xo C ... and it follows from (1.1.6) that there exists a sequence of unit vectors ey,
from X}, such that

len —em| >1/2, n#m. (1.1.7)

By assumption, there exists a Cauchy subsequence e, , which is impossible due to (1.1.7).

In the sequel, we consider families (X;, i € I) of Banach spaces contained in a vector space. The
specified property is satisfied if this family is a lattice with respect to embedding, i.e., for any finite
subset Iy C I there exist kK and k' from I such that

In particular, the vector space X = (J X; consisting of all finite sums > z; with elements z; from X

(2
is well defined. Consider the case Iy = {1,2} of a pair of spaces. It is easy tom see that X; N X3 is a
Banach space with respect to the norm
|x‘ = maX(|x‘X17 |x‘X2)’
Under a natural assumption, a similar result for X; + X5 holds.

Lemma 1.1.2. Let Banach spaces X; be embedded into a separable topological space X. Then the
relation

[z[ = _inf (|z1]x, +[22lx,), @i € X, (1.1.9)
r=r1+x2

defines a norm in X1 + Xo such that it is a Banach space with respect to this norm.
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Proof. 1t easy to check whether the corresponding norm axioms are satisfied for (1.1.9). For example,
if |z| = 0, then, by definition, there exist sequences xj, from X; such that they converge to zero and
T = X1p + T9, for any n. Since X7 and X5 are embedded into a separable topological space, it follows
that x = 0. The triangle inequality is verified in the standard way. Let x = 1 + 22 and y = y1 + yo,
where z;,y; € X;. Fix z; and consider the inequality

|z +y| —|z1l1 — |22l2 < |y1l1 + |y2l2,

where | - |; denotes the norm in X;. Then, from the definition of (1.1.8), we have the inequality

|z +y| — [z1]1 — [22l2 < [y1 + yal.

Transporting terms with |z;|; to the right-hand side and repeating this procedure, we obtain the
inequality |z + y| < |z| + |y|.

Thus, the relation (1.1.9) defines a norm. Using Lemma 1.1.1, we easily show that the space X7+ X5
is complete with respect to this norm.

We say that a subset K of a Banach space is relatively compact if any sequence of its elements
contains a converging subsequence; if a relatively compact subset K of a Banach space is closed, i.e.,
the limit of any converging subsequence belong to K, then we say that K is compact. Let us provide a
classical compactness criterion for subsets of the space X = C(Q) consisting of functions defined and
continuous a metric compact set Q. It is well known that any function f continuous on a compact set
Q is bounded and uniformly continuous. The first property means the existence of a positive constant
M such that |f(z)| < M, z € @, while the second one is as follows: for any positive ¢ there exists a
positive ¢ such that |f(z) — f(y)| < € provided that d(x,y) < 0, where d(x,y) is the metric on Q. If
there exists a set K C C(Q) such that the above properties are satisfied uniformly for all functions
f from K, then we say that the set of these functions is uniformly bounded and equicontinuous. The
norm of the vector space C'(X) is defined by the relation

71 = max | (z)].

This is a Banach space with respect to the above norm. The following well-known theorem (see,
e.g., [56]) provides a compactness criterion for subsets of this space.

Theorem (Arzela—Ascoli). A set K C C(Q) is relatively compact if and only if it is uniformly bounded
and equicontinuous.

To conclude, consider the case where the compact set () is a piecewise-smooth curve I' on the
complex plane C. Recall that this curve as a union a finite set of smooth arcs such that only their
ends might be points of their pairwise intersections. If connected components of I' are homeomorphic
to a circle, we say that I' is a piecewise-smooth contour (it might be simple or composite regarding
the amount of these components).

Theorem (Walsh).

(a) Let ' be a piecewise-smooth curve on the complex plane. Then the set of rational functions such
that their poles lie outside T' is dense in C(T).

(b) Let a finite domain D of the plane be bounded by a simple piecewise-smooth contour and A(D) be
a closed subspace of C(D), consisting of functions analytic in D. Then the set of polynomials is
dense in A(D).

(c) Let (b) be satisfied, zo € D, and u,(z) = (2 — 29)", n = 0,%1,... Then the set of all rational
functions represented by finite sums

R(z) = chun(z), cn € C, (1.1.10)

is dense in C(T).
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Note that the third assertion of the theorem follows from the first and second ones. Indeed, any
rational function R(z) such that its poles lie outside I' can be represented by a sum R; + Ry, where
the poles of Ry lie outside D. Then, by virtue of (b), the function Ry can be approximated by
polynomials, i.e., by finite sums of (1.1.10) with respect to nonnegative integers n. To prove the
corresponding assertion for Rs, apply the transformation z — 1/(z — zg) first; then the same arguing
is used.

1.2. Bounded Operators

We say that a linear operator N acting from a Banach space X to a Banach space Y is bounded if
there exists a positive constant C such that

INzly < Clz|x, z€X. (1.2.1)

In the same way, the notion of the boundedness is introduced for bilinear maps B : X1 x Xy — Y by
means of the inequality
|B(z1,22)ly < Clot]x, |72|x,, i€ Xi.

Both for linear and bilinear maps, the boundedness is equivalent to the continuity.

The class N : X — Y of all bounded operators is a vector space denoted by £(X,Y). For X =Y,
the brief notation £(X) = £(X,Y) is used. The least constant C' in (1.2.1) is equal to

|N|z = sup |Nzx|y,
|lz|<1

i.e., to the norm in the vector space L(X,Y). Note that the composition M N of bounded operators
M and N is a bounded operator and

MN|z < [M[c|N]. (12:2)

Lemma 1.2.1. Let a space Y be complete, the sequence of operators Ny, be bounded in L(X,Y), and
there exist a dense subspace Xy C X such that the limit
lim Nyx = Nx (1.2.3)
k—o0

with respect to the norm Y exists for any x from Xo. Then the specified limit exists for any x from X
and the operator N belongs to L(X,Y). In particular, the normed space L(X,Y") is complete.

Proof. By assumption, the inequality
|Nizly < Clzlx, (1.2.4)
holds and the positive constant C' is independent of k. Since (1.2.3) holds for any x from Xj, it follows
that the said inequality is extended to N. Hence, taking into account the fact that X is dense in X,
we conclude that the operator N can be extended as an element of £(X,Y); we denote this element
by N.
For given positive € and x from X, select xg from Xy and a number n to satisfy the conditions
|z — 20| < e and [(Np — N)xg| < &, k > n. Then, taking into account (1.2.4), we see that the following
inequality holds provided that k > n:

(Ve — N)al < [Nz — 20)] + [N(z — 20)| + (N — N)zo| < (2C + D
this means that (1.2.3) holds for any x.

The second assertion of the lemma follows from the first one. Let Nj from £(X,Y’) be a Cauchy
sequence. Then this sequence is bounded in £(X,Y’). By virtue of the obvious inequality

|(Nm — Np)z| < [N — Np|zlz| (1.2.5)

and the completeness of Y, limit (1.2.3) exists for any x. It remains to verify that Ny — N in £(X,Y").
For a given positive ¢, select a number ng such that the inequality |N,, — N,|z < ¢ holds provided
that n > ng and m > ng. Then (1.2.5) passes into the inequality |(N,, — Nn)z| < elz|, n,m > ny.
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Pass to the limit as n — oo in this inequality, we obtain that |N,, — N|z < &, n > ng. Hence, the
space L(X,Y) is complete.

In the sequel, unless the opposite is stated, we assume that any considered normed space is a Banach
space and the term “operator” is treated as “bounded linear operator.”

If N € L(X,Y), then the subspace ker N = {x | Nz = 0} called the kernel of the operator N is
closed. However, the closeness of its image In N = {Nz, z € X} in Y is not guaranteed. Operators
N : X — Y with zero kernels (i.e., one-to-one operators) are called embeddings of Banach spaces. For
example, we say that a family of Banach spaces X;, i € I, where I C R, monotonously increases with
respect to 4 (in the sense of embeddings) if X; C X; for ¢ < j and the identical embedding operator
X; — X, is bounded, i.e.,

lz|x; < Clz]x,, <7

For a family of spaces forming a lattice, embeddings (1.1.8) are treated in the same sense.

We say that an operator N from £(X,Y") is invertible if ker N = 0, Im N =Y, and the inverse linear
map N~! belongs to £(Y, X). In other words, invertible operators realize isomorphisms of Banach
spaces.

Obviously, the product of two invertible operators is also an invertible operator.

Theorem 1.2.1. The set G(X,Y) of invertible operators from X to 'Y is open in L(X,Y) and the
map N — N~ continuously takes G(X,Y) to G(Y, X).

Proof. The following assertion is valid: if A € £(X) and |A|z < ¢ < 1, then the operator 1 — A is

invertible and its inverse operator is determined by the converging series

(1-A)t= iA”. (1.2.6)
n=0

Indeed, by virtue of (1.2.2), we have the estimate |A"|; < |A|} < ¢". Taking into account the
completeness of £(X,Y), we conclude that the series at the right-hand side of (1.2.6) converges. Let
B from L£(X) be its sum. Then

(1—A)B:§:An—§:A"+1:1.
n=0 n=0

The relation B(1 — A) = 1 is verified in the same way. Hence, 1 — A is invertible and (1 — A)~! = B.
For |A|l; < ¢ < 1, it follows from (1.2.6) that

(=4 =1, <1 -q) Al

and, therefore, (1 — A)™! — 1 as |A|; — 0.

Now, let an operator N from G(X,Y) and B from £(X,Y) satisfy the condition |[N~1|;|B|. < 1.
Then N~'B € £(X) and |[N~!B|; < 1. Therefore, by virtue of the previous assertion, N — B =
N(1 - N7!'B) € G(X,Y). Hence, the set G(X,Y) is open.

If B — 0in £(X,Y), then, as we prove above, [1 — (N"!'B)]"! — 1 in £(X) and, therefore,
(N —B)"' 5 Nlin £(X,Y).

The next basic theorem (see [56]) shows that the boundedness requirement for the inverse operator
N~! can be taken off the invertibility definition for N.

Theorem (The Banach open maps theorem). Let N € L(X,Y) and InN = Y. Then the linear
map N is bounded in the following sense: for any open set G C X, the image N(G) is open in'Y . In
particular, if ker N = 0, then the inverse map N~ continuously takes Y into X, i.e., the operator N
1s tnvertible.
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For example, the canonical quotient map * — & = x + Xy from X to the Banach quotient space
X/ X, where X is a closed subspace of X, is an example of an operator “onto” for this theorem.
Indeed, by the definition of (1.1.3), the norm satisfies the inequality |Z| < |z|. Hence, the map x — &
is bounded. It is clear that its image coincides with X/Xy. Hence, due to the Banach theorem, this
map is open.

Another example of an operator “onto” is the expansion X into the direct sum of closed subspaces
Xi N

X=X10...9X,. (1.2.7)
Due to the Banach theorem, the linear map (z1,...,2,) = = 1 +. ..z, boundedly takes X x ... X
X, into X and its image is X. Hence, this operator is invertible and the norm in X is equivalent to
the norm of the space X7 x ... x X,,.

In particular, the operators P,x = z;, where x = x1+...4x,, x; € X;, are bounded in X. Obviously,
they possess the property
where ¢;; denotes the Kronecker symbol, i.e., §;; = 0 if ¢ # j and d;; = 1.

If an operator P from £(X) is such that P? = P, then it is called a projector. If P is a projector,
then Q = 1 — P is also a projector. For any projector, its image X1 = Im P is a closed subspace and
X = X1® Xz and X9 = Im @ = ker P. In the same way, the expansion (1.2.8) of the identity operator
into a sum of projectors is equivalent to the expansion (1.2.7).

We say that a closed subspace X1 C X is complemented if there exists a closed subspace Xy C X
such that X = X; & Xs. As we note above, this is equivalent to the existence of a projector P
from £(X) such that Im P = X;. Obviously, any closed subspace X; C X of a finite codimension is
complemented. Below, we show that finite-dimensional subspaces are also complemented.

If a space Y is represented by a direct sum Y] @ ... @ Y, of closed subspaces, then each operator
N from L£(X,Y) can be identified with an operator m x n-matrix (N;;), N;; € L£(X;,Y;), acting as
follows:

n
(Ni‘)i:ZNZ’jZL‘j, Z':l,...,m.

j=1
The notion of one-side invertible operators is closely related to the notion of invertible ones. Let
bounded operators N : X — Y and R : Y — X be such that their product NR is the identity
operator. Then we say that the operator N is invertible from the right, the operator R is invertible
from the left, R is the right inverse operator for N, and N is the left inverse operator for R. It is easy
to characterize the classes of such operators completely.

Theorem 1.2.2.

(a) An operator N from L(X,Y) is invertible from the right if and only if In N =Y and ker N is
complemented in X. The set of all such operators is open in L(X,Y).

(b) An operator R from L(Y, X) is invertible from the left if and only if Im R is complemented in X
and ker R = 0. The set of all such operators is open in L(Y, X).

Proof. If NR =1, then ImN =Y and ker R = 0. Since RNRN = RN, it follows that the operator
P = RN from L£(X) is a projector such that ker P = ker N and Im P = Im R. In particular,
X =ker N@®Im R, i.e., the kernel ker N and the image Im R are complemented in X. This proves the
first assertion of (a) and the first assertion of (b).

Further, let an operator N from L£(X,Y) be such that In N = Y and ker N is complemented in
X. Then the restriction Ny of the operator N to the closed subspace X1 = X © ker NV is an invertible
operator in £(X7,Y’) and the inverse operator R = N ! treated as an element of £(Y,X) is right
inverse for N.

The corresponding assertion of (b) is proved in the same way. Let the image X; = Im R of an
operator R from L(Y, X) be complemented in X and ker R = 0. Then R admits a left inverse operator
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Ny from £(X1,Y). If an operator P from L£(X) is a projector of X onto X, then the operator

N = N1 P is a left inverse for R.
The last assertion of (a) and the last assertion of (b) are proved in the same way as Theorem 1.2.1.

If Y = C, then elements of the space L£L(X,C) are called linear functionals, while the space L(X,C)
itself is called the adjoint space to X and is denoted by X*. Due to the known Hahn—Banach theorem
(see [56]), any functional x§ from X, where X is a closed subspace of X, can be extended as a
bounded functional z* from X™ such that the norm of z* is equal to the norm of zf. For our purposes,
the following particular case of this theorem is sufficient.

Theorem (H. Hahn, S. Banach). For any closed subspace Xo C X and any vector xq located outside
Xy there exists a bounded linear functional z* from X* such that its its norm is equal to one, x*(zg) =
|zo|, and z*(x) =0, z € Xj.

Note that the second part of the theorem follows from the first part applied to the quotient space
X/ Xp.
In particular, this theorem implies that the norm of any vector z is equal to

[ = sup |z"(z)|.
|lz*|<1

In other words, if x is treated as a linear functional on X* with respect to the bilinear form
(z,2%) = x*(x), (1.2.9)

then the norm of this functional coincides with the norm |z|. Thus, we obtain a canonical isometric
embedding X C (X*)*. We say that a space X is reflezive, if the image of this embedding coincides
with (X™*)*.

We say that a vector x from X and a vector z* from X* are orthogonal with respect to form (1.2.9)
and denote this by the symbol zLa* if (z,2*) = 0. If Y C X*, then the notation 1Y means that
(x,2*) = 0 for any z* from Y. The notation z* LY means the same for Y C X. Theset {z € X, 1Y}
is a closed subspace of X, it is denoted by Y1, and it is called the orthogonal complement of Y. The
orthogonal complement Y+ C X* for Y C X is defined in the same way.

It follows from the Hahn—Banach theorem that the following relation holds for any closed subspace
Y C X:

YhHt=v, vycx. (1.2.10)

Really, all elements of Y are orthogonal to Y+ by definition. Therefore, ¥ C (Y'+)+. If this inclusion
is not an equality and 2o € (Y )+, 29 ¢ Y, then, due to the Hahn-Banach theorem, there exists a
functional z* from X* such that z*(x¢) # 0 and z* vanishes on Y. In other words, (zg,z*) # 0 and
x* € Y. However, this contradicts the inclusion zo € (Y+)+.

If the subspace Y C X is closed, then the composition of any linear functional f from (X/Y)* with
the canonical map x — Z defines an element x*(x) = f(Z) of the space X*, vanishing on Y, i.e., an
element 2* from Y. The inverse assertion is also valid: any element * of Y can be represented in the
specified way. Thus, the vector spaces (X/Y)* and Y are isomorphic and therefore, their dimensions
are equal. Hence, codimY = dim Y. Assigning Z = Y and taking into account (1.2.10), we obtain
the dual relation dim Z = codim Z+ for the finite-dimensional space Z C X*.

Also, note that the following relation holds for any two finite-dimensional subspaces Z; C X*,
j=1,2

ViNYy=(Z1+ Za)", Y =7 (1.2.11)

Indeed, since Z; C Z1 + Z», we have the relation (Z; +Z9)*+ C Y; and, therefore, (Z; +Z5)+ CY1NYs.
Conversely, the subspace Y1 NY3 is orthogonal to Z;, j = 1,2, and, therefore, is orthogonal to Z1 + Z;
hence, Y1 NYy C (21 + Zo)*.
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Relation (1.2.11) shows that the intersection of any two finite-codimensional subspaces is also a
finite-codimensional subspace.

We say that vector systems ey, ..., e, from X and e], ..., e} from X* are biorthogonal if (e;, e;‘f) = 045,
where 9;; denotes the Kronecker symbol. Obviously, each of these two systems is linearly independent.
This immediately follows from the definition of the fact that the operator P acting according to the

relation
n

Pz = Z(ZL‘, e;)e; (1.2.12)
1

is a projector such that its image is the subspace spanned by eq, ..., e,, while its kernel ker P coincides
with the orthogonal complement to the subspace spanned by e, ..., €.
Lemma 1.2.2. Let subspaces Xg € X and X1 C X* be such that Xy is finite-dimensional and X
does not contain nonzero elements orthogonal to Xy. Then, for any base of Xg, the subspace X
contains a vector system biorthogonal to this base. A similar assertion is valid in the case where
XoC X* and X1 C X.

In particular, any finite-dimensional space Xy is complemented, i.e., there exists a projector P such
that Im P = Xgy. If a closed subspace Y C X is such that XoN'Y = 0, then it is possible to select P
such that the condition ker P DY is satisfied.

Proof. In Xy, select a base eq,...,e, and consider the linear operator T from L£(X;,C") acting ac-
cording to the relation (T'z*); = (e;,2*). It is an operator acting “onto,” i.e., ImT = C". If, to the
contrary, there exists a nonzero vector n = (11,...,m,) from C" such that > n;(Tz*); = 0 for any x*

(2
from X7, then, for the vector x = _ n;e;, the relation (x,2*) = 0, 2* € X, holds. In other words,

the nonzero element x from X is orlthogonal to X1, which contradicts the assumption of the lemma.
Thus, Im7" = C" and there exist e from X; such that Tej = (1,0,...,0), ..., Te; = (0,0,...,1).
This means that (e;, e}‘f) = ;5. The case where Xy C X* and X; C X is considered in the same way.

The last assertion of the lemma follows from the first one provided that X is the subspace Y1,
which satisfies the assumption of the first part of the lemma by virtue of (1.2.10).

If N € £(X,Y), then the orthogonal complement (Im N)+ C Y* of its image is called its cokernel
and is denoted by coker N. By virtue of (1.2.10), we have the relation

Im N = (coker N)= . (1.2.13)

This means that if the image Im N of the operator N is closed, then the solvability of the equation
Nx = y is equivalent to the orthogonality of the right-hand side y to the cokernel of the operator N.

It is not guaranteed that the adjoint space Y* and canonical form (1.2.9) related to it can be
described for any particular case. Instead, it is more convenient to consider a Banach space Y’ and a
bounded bilinear form (y,y’) on Y x Y’. This form is assumed to be nondegenerate in the following
sense: y = 0 if (y,y’) = 0 for any 3’ from Y’ and v’ = 0 if (y,y’) = 0 for any y from Y. The triple
(Y,Y' (,)) is called the duality structure such that the space Y is endowed with. It follows from the
Hahn-Banach theorem that the form (1.2.9) is nondegenerate and, therefore, the triple (X, X*, (,))
defines the so-called canonical duality structure.

The notion of the orthogonality and orthogonal complement Z+ with respect to the form (y,y’) is
defined as above. Since the form (-,-) is nondegenerate, it follows that any element 3 of Y’ can be
identified with the linear functional y — (y,y’) of the adjoint space Y*. Thus, we have the canonical
embeddings Y/ C Y* and Y C (Y')*. This implies that if Y or Y’ is finite-dimensional, then another
space is also finite-dimensional and their dimensions coincide.

Indeed, assume that, e.g., Y is finite-dimensional. Then, by virtue of the embedding Y/ C Y*,
the space Y’ is finite-dimensional and dimY’ < dimY™* = dimY. In the same way, the embedding
Y C (Y')* yields the opposite inequality for the dimensions.
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If the cokernel coker N is contained in Y’ with respect to the embedding Y’ C Y*, then the
orthogonality in the relation (1.2.13) can be treated as the orthogonality with respect to the bilinear
form (y,y').

To any operator N € L£(X,Y), one can assign a linear operator N* : Y* — X* mapping any linear
functional y* € Y to the functional * = N*y* from X* according to the relation (N*y*)(z) = y*(Nz),
z € X. We say that this operator is adjoint to N. Since |[N*y*| < |N|z|y*|, where |- .- | are the
norms in the adjoint spaces, it follows that the operator N* belongs to £(Y™*, X*) and its norm does
not exceed |N|z. Using the the Hahn-Banach theorem, one can verify that these norms coincide.

From the definition of adjoint operators, it follows that the cokernel coker N coincides with the kernel
ker N* of the adjoint operator. Hence, in (1.2.13), one can replace coker N by ker N*. In particular,
if the image Im IV is finite-codimensional, then its codimension coincides with the dimension of the
kernel ker N*.

If N € £L(X,Y) and Im N is finite-dimensional, then we say that NV is finite-dimensional; denote the
class of such operators by To(X,Y"). Obviously, the composition of two operators is finite-dimensional
if at least one of them is finite-dimensional. In general, the subspace 7Ty of finite-dimensional operators
is not closed in £. The subspace of compact (completely continuous) operators defined by 7 (X,Y")
is preferable in this sense. We say that an operator N from £(X,Y) is compact if for any bounded
sequence {z,} from X there exists a converging subsequence of the sequence {Nz,} from Y. An
equivalent definition is as follows: an operator N from L£(X,Y) is compact if the image N(B) of the
unit ball B C X is relatively compact in Y.

From the definition, we see that the composition of two bounded operators is compact if one of
them is compact. Also, it is clear that 7o C 7, i.e., any finite-dimensional operator is compact.

Theorem 1.2.3. The subspace T(X,Y) of compact operators is closed in L(X,Y) and the belonging
of N to T(X,Y) implies that N* € T(Y*, X*).

Proof. Let a sequence of operators Ny from 7T (X,Y) converge to N from £(X,Y) with respect to the
operator norm. Take a sequence zj, from X, |z;| < 1, and consider its subsequence zy 1, k = 1,...,
such that Nyzy ; converges to Y. Let a sequence xj s from X be a subsequence x5 for positive
integers s exceeding two, where Nyxy o, k = 1,..., converges in Y. Then the subsequence Ny, also
converges.

Indeed, fix a positive € and select s to satisfy the condition |Ny — N|z < e. Then

|(Ng — N)xpr| <e.
Let n > s and
|N(zps — 205)| <&, k7 >n.
Then the following relation holds provided that k£ > n and r > n:
IN (1, — Zrp)| = |(N = No) (@i — Tpr) + No(Tpre — )| < 3e.

This means the convergence of the sequence Nzy,. Hence, the operator N is compact and, therefore,
the subspace 7 (X,Y) is closed.

Pass to the second assertion of the theorem. Let N € T(X,Y), y; € Y*, and |y;| < 1. We must
verify that the sequence z (z) = y;(Nx) contains a subsequence converging in X*. Let B be the unit
ball in X and @ = N(B). Then the set @ is compact with respect to the metric of the Banach space
Y and the sequence of continuous functions fi(y) = y;(y), v € @, is uniformly bounded. Also, the
family {fx} is equicontinuous since

) = @) =iy =) < ly—=v'l, v,y €Q.

Hence, due to the Arzela—Ascoli theorem, the sequence {f} contains a subsequence {fx,} uniformly
converging to a continuous function on ). Then it is easy to see that {m,’;} also converges in X*.
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The notions of bounded and compact operators can be extended to the case of families of Banach
spaces. Let families (X;,¢ € I) and (Y;, ¢ € I) of Banach spaces form lattices (in the sense of
embeddings (1.1.8) of Banach spaces) such that the inclusion X; C X; implies the inclusion ¥; C Yj.
We say that a linear operator N : (J X; — |JY; is bounded in these families if the restriction

= il
N; = N|X; is bounded by X; — Y; for any 4 from I. The space of such operators is denoted by
L(X;,Y;;10€I). If X; =Y, then the notation £(X;;4 € I) is used. If the family (X7, X5) consists of
two elements, then the last notation is reduced to £(X71; X3), which differs from the notation of the
space L(X7, X2) of bounded operators from X; to Xo.

For compact operators, similar definitions can also be introduced; in the notation, the symbol L is
replaced by the symbol T.

Note that the embedding Y; C Y; implies the embedding Y;* C Y;*. Respectively, the operator N7
coincides with the restriction of N; to X;. Therefore, the family of adjoint spaces (X, i € I) also
forms a lattice, and the adjoint operator N* from L(Y;*, X*;i € I) is defined. Note that elements
y* of (Y;* can be treated as linear functionals over the vector space |JY;. Obviously, the kernel

) )
ker N = (Jker N; of the operator N from L£(X;,Y;;i € I) is contained in |JX; and its cokernel
i i
coker N = ker N* is contained in (JY;*. If coker N C (Y;*, then the following relations similar to
i i

(1.2.10) hold:
Im N; = Y; N (coker N)*, i€l (1.2.14)

1.3. Fredholm Operators

We say that N from £(X,Y) is a Fredholm operator if its kernel ker N and its cokernel are finite-
dimensional and

Im N = (coker N)= . (1.3.1)

In other words, N is a Fredholm operator if its kernel ker N is finite-dimensional and its image Im N
is finite-codimensional. For brevity, the dimensions dim(ker N') and codim(Im N) = dim(coker N) are
denoted by dim N and codim N respectively. The integer ind N = dim N —codim N is called the index
of the operator N. In [29, 32, 48], the theory of Fredholm operators is explained in detail.

If N is a Fredholm operator, then the spaces X and Y can be expanded into the direct sums

X = X(O) b X(l)v X(O) = kerN, Y = }/(0) b }/(1), }/(1) =Im N. (132)

These expansions are defined not uniquely. However, any such finite-dimensional space Y| is called a
coimage of the operator N. Obviously, the number dim Y(g) = codim N coincides with the dimension
of the cokernel of the operator N, i.e., with the dimension dim N* of the kernel of the adjoint operator.
Therefore, ind N = dim N — dim N* and (1.3.1) can be represented as follows:

Im N = (ker N*)*. (1.3.3)
Thus, the following three assertions (the Fredholm alternative) hold for the equation Nx = y.

(i) The homogeneous equation Nz = 0 has a finite set of n linearly independent solutions x1, ..., Zy.
(ii) The homogeneous adjoint equation N*y* =0 has a finite set of m linearly independent solutions
Y5y Y from Y* and the heterogeneous equation is solved if and only if (y,y) =0, 1 <i <m.

(iii) The difference n —m coincides with the index ind N of the operator N.
From expansions (1.3.2), it follows that the operator N maps X(;) onto Y(;) bijectively. Hence,
due to the Banach theorem, the restriction N1 = N|X; treated as an operator from X(;) to Y(y) is

invertible. Consider the operator N(= from £(Y, X) such that ker N(-1) = Y(0) and the restriction

N, ((1_) V=N (_1)|Y(1) coincides with Ny 1. Obviously, this is a Fredholm operator and the relations

indNCY = —indN, NCYUN=14P, NNOD=1+Q,, (1.3.4)
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where Iy and () and the projectors from X to X () and from Y to Yqy defined by the relations (1.3.2),
hold.

If X and Y are finite-dimensional, then it is obvious that any N from £(X,Y) is a Fredholm
operator. Since the dimensions of the spaces X (1) and Yy in expansions (1.3.2) are equal in this case,
it follows that ind N = dim X — dimY’.

For example, if an operator is invertible from the right and its kernel is finite-dimensional, then it
is a Fredholm operator; its index is equal to the dimension dim N of its kernel. In the same way, if an
operator R from L£(Y, X) is invertible from the left and its image is finite-codimensional, then it is a
Fredholm operator; its index is equal to ind R = — codim R.

Simple properties of Fredholm operators provided by the next lemma immediately follow from the
definitions.

Lemma 1.3.1.

(a) If NN and N Ny are Fredholm operators, then N is also a Fredholm operator.

(b) Let the kernel of the operator N from L(X,Y) be finite-dimensional and a finite-codimensional
subspace X1 C X be such that X1 Nker N = 0. Then N is a Fredholm operator if and only if
the subspace Y1 = N(X1) is finite-codimensional and the restriction Ny = N|X; treated as an
operator from Xy to Yy is invertible. If this holds, then ind N = codim X; — codim Y;.

(¢) If T € To(X), then N =1+ T is a Fredholm operator and its index is equal to zero.

Proof. (a) The relations ker N C ker(N;N) and Im N D Im(N N3) are obvious. The former relation
means that the kernel ker NV is finite-dimensional. Due to Theorem 1.1.1(c), the latter relation implies
that the image Im N is finite-codimensional. Hence, N is a Fredholm operator.

(b) If Y7 is finite-codimensional, then, due to Theorem 1.1.1(c), the subspace In N D Y7 also
possesses this property. Then N is a Fredholm operator.

Conversely, let N be a Fredholm operator. By assumption, there exists an expansion X = X; & Xj,
Xo D ker N. Using the representation Xy = X @ ker N, assign X1y = X1 @ X{ in expansions
(1.3.2). As we note above, the operator N1 = N|X(;y acting from X(;y to Y{y is invertible. Then
the image Im N = Y(y is expanded into the direct sum Y; @ Y, where Y1 = N(X1), Yy = N(X),
and the dimensions of the finite-codimensional spaces X, and Y{ are equal. Thus, the subspace
Y1 is finite-codimensional, the operator N X treated as an operator from X; — Yj is invertible,
codim X; = dim X{ + dim N, and codim Y] = dim Y + codim N. Subtracting the latter relation from
the former, we obtain the relation for the index.

(¢) Obviously, the kernel X7 = ker T of the finite-dimensional operator T is finite-codimensional
and the operator N = 14T on this subspace is the identity operator. Since X;Nker N = 0, it remains
to use assertion (b) of the lemma, assigning Y7 = Xj.

The following classical result generalizes assertion (c) of Lemma 1.3.1.

Theorem (Riesz—Schauder). If T € T(X), then N = 1+ T is a Fredholm operator and its index is
equal to zero.

Proof. In the normed space ker NV, the identity operator 1 coincides with the compact operator —T.
Thus, this space possesses the Bolzano—Weierstrass property. Hence, this is finite-dimensional due to
Theorem 1.1.2. According to Theorem 1.2.2, the kernel ker N* is also finite-dimensional. Therefore,
taking into account (1.2.13), it remains to verify that the subspace Im N is closed in X.

Consider the expansion X = X; @ ker N. It is obvious that N(X;) = Im N. Consider a sequence
Ty = 2n + T zn, 2z, € X1 converging to an element x of X. If the sequence z, is bounded, then, due to
the compactness of T', there exists a converging subsequence T'z,, . Then z,, = x,, —Tz,, converges
to z from X; and, therefore, x = z + Tz € Im(1 + T'). Assume that the sequence z, is unbounded.
Passing to its subsequence, one can assume that |z,| — co. Then 2], + T2/, — 0, 2, = 2,/|2n|. Arguing
as above, we find a sequence z,’% converging to 2z’ from X7, |2/| = 1. Then, passing to the limit, we
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obtain that 2’ + T2’ = 0, which contradicts the definition of X;. Thus, the space Im N is closed and
N =1+ T is a Fredholm operator.
To prove that its index is equal to zero, see assertion (d) of the next theorem.

Theorem 1.3.1.

(a) If N from L(X,Y) and M from L(Y,Z) are Fredholm operators, then their composition is also a
Fredholm operator and

ind MN = ind M + ind N. (1.3.5)
(b) Let operators N from L(X,Y) and R from L(Y,X) be such that
RN —-1€T7(X), NR—-1€T(Y). (1.3.6)

Then N and R are Fredholm operators.

(c) The set of Fredholm operators is open in L(X,Y) and the integer-valued function ind is constant
on connected components of this set.

(d) If N from L(X,Y) is a Fredholm operator and T € T(X,Y), then N + T is a Fredholm operator
and ind(N +T') = ind N.

Proof. (a) Since ker(MN) = N~!(ker M), it follows that the kernel of the operator M N is finite-di-
mensional. Select a finite-codimensional subspace X; to satisfy the condition X; N ker(MN) = 0.
Then, by virtue of Lemma 1.3.1(b), the subspace Y; = N(X}) is finite-dimensional. Also, it is obvious
that Y3 Nker M = 0. Therefore, arguing in the same way, we conclude that the subspace Z; = M(Y7)
is finite-codimensional. Hence, M N is a Fredholm operator and ind M N = codim X; — codim Z;. In
the same way, we obtain that ind N = codim X; — codim Y; and ind M = codim Y7 — codim Z;, which
leads to the relation (1.3.5).

(b) This relation immediately follows from Lemma 1.3.1(a) and the first part of the Riesz—Schauder
theorem.

(¢) Let N from £(X,Y) be a Fredholm operator. Denote N(—1 from (1.3.4) by R and assume that
it belongs to L(Y, X). As we note above, this is a Fredholm operator and its index is opposite to
ind N. Let B € £(X,Y) and

It suffices to verify that N + B is a Fredholm operator and ind(N + B) = ind N.

It is obvious that |BR|z < |B|z|R|z < 1. As we found, proving Theorem 1.2.1, this implies the
invertibility of the operator 1 + BR in £(Y). In the same way, the operator 1 + RB is invertible in
L(X). Therefore, from (1.3.4), we obtain that

R(N+B)=1+RB+P =(1+RB)(1+T1), Th1=[1+ 1+ RB) P

and

(N+B)R=1+BR+Qy=(1+BR)(1+Ts), To=[1+(1+BT) 'Q),
where Tj are finite-dimensional operators. By virtue of (b) and Lemma 1.3.1(c), this implies that
N + B is a Fredholm operator; taking into account (1.3.5), we conclude that ind(N + B) +ind R = 0.
It remains to recall that ind R = —ind V.

(d) Consider the operator R = N=1 from £(Y, X) involved in the relation (1.3.4). By virtue of
(1.3.6), there exist compact operators 77 and T such that R(N+7) =1+T) and (N+T)R = 1+1T5.
Thus, it follows from (b) that N 4+ T is a Fredholm operator. For any A from [0, 1], the operator
N + AT also possesses the Fredholm property. By virtue of (c), its index is independent of A. Hence,
ind(N +T)=ind N.

From this theorem, it follows that Fredholm operators map finite-codimensional spaces into finite-
codimensional ones. Indeed, if N from £(X,Y) is a Fredholm operator and a subspace X; C X is
finite-codimensional, then N(X7) coincides with the image of the operator NP, where P projects X
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onto X;. Since 1 — P is a finite-dimensional operator, it follows that P is a Fredholm operator and,
therefore, N P possesses the same property.

If operators N and R possess the property (1.3.6), then we say that they are invertible modulo
7. The operator R is called a regularizer of the operator N. From (1.3.4) and Theorem 1.3.1(b), it
follows that N is a Fredholm operator if and only if it is invertible modulo 7T .

The notion of the one-side invertibility modulo 7 can also be introduced. However, the invertibility
of on operator N from the left and from the right modulo 7 (i.e., the existence of its left- and right-
hand regularizers) implies that these regularizers coincide (modulo 7). Indeed, if RiN ~ 1, NRy ~ 1,
where ~ denotes the equality modulo 7, then Ry ~ R{NRs ~ R;.

An operator N from L£(X,Y) is called a finite-dimensional extension of an operator N from
L(X1,Y) if X3 C X is a finite-dimensional subspace and Nix = Nz provided that z € X;. In
such a case, the operator Ny is called a finite-dimensional restriction of the operator IN. These
operators are Fredholm equivalent and their indices satisfy the relation

ind N = ind N; + codim X;. (1.3.7)

Indeed, let X = X;® X, and the operator N be the extension of N 1, satisfying the condition N | Xo=0.
Then the relation (1.3.7) with respect to N7 and N is obvious. On the other hand, the difference N — N
is a finite-dimensional operator and it remains to use Theorem 1.3.1(d).

If N € £(X,Y), then any operator N from £(X x C™,Y x C") such that Nj; = N in its canonical
representation by a 2 x 2-matrix is called a finite-dimensional perturbation of the operator N. By virtue
of Theorem 1.3.1(d), the operators N and N are Fredholm equivalent and ind N = ind N +m — n.

Indeed, the difference between N and

NO = (jg 8> €L(X xC™Y xC"

is a finite-dimensional term and the latter is obviously Fredholm equivalent to N.

Also, the theorem implies that if the product N1No of two operators and one factor is a Fredholm
operator, then the second factor is also a Fredholm operator. Due to the same reason, if there exists
a positive integer k such that N* is a Fredholm operator, then N is also a Fredholm operator. The
next lemma provides one more corollary of such a kind.

Lemma 1.3.2. Let X = X x --- x X, and an operator N from L(X) be represented by an n X n-
matriz (N;j), Nij € L(X;,X;) triangle modulo T (e.g., low-triangle, i.e., Nj; € T fori < j). Then, if
the diagonal elements Ny; € L(X;) possess the Fredholm property, then N is a Fredholm operator,

ind N = ind Ny,
1

and the regularizer R = (R;j) of the operator N is also low-triangle modulo T .
If the matriz N is diagonal modulo T, then the Fredholm property of N implies the Fredholm
property of all its diagonal elements Ny;.

Proof. It suffices to prove the lemma for n = 2. In the general case, it suffices to represent X as
X1 X (X9 x -+ x X,;) and use induction with respect to n. Let

Ni1 Nio
N =
<N21 N22> ’
where N;; possess the Fredholm property and Nio € T. If R; a regularizer of N;;, then
Ry 0 1 0
<o R2> N~ (RQN21 1> :

where ~ denotes the equality modulo 7. The operator on the right-hand side of this relation is
invertible and the inverse one has the same form, where RsNop is replaced by —RoNsj. Therefore, N
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is a Fredholm operator and ind N = —ind R; — ind Ry = ind N11 + ind No. This completes the proof
of the first part of the lemma.
Now, let N be a Fredholm operator and

Ni1 0
N~ < ; N22>.
Then its regularizer R = (R;;) satisfies the relations NR ~ (Nj;R;j) ~ 1 and RN ~ (R;jNj;) ~ 1,
which implies that N;;R;; ~ R;;N;; ~ 1. Hence, N;; are Fredholm operators.

For a Fredholm operator N, let us find conditions providing the existence of a Banach space Y’
embedded into Y* such that the cokernel coker N is contained in Y’. Let Banach spaces X and Y
be endowed with the duality structures (X, X', (,)) and (Y,Y”,(,)) respectively (in the sense of the
definition from Sec. 1.2) such that the embeddings X’ C X* and Y’ C Y* take place. Following [45],
we say that an operator N from £(X,Y) admits an associated operator N’ from L(Y', X') if

(Nz,y) = (z,N'y) (1.3.8)

identically with respect to z from X and y from Y’. If N’ exists, then it is uniquely defined by N
since the forms are nondegenerate. It is clear that if N; and Ny admit associated operators, then their
product N3Ny also admits an associated operator and (NyNy)' = Nj,Nj. Obviously, an operator N
admits an associated operator N’ with respect to the canonical embeddings X’ C X* and Y/ C Y* if
and only if the adjoint operator N* is bounded in the space pair Y* — X* and Y/ — X’ in the sense
of the definition from Sec. 1.2 and N = N*|Y".

We say that N is an associatedly Fredholm operator if it admits an associated operator N’, the
operators N and N’ possess the Fredholm property, and the relations

coker N = ker N, coker N’ = ker N (1.3.9)

hold. It is clear that if these relations hold, then the indices of the operators N and N’ are opposite.
Actually the last property describes associatedly Fredholm operators completely.

Theorem 1.3.2.

(a) An operator N from L(X,Y) is an associatedly Fredholm operator if and only if both N and N’
are Fredholm operators and their indices are opposite.

(b) Let operators N from L(X,Y) and R from L(Y,X) satisfy conditions (a), R be a regularizer for
N, and R’ be a regularizer for N'. Then both N and R are associatedly Fredholm operators.

Proof. (a) Let N from L£(X,Y) be a Fredholm operator admitting an associated operator N’ from
L(Y',X') and let N’ be also a Fredholm operator. Then

ind N + ind N’ < 0. (1.3.10)
Indeed, by virtue of (1.3.8) , we have the relations
ker N’ C coker N, ker N C coker N’
that imply
dim N’ < codim N, dim N < codim N’. (1.3.11)

These inequalities lead to (1.3.9).

Since the bilinear forms defining the dualities are nondegenerate, it follows that the equality in
(1.3.10) leads to the equalities in (1.3.11) and, therefore, to the relations (1.3.9).

(b) By assumption, ind N+ind R = ind N'+ind R’ = 0. On the other hand, R satisfies an inequality
similar to (1.3.10), which is possible only if ind N = —ind N' and ind R = —ind R’. Therefore, it
remains to apply assertion (a) of the theorem to these operators.
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Consider the canonical dualities (X, X*) and (Y,Y™) with the corresponding bilinear forms given
by (1.2.9). If N from £(X,Y) is a Fredholm operator and R from L(Y,X) is its regularizer, then,
by virtue of Theorems 1.2.3 and 1.3.1, the operator R* is a regularizer for N*. Therefore, due to
Theorem 1.3.2(b), the indices of the operators N and N* are opposite:

ind N* = — ind N. (1.3.12)

The notion of the Fredholm property can also be introduced for operators acting in a family of Banach
spaces. Using the notation of Sec. 1.2, assume that N € £(X;,Y;;i € I). We say that it is a Fredholm
operator if its kernel ker NV is finite-dimensional and is contained in () Xj, its cokernel coker N is

(3
finite-codimensional and is contained in () Y;*, and the following relations hold:
i

N(X;) =Y;N (coker N)L, el (1.3.13)

The difference ind N = dim N — codim N is called the index of the operator V.

It immediately follows from this definition that ker N; = ker N and coker N; = coker N, ¢ € I. In
particular, the relation ind N; = ind N holds for any ¢ from I. The inverse assertion also holds: if
N; is a Fredholm operator for any ¢ from I, while the kernel ker N; and the cokernel coker N; do not
depend on 7, then N is a Fredholm operator. The next two corollaries are almost obvious.

Lemma 1.3.3. Let N from L(X;,Y;;i € I) be a Fredholm operator. Then, for any X; from X, any
solution x from X; of the equation Nx =y with the right-hand side y from X; also belongs to X;. If
the assumption of the lemma is satisfied and the form (y,y*) = y*(y) is nondegenerate on the product
(UY:) x (NY;), then there exists a finite-dimensional subspace Z C (\Y; of dimension codim N such
that

Y,=Z&mN;, icl. (1.3.14)
Proof. Let X; C X, x € Xj, and No = y € ;. Then y1l coker N and, by virtue of (1.3.13), there
exists a vector x; € X; such that Nz;y = y. Then 29 = =z — 1 € ker N C [ X; and, therefore,

i

r=x9+ 21 € X;.

Let the assumptions of the second part of the lemma be satisfied and the vectors yj,...,y; form
a base of coker N. Then, similarly to Lemma 1.2.2, it is easy to prove that there exist vectors
Z1y...,2n from () X; such that they are biorthogonal to this base. Let the space Z be spanned

7
by these vectors. If there exists ¢ such that a vector z = A\x1 + ... + A\yx, belongs to the image
of the operator NV, then it is orthogonal to all zq, ..., z,, which is possible only in the case where
Al = ... = A, = 0. Thus, Z NIm N; = 0; combining this with the relation dim Z = codim N;, we
arrive at the relation (1.3.14).

The following simple criterion of the Fredholm property for operators acting in a family of Banach
spaces allows one to extend Theorem 1.3.1 to these operators.

Theorem 1.3.3.

(a) An operator N from L(X;,Y;;i € I) possesses the Fredholm property if and only if N; = N|X; from
L(X;,Y;) possesses the Fredholm property for any i and ind N; is independent of i. In particular,
if K € T(X;;1€1), then 1+ K is a Fredholm operator and its index is equal to zero.

(b) If N from L(X;,Y;;1 € I) and M from L(Y;, Z;;i € I) are Fredholm operators, then M N is also
a Fredholm operator and ind(MN) =ind N + ind M.

(¢c) If N from L(X;,Y;;i € I) is a Fredholm operator and T € T(X;,Y;;i € 1), then N +T is a
Fredholm operator and ind(N +T) = ind N.

(d) Let N € L(X;,Yi;i€I), Re L(Y;,X;;i € 1), and RN and NR be Fredholm operators. Then N
and R are also Fredholm operators. In particular, if

RN —1eT(X;iel), NR—1eT(Ysiel),
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then N and R are Fredholm operators and their indices are opposite.

Proof. (a) Let N; be a Fredholm operator for any 7 and their indices do not depend on i. It suffices
to verify that the kernels and cokernels of the operators IV; do not depend on 4, i.e.,

ker N; = ker N;, coker N; = coker N; (1.3.15)

for any pair 4, j from I. Due to (1.1.8), without loss of generality, one can assume that X; C X;. Then
Y; C Y, and Y]* C Y;*. Therefore,

ker N; C ker N;, coker N; C coker N;.

In particular, both s = dim N; — dim N; and s’ = codim N; — codim N; are nonnegative. However,
0 =ind N; —ind N; = s + s’ by assumption. Hence, s = s’ = 0, which leads to the relations (1.3.15).
The proof of the inverse implication is obvious.
(b)—(d) All the assertions are intermediate corollaries of (a) Theorem 1.2.1.

Note that Theorems 1.3.2-1.3.3 occur (in various forms) in many papers (see, e.g., [8, 60]).

All the above considerations refer to spaces over the the scalar field C. The Fredholm property can
also be introduced for R-linear operators. Note that C-linear Fredholm operators can also be treated
as R-linear operators, but one should take into account the fact that dimensions are doubled under
the passing from C to R.

A typical situation arise if a Banach space X is endowed with a R-linear operator J € £(X) such
that

J2=1, J(izr) = —iJz, z € X, (1.3.16)
where i from C is the imaginary unity. For example, if elements of X are complex functions ¢(t), t € E,
then the complex-conjugation operator J : ¢(t) — ¢(t) satisfies the conditions (1.3.16). For this
reason, in the general case J is also called the complex-conjugation operator.

Elements z of X such that Jx = x are called real elements. They form a closed subspace (over the
field R) in X; this subspace is denoted by Xg. The space X is expanded into the direct sum X ®iXp
over the field R. Therefore, the pair (X, J) is called a complex structure such that the space X is
endowed with.

In the sequel, the complex-conjugation operator for various complex structures is denoted by the
same symbol J unless this causes a confusion.

Let Banach spaces X and Y be endowed with a complex structure. Then a complex structure can
also be introduced in the space £(X,Y") of bounded C-linear operators. In this complex structure, the
map N — JNJ serves as the complex-conjugation operator (recall that the corresponding factors J
act in the spaces X and Y in such a case). Obviously, the necessary conditions given by (1.3.16) are
satisfied for this map. This map is denoted as follows:

N =JNJ. (1.3.17)

In particular, the operator N is real with respect to this structure if N = N or, which is equivalent,
the operators N and J commute:
NJ =JN. (1.3.18)

In this case, its restriction to X defines an R-linear operator from Xg to Yg denoted by Ng.

Theorem 1.3.4.

(a) Let a C-linear operator N from L(X,Y) be real with respect to complex structures in spaces X and
Y. Then it is Fredholm equivalent with an operator Nr from L(Xg,Yr) and their indices (over
the corresponding fields) coincide and ker Ng consists of real elements of the kernel ker N.

(b) Let C-linear operators N1 and Na belong to L(X) and

(N1 N
N, = <N2 N1> € L(X x X).
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Then the R-linear operator N = Ny + NoJ s Fredholm equivalent with the C-linear operator N,
and their indices coincide.

Proof. (a) With respect to the canonical expansions X = Xg @ iXp ~ Xé, the operator N is repre-
sented as a 2 x 2-matrix with elements N;; from £(Xg, Yr). An analogous representation is valid for
Y. If N is real, then, by virtue of (1.3.18), this matrix is diagonal and Ni; = Nag = Ng. Therefore,
it remains to use Lemma 1.3.2.
(0 J
= 9)

(b) The matrix
defines a complex structure in the space X2 such that the operator N, is real with respect to it, i.e.,
N.J, = J.N,. Obviously, (X?)r consists of elements (x,Z), where € X, and the R-linear operator
Lz = (x,Z) isomorphically maps X onto (X?)g. Since

L(Ny + NaoJ) = N, L,

the operators N = N + NoJ and (N, )r are Fredholm equivalent and their indices coincide, it follows
that it remains to apply assertion (a) of the theorem to (V,)g.

1.4. Banach Algebras

Let A be a Banach space. Let (z,y) — xy be a bounded bilinear map from A x A to A, satisfying
the associativity condition z(yz) = (xy)z. Then the space A together with this bilinear map treated
as the multiplying operation is called a Banach algebra. In particular, A is a ring with respect to the
addition and multiplication. We say that an algebra A is commutative if zy = yx for all x and y from

A.

Due to Sec. 1.1, the boundedness condition for the multiplying operation is equivalent to the estimate
|lzy| < Clalyl, (14.1)

where | - | denotes the norm in A and the positive constant C' is independent of z and y from A.

By virtue of (1.2.2), the Banach space L£(X) of all operators bounded in X is an example of a
Banach algebra. Another example is the algebra A = C(K) of all functions continuous and bounded
on a topological space K, endowed with the pointwise operations and sup-norm. Based on Banach
algebras Aq,..., A,, one can introduce the Banach algebra A; x ... x A, of the direct product with
component-wise operations.

One more example is the Banach algebra A™*™ consisting of n x n-matrices a = {a;;} with elements
a;; from A, endowed with the standard matrix multiplication operation

(ab)ij = > ainbr;. (1.4.2)
k=1

An example of such an algebra is the algebra C™*"(K) of continuous and bounded n x n-matrix-
functions on K. We denote Banach algebras A™*™ of matrix-functions by the same symbol A as scalar
functions unless this causes a confusion.

In a natural way, operation (1.4.2) is extended to rectangular matrices a from A™*™ and b from
A<l its result is the matrix ab from A™*!. If decompositions m = mi+...+my and n = ni+...+ng
are given, then the matrix a from A™*™ can be represented in the block form

a=.............. (1.4.3)
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with elements a;;y from A™*"i. If k =1 or s = 1, then the corresponding block row and column are
represented as follows:

© my

a=(aqy ... de), a=l(ad) ... ag) (1.4.4)

In the general case provided by (1.4.3), the orders can be shown in a similar way. If (1.4.3) is a
square matrix, i.e., k = s, and its non-diagonal block elements are equal to 0, then we say that it is a
block-diagonal matriz and represent it as follows: a = diag(aiy, ..., agk)-

Consider the following general notions related to a Banach algebra A. An element e of A is called
the unit if ze = ex = x for any x from A. If the unit of an algebra exists, then it is unique. In the
sequel, it is denoted by 1 (as in the case of the zero vector 0 from A, the distinction of this notation
from the field C of scalar values is clear from the context). If we must mark the dependence of 1
on A, then the notation 1 = 14 is used. For example, the identical matrix (140;;), where J;; is the
Kronecker symbol, is the unit of the algebra A™*".

In any Banach algebra A with unity, one can introduce the equivalent norm || such that the
constant C' in the estimate (1.4.1) is equal to 1, i.e., |zy|" < |z|'|y| for any x € A and any y € A.

To prove this, to any element x of A, we put in correspondence the operator L(z), acting as follows:
L(z)z = zz, z € A. By virtue of (1.4.1), this operator is bounded in A. Since L(zy) = L(z)L(y),
it follows that the norm defined by the relation |z|" = |L(x)|z in A possesses the specified property.
Inequality (1.4.1) represented in the form |L(x)y| < C|z|ly| means that |z|" < C|z|. On the other
hand, the relation z = L(z)14 implies the opposite estimate |z| < |[14]|x|".

We say that a subspace Ay C A is a subalgebra of A if zy € Ag for all x and y from Ay. Any
subalgebra Ag either contains the unit 1 or does not contain it. It is clear that the closure Ag is also
a subalgebra.

We say that a subalgebra J C A is a (two-sided) ideal of A if xy € J provided that x or y belongs
to J. If an ideal J is proper, i.e., it does not coincide with A, then it is obvious that 1 ¢ J. Obviously,
the closure of any ideal is an ideal.

A bounded linear operator ¢ : A — B is called a homomorphism of Banach algebras if

Y(zy) = (Vo) (Yy), z,y € A, (1.4.5)

and ¥ (14) = 1p provided that both units exist. It is clear that the kernel ker ¢ is a closed ideal of A.

We say that a Banach space X is an A-module if a bounded bilinear map A x X called the multipli-
cation and denoted by (a,x) — ax is given such that the associativity condition a(bz) = (ab)z, z € X,
is satisfied and 1z = x provided that the algebra A contains contains the unit. Obviously, this bilinear
map defines the homomorphism R : A — £(X) of Banach algebras according to the rule R(a)x = ax.
The inverse assertion also holds: the existence of such a homomorphism determines an A-module
structure in X.

For example, any space X is an £(X)-module with the corresponding multiplication operation. The
homomorphism R corresponding to this module is the identical map. Another example is the Banach
space A™ of the direct product: it is an A™*"-module. The Banach algebra itself is an A-module with
respect to the multiplication; earlier, this is used to construct an equivalent norm related to (1.4.1).

Consider an arbitrary Banach algebra A with unit. We say that its element x is invertible if there
exists y from A such that zy = yx = 1. For any x, the element y with such properties is determined
uniquely; it is denoted by x~! and is called the element inverse to the element .

A systematic explanation of the theory of Banach algebras can be found in [56]. Recall that the

sum Y a, with elements a, from A is called absolutely converging if >’ |a,| < co. By virtue of the
n>0
completeness of the Banach space A, the original series converges indeed.
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Lemma 1.4.1. If |z| < (20)7 Y, where C is the constant from (1.4.1) and C' > 1, then the element
1 — x is invertible and its inverse is defined by the absolutely converging series

1-a2)t=>a" (1.4.6)

n>0

with the norm estimate
(1 —2)7" =1 < (Cle] + D]z,
where e = 1 is the unit element of the algebra.
Proof. For |x| < (2C)~1, we have the inequality
2| < Ozt < 072, n> 1

Thus, the series at the right-hand side of (1.4.6) absolutely converges and the norm of its sum y does

not exceed )

1 1
[yl <lel+ 5D o =lel+ o
n>1
The fact that y is the inverse element for 1 — = follows from the termwise multiplication of this series
by 1 — . In particular, 1 =y — zy and |y — 1| < Clz||y| < (Cle|] + 1)||.

Denote the set of all elements invertible in A by G(A); it is a group with respect to the multiplication.
The connected component of this set, containing the unit 1, is denoted by Gy(A) and is called the
unit component of the group G(A).

Theorem 1.4.1.

(a) The set G(A) is open and the map v — x~1 of this set into itself is continuous.

(b) The unit component Go(A) is open in A and is an invariant subgroup of the group G(A).

(c) Let V. C Go(A) be a neighborhood of the unit 1. Then any x from Go(A) is representable as a
finite product of elements of VUV ™! where V=' = {27! z € V}.

Proof. (a) Let 29 € G(A) and |y| < (2C2|xo|)~!. Then x5!~y = 25 ' (1—z0y) and, due to Lemma 1.4.1,
the element (1 — zoy) is invertible. Hence, the element x ! _ y is also invertible. Therefore, the set
G(A) is open. Due to the same reasons, 3361 —y — 0as y — 0in A; hence, the map x — z~ ! is
continuous.

(b) In any Banach space, any connected open set D is linearly connected. This means that for any
points xg and z7 from D there exists a linear map x(¢), 0 < ¢ < 1, valued in D such that z(0) = xg
and x(1) = x1. In other words, one can connect xy and x; by a path in D.

Getting back to the open set G(A) of elements invertible in A, consider its connected component
Go(A) containing 1. As we note above, the open connected set Gp(A) is linearly connected. In
particular, any its point x can be connected with 1 by a path, i.e., there exists a continuous map z(t),
0 <t <1, valued in G(A) such that (0) = 1 and z(1) = x. Since the functions x(t) and z~1(¢),
0 <t < 1, are continuous, it follows that the inverse element x~1 belongs to Go(A). Due to the same
reasons, a 1xa € Go(A) for any a from G(A). In the same way, we prove that ry € Go(A) for all
x and y from Go(A). Thus, Gp(A) is an invariant semigroup of G(A) and is a connected topological
group.

(c) Let D consists of all finite products of elements considered in the theorem. Obviously, D is an
open subset of Gy(A), containing V. Let us prove that it is relatively closed in Gy(A), i.e., any limit
point xy of D N Gy(A) belongs to D.

Indeed, by assumption, for any given positive € there exists x from D such that ¢ = x 4+ y and
ly| < e. Since V' is a neighborhood of 1, it follows that 1 — x; Ly € V provided that ¢ is sufficiently
small. Hence, zp = x(1 — :Egly)_l € D. Thus, the set D is both open and closed in Gy(A); since the
latter one is connected, this implies that D = Go(A).
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Due to (1.4.5), the homomorphism ¢ : A — B of Banach algebras maps invertible elements to
invertible ones. In the same way, Y& € Go(B) if z € Go(A). The next theorem shows that both these
properties are converted simultaneously.

Theorem 1.4.2. Let ¢ : A — B be a homomorphism of Banach algebras such that its image ¥(A) is
dense in B and the invertibility of x in A is equivalent to the invertibility of ¥x in B. Then x € Gy(A)
if and only if vx € Go(B), i.e.,

¥~ Go(B)] = Go(A). (1.4.7)

Proof. Consider the sets
Ugp={x€A|X—2e€GA) for |[N>1}, Va={l—x|xzeUs}. (1.4.8)

Due to Lemma 1.4.1, the set U4 contains the ball {|z| < (2C)~!'} and, therefore, is a neighborhood of
the origin since for any its point x, it contains the segment [0, z] = {tx | 0 < ¢t < 1}. Hence, the set V4
is connected, is contained in G(A), and is a neighborhood of the unit. By virtue of the connectedness,
it is contained in Gy(A) and can be taken as a neighborhood from Theorem 1.4.1(c).

Let Up and Vp be defined with respect to B similarly to (1.4.8). From the definition given by
(1.4.8), we see that

¢~ (VB) = Va. (1.4.9)
Then, using Theorem 1.4.1(c), we easily derive (1.4.7). Let ¥a € Go(B) such that ¢»a = by - - - b, where
each b; belongs to VpU VB_I. Since the image ¢(A) = Im ) is dense in B and the set Vg U VB_1 is open,
it follows that there exist a; from A such that ¢a; € Vg U VB_1 and (by---by) " Y(ay---a,) € Vp.
By virtue of (1.4.9), the elements a; belong to V4 U VA_l, ie, Y(ay---ay) = (Ya)-b, b € Vg. Use
(1.4.9) again. We obtain that (ai---a,)a™t € V4. Hence, a € Go(A), which completes the proof
of (1.4.7).

If ¢ is the embedding A C B, then we deal with a special case. If the invertibility condition for a
subalgebra A coincides with the invertibility in B, then A is called a filled subalgebra (see [49]).

In the general case, the algebra C' = C"*"(K) of all matrix-functions z(t) continuous on a compact
set K can be taken as B. Obviously, the invertibility condition for x(t) is as follows: detx(t) # 0,
t € K. The belonging of x(t) to the group Gy is determined by the possibility to select a branch of
Indet z(t), continuous on K.

Theorem 1.4.2 belongs to the author (see [59]). It describes Go(A) in the case where a similar
description of Gy (B) is already known. For example, the algebra C' = C™*"(K) of all matrix-functions
x(t) continuous on a compact set K can be taken as B. Obviously, the invertibility condition for x(t) is
as follows: detz(t) # 0, t € K. The belonging of z(t) to the group Gy is determined by the possibility
to select a branch of Indet x(¢), continuous on K. The following two important cases are well known.

(1) If the compact set K is simply connected, then the group G(C) is connected and, therefore,
coincides with Go(C).

(2) If the compact set K is homeomorphic to a circle, then the following integer-valued function
can be introduced on the group G(C) of invertible elements:

1
Indg z = o In det a:(t)‘K; (1.4.10)

the right-hand side is the increment of the continuous branch of In det  on the contour K along
a selected direction. In the framework of this notation, the unit component Go(C) is determined
by the condition Ind x = 0.

Now, it is convenient to introduce the following notion. A continuous complex-valued function
function y on the group G(A) is called a character if it possesses the group properties

x(zy) = x(=) + x(y), x(1)=0. (1.4.11)
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Integer-valued character on G(A) are especially important: by virtue of their continuity, such a char-
acter preserves a constant value on any connected component of the set G(A) and, therefore, can be
identified with a homomorphism y mapping the quotient group G/Gy into an additive group Z. For
example, the function (1.4.10) is an integer-valued character for the algebra C of matrix-functions
continuous on the circle K. For it, the properties (1.4.11) are verified immediately. If the compact
set K is a segment of a line, then the similar function (1.4.10) is a complex-valued character. In both
cases, the function Ind is called the Cauchy index.

The next theorem provides another typical example of an integer-valued character. First, we clarify
the terminology. Let J be a closed two-sided ideal of A. Then the multiplication operation (z+J)(y+
J) = xy+J is well defined in the Banach quotient space A/J such that this space is a Banach algebra
with respect to this operation. It is convenient to express all the corresponding notions in A/J in
terms of elements of the algebra A “modulo J”. For example, the assertion "z = y modulo J” or
x ~ y means that z —y € J. In the same way, an element z is invertible in A modulo J if z + J is
invertible in A/J, i.e., if there exists y from A such that xy ~ yx ~ 1. Here, it is natural to say that
the element y is inverse modulo J for x. In particular, the set of all such elements is open in A since
it is the preimage of the open set G(A/J) under the quotient map x — x + J.

For example, according to Theorem 1.2.2, the subspace 7 (X) of compact operators is a closed ideal
of the Banach algebra £(X). In the above notation, Theorem 1.3.2 can be worded as follows.

Theorem 1.4.3.

(a) The quotient map N — N + T takes the class N € L(X) of Fredholm operators into the group
G(L/T) of elements invertible in the Banach algebra L(X)/T (X) and induces an integer-valued
character ind(N + 7)) =ind N on this algebra.

(b) Let a bounded linear map L of a Banach algebra A in L(X) be such that L1 ~ 1 and (Lx)Ly ~
L(xy) modulo T(X) for all x and y from A. Then, if © € G(A), then Lx is a Fredholm operator

and the function indx = ind Lz is an integer-valued character on G(A).

Proof. The first assertion in (a) is a corollary from assertion (d), while the second one follows from
assertions (a)—(c) of Theorem 1.3.2. Pass to the part (b) of the theorem. By assumption, L induces
the homomorphism L : A — L£/T of Banach algebras. Thus, it remains to use (a).

Consider linear bounded functionals * on a Banach algebra A, possessing the multiplicative prop-
erty (1.4.5). In other words, we consider functionals realizing homomorphisms of Banach algebras A
to C. The set of all such multiplicative functionals is denoted by M (A) C A*. Let us verify that this
set is contained in the ball |x*| < C of the adjoint Banach space A*, where C is the positive constant
from (1.4.1).

For brevity, denote the norm of the multiplicative functional x* from M(A) by ¢. If z € A, then
|z2| < C|z|? by virtue of (1.4.1). Therefore, taking into account the multiplicativity of the functional,
we have the inequality |2*(z)|? = |2*(2?)| < Cq|z|?, whence |2*(z)| < +/Cq|z| for all  from A. Hence,
q < +/Cq and, therefore, ¢ < C.

Obviously, the kernel ker z* of any multiplicative functional is both an ideal and a closed subspace
of codimension 1. Such ideals are called mazimal. The inverse assertion also holds: any maximal ideal
is the kernel of a multiplicative functional z* from M (A). The set M (A) is especially important for
commutative Banach algebras A.

Theorem (Gel'fand). An element a of a commutative Banach algebra A with unit is invertible if and
only if *(a) # 0 for any x* from M(A).

Proof. The scheme of the proof is as follows. If a is invertible, then, by virtue of (1.4.2), the relation
aa~' = 1 implies the relation z*(a)z*(a~!) = 1 and, therefore, *(a) # 0, x* € M(A).

Conversely, let a be not invertible in A. Then the set J = {xa, x € A} is a proper ideal of A.
Arguing as in the proof of the Hahn—Banach theorem, one can prove that there exists a maximal ideal
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Jo 2 J. If z* from M(A) is determined by the kernel ker z* = Jy, then 2*(x) = 0, z € J, and, in
particular, z*(a) = 0.

in [20], more detailed explanation of the theory of commutative Banach algebras is provided. Due
to the Banach—Alaoglu theorem (see [56]), the unit ball B in the adjoint space is weakly compact. The
set M (A) of multiplicative functionals is a closed subset of B with respect to this topology. Hence,
it is a compact set. By virtue of the one-to-one correspondence between multiplicative functionals x*
from M(A) and their kernels ker x*, the set M(A) is called the compact of mazimal ideals.

An analog of Theorem 1.4.2 for commutative Banach algebras is the Arens—Royden theorem (see [18])
stating that the Gel’fand transformation induces an isomorphism of the quotient groups G(A)/Gy(A)
and G(C)/Gy(C), where C = C(K), while K is the compact of maximal ideals.

An element e of a Banach algebra A is said to be involute if €2 = 1. Obviously, it coincides with
the inverse element ¢! = e and determines an isomorphism x — z° = exe of the algebra A into itself,
possessing the involute property (z°)® = z.

Let there exist a subalgebra A C A such that the specified transform is invariant on this subalgebra.
Then elements of the kind x = a + be form an algebra denoted by A..

Lemma 1.4.2. An element x = a + be and the element x1 = a — be associated with it are invertible
in the algebra A, if and only if the 2 X 2-matriz

z= (bi ;’Q> (1.4.12)

1s invertible in A.

Recall that we also use the symbol A to denote the matrix algebra with elements from A.

Proof. Denote the class of matrices of kind (1.4.12) by A. It is easy to see that a matrix z = (z4)3
from A belongs to A if and only if it commutes with the involute matrix

é:<g g).

Therefore, the invertibility of the matrix z in the algebra A is equivalent to its invertibility in A.
Now, we use the matrix relation

by /(1 1Y\ (1 1 a+ be 0
a)\e —e)  \e —e 0 a—be)’
The matrix from this relation is invertible:
1 1\7" 1/1 e
e —e T2\l —e)”

Therefore, this matrix relation above shows that the invertibility of atbe in the algebra A, is equivalent
to the invertibility of matrix (1.4.12) in the algebra A, and, therefore, in A.

o> Q

An algebra A invariant with respect to the involution x — x® = exe can be constructed as follows.

Let an involution s be linked with e by the relation es = —se. Then the class A of all elements
commuting with s forms a subalgebra satisfying the specified requirement. Indeed, if a € A, i.e.,
as = sa, then a®s = —ease = —esae = sa®. Note that an element of the kind 2z = a(1+s) +b(1 — s)

is invertible in A if both a and b are invertible, and 2z~ = a=!(1 4+ s5) + b~!(1 — s) in such a case.
To conclude, we introduce analytic complex-variable functions valued in a Banach algebra A. Let a

function F'(z) valued in A be defined and continuous in a domain D C C, where domains are treated

as open sets (no connectedness is required). In particular, restrictions of F' to connected components
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of this set have no relation to each other. We say that the function F(z) is analytic in this domain if
the limit

lim (z — 29) "' [F(2) — F(20)] = F'(20)

Z—20
exists at any point zg of D. Respectively, the function F'(z), z € D, is called the derivative of F(z).

All properties of classical analytic functions based on the Cauchy integral relation are easily extended

for functions valued in A. First, we must introduce integrals of continuous functions F' valued in
Banach spaces. Using the Riemann sums, one can define such an integral in the same way as in the
scalar case. In the same way, one can introduce the line integral

/ F(2)dz = / F(2)(dx + idy)
r

r

of a continuous functions F(z) defined on an oriented piecewise-smooth contour I' of the complex
plane of the variable z = = + iy.
This integral satisfies the estimate

/F(z)dz

r

§/|F(z)|dsz < LmIz}X\F(z)\, (1.4.13)
r

where |F(z)| denotes the norm in A, while L is the length of the contour I'. Also, for any continuous
linear functional z* from A*, the following relation holds:

x* /F(z)dz :/m*[F(z)]dz. (1.4.14)

To prove these relations, we note that they are obvious for the Riemann sums; therefore, according to
the definition of the integral, it suffices to pass to the limit.

Theorem (Cauchy). Let a function F(z) valued in a Banach algebra A be analytic in a finite domain
D bounded by a piecewise-smooth contour I' and continuous in D. Let the contour I' be oriented
positively with respect to D, i.e., the domain D is located to the left with respect to such an orientation.
Then

and the Cauchy relation

holds.

Note that, in general, the contour I' consists of several connected components. We say that it
envelopes a compact set K of a complex plane if I' is the boundary of a finite domain containing K
and the contour is oriented positively with respect to the specified domain.

Proof. From the above definition of the analyticity, we see that if x* € A*  then the scalar function
x*[F(z)] is analytic in the domain D. Therefore, the Cauchy theorem is applicable to this function:

/x* [F(z)]dz = 0.

r
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Taking into account (1.4.14), this yields that

- / P(2)dz| =o0.

Since this relation holds for any z* from A*, the element of the algebra A, defined by the integral in
the square brackets, is equal to zero. The proof of the Cauchy relation is similar.

1.5. Spectrum and Resolvent

To any element a of a Banach algebra A with unit, assign the set of points A of the complex plane
C such that the element A — a is invertible in A. This set is called the resolvent set of A and is the
domain of the function R(\) = (A — a)~! valued in A and called the resolvent of the element a. The
complement

ola)={AeC|A—a¢ GA)}

of this domain is called the spectrum of the element a. Due to Theorem 1.4.1, the resolvent is a
continuous function. From Lemma 1.4.1, we see that if |A\|] > 2C|a|, then the element X\ — a is
invertible and, therefore, the specified points A belong to the resolvent set and the function R(\) is
expanded into the uniformly and absolutely converging series

1 a\-! = a”
RN =, (1-7) = nz:% i1 P=20C0al. (1.5.1)

In particular, the spectrum o(a) is a bounded set of the plane.
By definition, the resolvent set is the preimage of an open set G(A) under the continuous map
A — A —a and, therefore, is open on the plane. Respectively, the spectrum o(a) is closed; taking into
account its boundedness, we conclude that it is a compact set.
By virtue of the obvious identity R(\) — R(A\g) = —(A— o) R(A)R(\o), the following relation holds:
lim (A —Xo) "' [R(A) — R(Mo)] = —[R(Mo))*.
)\—>)\0
Hence, the resolvent R(\) = (A — a)~! treated as a function valued in A is analytic in the open set

C\ o(a).

Theorem 1.5.1. For any nonnegative integer m, the relation

m __ 1 m
a” =, / 2" R(z)dz, (1.5.2)

where the positive r is sufficiently large and the circle is oriented counterclockwise, holds.
In particular, the spectrum o(a) is always nonempty and continuously depends on a in the following
sense: for any open set G C C, the set g ={a € A | o(a) C G} is open in A.

Proof. As we note above, series (1.5.1) holds absolutely and uniformly on the circle |z| = r provided
that r > 2Cla|. Multiplying this series by 2™ and integrating termwise, we obtain the expansion

1 m a” m—n—1
o / 2" R(z)dz = Z o / z dz
|z|=r =0 |z|=r
immediately implying (1.5.2).

If o(a) = @, then the function R()) is analytic on the whole complex plane. Then, due to the
Cauchy theorem, all integrals on the right-hand side of (1.5.2) are equal to zero. However, if m = 0,
then this contradicts the fact that the left-hand side of the inequality is equal to zero 1.

Further, let a set G C C be open and a compact set K C C do not intersect GG. Since the resolvent
R()) is continuous on K, it follows that there exists a positive constant M such that |(A—a)™1| < M,
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A€ K. Let |y| <1/2MC?, where C is the constant from (1.4.1). Then |(A —a)ly| < MCly| < 1/2C
and, due to Lemma 1.4.1, the element 1 — (A — a) ™y belongs to G(A) for any A from K. Hence, the
same is also valid with respect to A —a —y = (A — a)[1 — (A — a)~1y] since the sets K and o(a + y)
do not intersect. Since the compact set K outside G is selected arbitrarily, it follows that the set
oc={ae€ Alo(a) C G} is open.

To any element a of A, assign the nonnegative number

spra = max |v|
veo(a)

called its spectral radius. In other words, the spectral radius is the radius of the least disc |z| < p
containing the spectrum o(a).

Lemma 1.5.1. For any r exceeding spr a, there exists a positive constant M such that
la"| < Mr", n=0,1,... (1.5.3)
Conversely, if such an estimate holds, then r > spra.

Proof. Let r > spra. By virtue of the Cauchy theorem, the relation (1.5.2), which is already found
for > 2C'al|, also holds for the considered values of r. Therefore, taking into account (1.4.13), we
see that the relation (1.5.2) implies the estimate (1.5.3) with the constant

Conversely, let the estimate (1.5.3) be satisfied and |A| > r. Then the series
an
b—
Z A

n>0

absolutely converges and, similarly to Lemma 1.4.1, we verify that its sum b satisfies the relation

a a
b(1-1)=(1-%)r=1
A A
Hence, the element A — a is invertible and the spectrum o(a) lies in the disc |v| < r.

From Lemma 1.5.1 and the definition of upper limits, it follows that

spra = limsup |a"|"/". (1.5.4)
n—oo
Note that the limit on the right-hand side of this relation is independent of the choice of the equivalent
norm in the Banach algebra A, which is consistent with the definition of the spectral radius. It is
possible to show that the upper limit in (1.5.4) can be replaced by the standard limit.

The case where spra = 0 or, which is equivalent, o(a) = {0}, is considered separately. In this
case, (1.5.4) implies that |a™|'/™ — 0 as n — oco. Elements a possessing this property are called
quasinilpotent. Recall that an element a is called nilpotent if there exists a positive integer n such that

"™ = (. The least positive integer n possessing this property is called the order (of the nilpotency) of
the element a.

Let a scalar function f(z) be analytic in a neighborhood of o(a). Select a smooth contour I' C D
such that it envelopes the spectrum o(a) and is positively oriented with respect to it. Then the Cauchy
relation

flv)= 27172' /f(z)(z — V)_ldz, veo(a)
r
holds.
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Define the value of f(z) of an element a from A as the integral
1
flo) = / o)z — a)Mdz (1.5.5)
2mi
r

corresponding to the formal change of v by a in the Cauchy relation. By virtue of the Cauchy theorem,
this definition is independent of the choice of the contour I'. Note that, for f(z) = 2™, m =0,1,...,
this definition is consistent with the relation (1.5.2), where the contour of the integrating can be
replaced by I' due to the Cauchy theorem.

Definition (1.5.5) and the property (1.4.14) of the integral imply the estimate

L _
[fa)l <, max|f(z)(z—a)”| (1.5.6)
T zell
of the norm of the element f(a), where L denotes the length of the contour I'.
If an element b of A is invertible, then the similarity transformation  — b~'xb commutes with
operation (1.5.5):

b f(a)]b = f(b 'ab). (1.5.7)

This immediately follows from the obvious relation b=!(z —a)~'b = [z — (b~ tab)] L.

If the function f is analytic in a neighborhood of the disc |z| < spra, the definition given by (1.5.5)
can be refined. In this case, there exists r exceeding spra such that the said function is expanded in
the uniformly converging power series

flz)= Zakzk, |z| <r.
k=0
Let us prove that
fla) =" oga”. (1.5.8)
k=0

By virtue of the estimate (1.5.3), the series at the right-hand side of (1.5.8) converges absolutely.
If (1.5.7) is a finite sum, then the relation (1.5.8) follows from (1.5.2) and the Cauchy theorem (see
above). In the general case, the sequence f,,(z) = ap + a1z + ... + a, 2" of polynomials converges to
f(z) uniformly on the circle |A| = r. Hence, applying the estimate (1.5.6) to the difference f — f,, we
conclude that f,(a) — f(a) as n — oco. Finally, passing to the limit, we obtain the validity of (1.5.8)
in the general case.

Functions of elements of a Banach algebra are related (in a natural way) with the multiplication
and superposition operations for functions.

Theorem 1.5.2. If functions f(z) and g(z) are analytic in a neighborhood of o(a), then
fla)g(a) = (fg)(a). (1.5.9)

The spectrum o|[f(a)] coincides with the set f(o) = {f(v) | v € o}. If a function h(z) is analytic in
a neighborhood of the disc |z| < spr[f(a)], then

hlf(a)] = (ho f)(a), (hof)(2) =h[f(2)]. (1.5.10)
Proof. Similarly to (1.5.5), we have the relation
(@) = o1, [ 9tz )t
I
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where the contour I'y C D is such that I lies strictly inside it. Then the product of integrals can be
represented by the iterated integral

F@)afa) = g [ [ F@aEE =) o = 0) e
T Ty
Using the obvious identity

(z—a)M(a—a) ' =-(z-a) [z -a)" = (a1 —a)7],

we represent the integral from the right-hand side of the previous inequality as follows:

1
R b O e e

T
1
Jr(27m')2 //f(z)g(zl)(z —21) (21— @) Ndadz.
T
Since
271m' /9(21)(2 —z1) tdz = —g(2), 27172' /f(z)(z — ) lde =0
Iy /

(due to the Cauchy theorem), it follows that (1.5.9) is valid.

If there exists v from o = o(a) such that f(v) =0, then f(z) = (z—v)g(z), where g(z) is analytic in
D. Then, due to (1.5.9), we have the relation f(a) = (a—v)g(a) = g(a)(a—v). This means that f(a) is
not an invertible element since a — v and g(a) would be invertible in this case, while their invertibility
does not hold due to the choice of v. Thus, f(o) is a subset of o[f(a)]. Conversely, if v ¢ f(c), then
v — f(\) # 0, A € o, and, therefore, the function g(A) = [v — f(\)]7! is analytic in a neighborhood
of 0. Due to (1.5.9), this implies that v ¢ o[f(a)]. If h(z) = 2*, then the relation (1.5.10) follows
from (1.5.9). Therefore, it is also valid for polynomials h(z) = p(z). In the general case, as for the
proof of (1.5.8), it remains to pass to the limit.

It follows from Theorem 1.5.2 that the exponents

n

a
expa = Z
n!

n>0

form a neighborhood of 1. Indeed, let x =14 y and spry < 1. Then, by virtue of the said theorem,

2 A\n
T =expa, a:lnx:—z( v) .
n
n>1

Obviously, exponents exp a belong to the unit component Go(A) of the group G(A) since the func-
tion x(t) = exp(ta) is continuous with respect to ¢ from [0,1] and 2(0) = 1. In particular, due to
Theorem 1.4.1(c), any element = from Gp(A) can be represented as a finite product of exponents:
T = expa) expas - - - exp dn.
If the spectrum o(a) consists of the only point v from C, i.e., the element v — a is quasinilpotent,
then ~ )
n
:Zf (U)(a—y)n7

nl o(a) = {v}. (1.5.11)

f(a)
n=0

If the element a — v is nilpotent and its order is equal to m, then the above series is a finite sum: it is
finished at n = m. In this case, we have the following expansion for the resolvent R(z) = (z —a)~! =

[(z—v) = (v —a)] ™"
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thus, it has an m-order pole at the point z = v.

Consider the Banach algebra A = £(X) of bounded linear operators acting in a Banach space X.
By definition, a point A belongs to the spectrum o(N) of an operator N from L£(X) if the operator
A — N treated as an element of £ is not invertible or, which is equivalent, the said operator has no
bounded inverse operator. Due to the Banach theorem from Sec. 1.2, this is possible if either the
kernel ker N is different from zero or ker N = 0, but the image Im N does not coincide with the
whole space X. In the former case, points A of the spectrum are called eigenvalues of the operator
N. Respectively, nonzero vectors of the kernel ker NV, i.e., solutions x of the homogeneous equation
Az — Nz = 0, belonging to X, are called eigenvectors corresponding to the given eigenvalue.

1.6. Number Matrices

Consider the Banach algebra C™*™ of number matrices such that its elements are denoted by

capital Latin letters A = (A;;)7, B,... Also, it is convenient to treat the matrix A as a linear
transformation, i.e., a linear operator A from £(C™), mapping any vector x from C" to the vector
with coordinates (Ax); = Ajjx1 + ...+ Aipxn, i = 1,...,n. If the columns of the matrix are denoted
by A¢jy = (Auj,..., Apj) and are treated as elements of C", then the matrix product is expressed as
follows:

The column A(;y is the linear combination Ae; = Ajjer + ... + Ayjen, where e; = (1,0,...,0), ...,
en = (0,...,0,1) is the standard base. Such a linear combination is obtained for any base b1,...,b,

of the space C" if we assign

where Jj;, € C. The matrix J = (J;)} is called the matrix of the operator A with respect to the base
b1,...,b,. If the matrix B is formed by columns b;, i.e., B(;) = b;, then, by virtue of (1.6.1), the
relation (1.6.2) can be represented by the matrix relation AB = B.J, i.e., the matrix J = B~'AB is
homothetic to A. The same can be done for subspaces X C C" invariant with respect to A. In this
case, we have a rectangular matrix B.

Lemma 1.6.1. Let an [-dimensional subspace X of C" be invariant with respect to the matriz A from
C™" and columns of a matriz B from C" ! form a base of X. Then there exists a unique matriz
J from C*! such that AB = BJ. If B, J is another matriz pair possessing this property, then there
exists an invertible matriz D from C*! such that B = BD and J = D~'JD.

Proof. By assumption, there exist J;; from C such that
AB) = JijBay+ ...+ By, 1<j<L.

As above, this relation can be represented by the matrix relation AB = BJ. If B, J is another matrix
pair possessing this property, then there exist D;; from C such that the matrix D = (Dzk)l1 is invertible
and

By virtue of (1.6.1), this relation can be represented in the form B = BD. Substituting this relation
to the relation AB = B.J, we obtain the relation AB = B.J; with the matrix J; = DJD™!. It remains
to note that this implies that J; = J by virtue of the uniqueness.

As above, it is natural to call J the matrix of the operator A in in the invariant subspace X (with
respect to a base). If the whole space C™ is expanded into a direct sum of invariant subspaces Xy,

k=1,...,m, and the matrices By and J; are constructed by X} as in the lemma, then the following
relation is valid for the invertible matrix B = (B, ..., By,) from C™*™:
B7YAB = diag(J1, ..., Jn). (1.6.3)
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In other words, we find an appropriate matrix B to reduce the matrix A to a block-diagonal form.

An important example of invariant subspaces is related to the spectrum o(A) of the matrix A. This
spectrum consists of different roots vy,..., v, of the characteristic polynomial x(z) = det(z — A),
called eigenvalues of the matrix A. In the expansion

X(2) = (Gz=v)" =) n=k 4tk (1.6.4)

of this polynomial into factors, the power k; is the multiplicity of the eigenvalue v;. The resolvent
(z — A)~! is a matrix polynomial divided by the characteristic polynomial y. Therefore, the function
R(z) = (z —a)~! has a pole at the point v;; its order r; does not exceed the multiplicity k; and is
called the order of the eigenvalue v;. If the polynomial xo(z) is obtained from (1.6.4) by means of the
replacement of k; by 7;, then the singularities v; of the matrix-function xo(z)(z — A)~! are removable
and, therefore, it is a polynomial. In particular, the integral (1.5.5) vanishes for f = xq, i.e., xo(A) = 0.
The polynomial x¢(z) is called the minimal polynomial of the matrix A. The same argument yields
that x(A) = 0, which is the assertion of the known Hamilton—Cayley theorem. For any function f(z)
analytic in a neighborhood of the spectrum o(A) of the matrix A and any polynomial p(z) such that
f(2) —p(2) = O(1)(2 —v;)" in a neighborhood of v, j = 1,...,m, we have the relation f(A4) = p(A).
This yields a practical method to compute the matrix f(A).

Consider a function p;(z) such that it is equal to 1 in a neighborhood of v; and to 0 in neighborhoods
of other points v from o(a). Obviously, the relations p;p; = d;;p;, where ¢ is the Kronecker symbol,
and p1 + ...+ pm = 1, hold in a neighborhood of the spectrum. Due to Theorem 1.5.2, this implies
that P; = p;(A) are projectors possessing the similar property: PiP; = 6;;P; and P, + ...+ P, = 1.
Hence, the space C" is decomposed into the direct sum X1 ®...® X,,, X; = Im P,. Since AP, = P, A,
it follows that the subspace X; is invariant with respect to the transformation A; it is called the
eigensubspace corresponding to the eigenvalue v;.

If A; from L£(X;) is the restriction of A to X, then the operator v — A; is invertible provided
that v # v; and (v; — A;)"7 = 0. Thus, for any « from X there exists a positive integer r such that
r<rj, (v;— Az =0, and (v; — A)" 'z # 0. Vectors = from C" possessing this property are called
augmented vectors of the matrix A, corresponding to the eigenvalue v;. Assigning z1 = (v; — A)" ',
xg = (v — A2z, ..., x, = x, we obtain a chain of eigenvalues and augmented vectors linked by the
relations

v—A)zx, =0, (v—A)zea =21, ...,(r—A)zs = x5_1, (1.6.5)

where v = v;.

Sequentially selecting elements of the bases of the subspaces X; as columns of the matrix B, one
can reduce the matrix A to the block-diagonal form represented by (1.6.3). Here, the matrix J; is
similar to the operator A; acting in the space X;. In particular, the characteristic polynomial (1.6.4)
coincides with the product of the analogous polynomials det(z — A;) = (z — ;)% and k; = dim X;.

Taking into account (1.5.7) and (1.5.11), from (1.6.3) we obtain the following relation for the
computing of the function f(A) of the matrix A:

QI
Bf()B = dinglf(1)..... £l 1) =37 0y (16:6)

Here, the series is actually a finite sum; it terminates by the order k = r; of the eigenvalue v;.

A simple example of f(A) is provided by the so-called Jordan box A = J: the elements v are located
at its main diagonal, the elements 1 are located at the next diagonal above the main one, and all other
elements are equal to zero. Thus,

Jij = v0ij + div1j, (1.6.7)
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where §;; denotes the Kronecker symbol. The simple verification confirms the relation [(J — v)*];; =
itk j for this matrix. Therefore, (1.5.11) leads to the following explicit relation:

0, ) — 1 <0,
[F(D)ij = {f(j—i)(y)/(j —a), j’—i > 0.

The block-diagonal matrix composed of Jordan v-boxes is called a (composite) bor again. Respectively,
matrices (1.6.7) are treated as simple boxes.
The next classical result is the main theorem of linear algebra (see, e.g., [40]).

(1.6.8)

Theorem 1.6.1 (Jordan). For any matriz A from C**™ such that its spectrum o(A) consists of points
Vi,...,Um there ezists an invertible matric B = (Bi,...,By,) from C"*" reducing A to the block-
diagonal form (1.6.3), where J; is a composite Jordan vj-box. The columns of the matriz B; are
sequentially composed of chains of eigenvectors and augmented vectors corresponding to v; and the
number of simple Jordan bozes of the same order, contained in J;j, is an invariant of the matriz A,
i.e., is independent of the choice of B.

Proof. According to Lemma 1.6.1, it suffices to show that a base consisting of chains of eigenvectors
and augmented vectors can be selected in the eigensubspace X = X of the matrix A, corresponding
to the eigenvalue v = v;. Without loss of generality, one can assume that v = 0 (A can be replaced by
A — v otherwise). Then A”X = 0 and A"~!X is a nonzero eigensubspace of X, where 7 is the order
of the eigenvalue v = 0. Select a subspace Y7 of X such that

ATIX =AYy, VinkerA™l=o. (1.6.9)
In particular, its dimension coincides with the dimension of the image A" ~1X,
X=A"Y19 Xy, XoCkerA™ ! (1.6.10)

To prove that Y; + AY; + ...+ A™"1Y] is a direct sum of subspaces, assume that there exist y; from
Y; such that y; + Ays + ... + A"ty = 0. Apply the operator A”~! to this relation. We obtain that
A" ly; = 0. Taking into account (1.6.9), we conclude that y; = 0. Thus, Ays + ... + A" 1y, = 0.
Applying the operator A2 to this relation, we obtain that y» = 0. Repeating this procedure, we
verify that y; = 0 for any j. Thus, the specified sum is direct. Since the subspaces A7Y; are contained
in ker A"~! provided that j > 1, we take into account (1.6.10) to obtain the expansion

X=Y19..0A47Y®X, X CkerA L (1.6.11)
Applying the same argument to X and repeating this procedure, we obtain the expansion
X=Mo.. A V)oV28...04Y)®...0 (Y1 ®AY,_1)DY,, (1.6.12)

where
YjﬂkerA’"_j =0,1<j<r—1, Y] CkerA.
Note that the above expansion can contain zero spaces Y since it is possible that there exists s
exceeding 1 such that X C ker A% in (1.6.11) and similar further relations.
Now, select a base ei, 1 < k < sj, in the space Yj. Then, due to (1.6.12), the vectors A"ei

0<i<r—j—1, form a chain of eigenvectors and augmented vectors, and all these chains form a
base of the space X.

The matrix J from the last theorem is called the Jordan form of the matrix A. Then the columns
of the matrix B have the following geometric interpretation.

Frequently, it is more convenient to consider an “enlarged” expansion instead of (1.6.3); the said
expansion corresponds to the decomposition of the spectrum o(A) into the three sets o9 = RNo
and 0x = {v € o | £ Imv > 0} on the plane, determined by the real axis R. Let Xy and X
correspond to the direct sum of eigensubspaces X; corresponding to the values v; from oy and v;
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from o4 respectively. Denote the dimensions of these spaces by ng and ny, respectively. Then
C" = Xo @ X+ & X_. Respectively, the relation (1.6.3) takes the form

B'AB = diag(Jo, Jy,J_), o(Jy) =00, o(Ji) =0+ (1.6.13)

with the matrix B = (By, By, B_), where By € C"*"0_ Jy € C"*"0 and the matrices By and Ji
have the same sense with respect to n4+ = dim X4.

If the matrix A is real, then ny = n_ and, therefore, the complex-conjugation operation z — x is
invariant on Xy and maps X onto X_. Then the bases in these spaces (they form columns of the
matrices By and By ) can be selected so that they satisfy the following conditions:

By eR™™,  JoeR™*™ B =B, J =J,. (1.6.14)

It might be more convenient to pass from B_ and J_ to complex-conjugated matrices in (1.6.13).
Then the spectrum o(J_) = o_ is located in the upper half-plane and one must assign J; = J_ for
the real matrix A in (1.6.14).

More detailed data about number matrices can be found in [19].

1.7. Semi-Almost Periodic Functions

Consider the Banach algebra C' of all continuous and bounded on R functions, endowed with the
pointwise operations and the sup-norm

lz|o = s1t1p|:::(t)|.

The subspace C° of all functions vanishing at oo is a closed ideal of this algebra. Obviously, the
inequality
irtlf |z(t)] >0

is a necessary and sufficient condition of the invertibility of x in C'. If z(¢) possesses the above property,
then we call it a nondegenerate function.

We say that a function z(¢) from C' is almost periodic if for any positive ¢ there exists a positive [
such that any interval of length [ contains a number 7 such that

lx(t+7)—z(t) <e teR. (1.7.1)

In [38], a detailed explanation of the theory of almost periodic functions is provided. In particular, it is
known that the class of all almost periodic functions forms a closed subalgebra in C' and trigonometric
polynomials, i.e., finite sums of kind

x(t) = chemkt, ct €C, ap€eR, (1.7.2)
are dense in this class. One of the main results of the theory of almost periodic functions is as follows.

Theorem (on the argument of almost periodic functions). If an almost periodic function x(t) is non-
degenerate, then the continuous branch of its logarithm is representable in the form

Inz(t) = iat + y(t), (1.7.3)
where a € R and y is an almost periodic function. In particular, the inverse function x~' is also
almost periodic.

We say that a function ¢ from C has (one-sided) mean values m*z at +oo if there exist
1 2n 1 —n
mTr = lim /x(t)dt, m-z = lim /x(t)dt. (1.7.4)
n—oo N n—oon
n —2n
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Obviously, the class of functions possessing these mean values is a closed subspace of C. If both
one-sided mean values coincide, then they are denoted by mx and are called the mean value of the

function z. It is obvious that
4 0 0
m(e ") ={ " a#0, (1.7.5)
1, a=0.

In particular, the mean value mu exists for trigonometric polynomials (1.7.2) and its coefficients
¢ = m(e~ ') are defined uniquely for any given collection of a;. Taking into account the density,
we conclude that the mean value ma exists for all almost periodic functions. Arguing in the same
way, we conclude that if (1.7.2) is an absolutely converging series, then its coefficients ¢ are uniquely
defined by x.

The class of all such functions is denoted by W. It is obvious that W is a Banach algebra with

respect to the norm
2| =) lexl.
k

In [20], the commutative Banach algebra W is studied in more detail. In particular, the theorem on
the argument of almost periodic functions also holds for this algebra, i.e., if a function = from W is
nondegenerate, then the function y from the expansion (1.7.3) belongs to W.
We say that a function x from C' is semi-almost periodic if there exist almost periodic functions
2% (t) such that
z(t) — x5 (t) — 0 as t — +oo. (1.7.6)

From the almost-periodicity definition given by (1.7.1), it immediately follows that the functions z*

are uniquely defined by x and the estimate
2% [0 < |z (1.7.7)

holds for the sup-norms. The functions 2% are called the one-sided (left- and right-hand) almost
periodic components of x. The estimate (1.7.7) shows that the class of semi-almost periodic functions
is a closed subalgebra of C' and the linear maps z — x& are homomorphisms of algebras such that
m¥x = ma*.

If a function x(t) admits limits ¢* from C as t — 400, then it can be treated as a constant almost
periodic function. In other words, this function is semi-almost periodic and its one-sided almost
periodic components are equal to ¢*.

If a semi-almost periodic function x(¢) is nondegenerate, then, due to (1.7.6), there exists a positive
integer n such that

inf |zE(t)] > 0.
+t>n

Then, due to the almost-periodicity definition given by (1.7.2), we conclude that the functions z* are

also nondegenerate. Hence, the inverse function z~! is semi-almost periodic and (z~1)* = (2*)~1,
Since x(mi)_l — 1 as t — 00, it follows from the argument theorem applied to z* that there exist
a® from R and almost periodic functions y* such that

Inz(t) —ia*t —y=(t) — 0 as t — +o0, (1.7.8)

where In z(t) is the continuous branch of the logarithmic function. This relation can be treated as an
analog of the said theorem for semi-almost periodic functions.

Note that the continuous branch Inz(¢) of the logarithmic function is defined up to an additive
term 2mik, k € N, but the difference y™ — y~ is defined uniquely. The mean value of this difference
divided by 27i is called the Cauchy index of the function z and is denoted by

Indg x = 5 m(y" —y). (1.7.9)

™
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If z(t) has limits at +o00, then the function Inz(¢) possesses the same property and (1.7.9) coincides
with the classical definition of the Cauchy index as the increment of the continuous branch In z of the

logarithmic function, i.e.,
o

1
Indg z = o In z(t)

—00

Obviously, the Cauchy index possesses the group property (1.4.11), i.e.,
IndR(l‘liL‘g) = Indgr 1 + Indgr z2, Indr1 =0. (1.7.10)

Being a complex function on the group of invertible elements of the algebra C, the said index contin-
uously depends on z with respect to the sup-norm. Indeed, if |z, — z|p — 0, then z, = x(1 + a9),
where 20 € C and z¥ — 0 with respect to the sup-norm. Respectively, in the relation (1.7.8) for z,,
the functions y* are to be replaced by y* + [In(1 +29)]*. It remains to note that In(1+2%) — 0 with
respect to the sup-norm as n — oo and to use the estimate (1.7.7). Thus, according to (1.7.10), it is
the Cauchy index in the sense of the definition from Sec. 1.3.
Note that the expansion (1.7.5) for the almost periodic components z* of the function z has the
form
In 2% (t) = iatt 4y (1), (1.7.11)
where at are the constants from (1.7.8). The functions y&) differ from y* by the constant term
2mik®, where k* are integers. Hence,
Loy — & is an i
Indg z = ) .m[y'™ —y' )]+ is an integer. (1.7.12)
i

Consider the case where the function Inz is bounded, i.e., at =a~ =0 in (1.7.8).

Theorem 1.7.1. Let a semi-almost periodic function x(t) be nondegenerate and In x be bounded. Then

2n
Indg z = lim ! /[(lnx)(t) — (Inx)(—t)]dt (1.7.13)

n—oo M
n

and the existence of the limit

. [ (Inz)(t)dt

n—00 t—1
—n

(1.7.14)

implies the relation Indz = 0.

Proof. Consider the almost periodic function y(t) = y*(t) — y~(—t) in notation (1.7.8). Since my =
m(y™ —y~), it follows from the definition that Indg 2 = my. On the other hand, the almost periodic
function y satisfies the relation
2n
1
my = lim /y(t)dt.

n—oo n
Taking into account the fact that yo(t) = [(Inz)(t) — (Inz)(—t)] — y(t) — 0 as t — oo, we deduce
(1.7.13).
Further, let limit (1.7.14) exist. Then

im" ma)(t) ()0, _ o
i, [ [0 0

t—i  t4i

n— o0
—n
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The last integral can be represented by the sum

2n 2n 2n
y(t)dt /yo(t)dt / (Inz)(—t)dt
2 .
/t—z’ oo T 241

Since the last two terms tend to zero as n — oo, it follows that this property also holds for the first
term:

2n p
t)dt
lim u ) =
n—00 t—1
n

0. (1.7.15)

Denote the linear functional defined by the last integral by I,,y. It is obvious that

[Inyl < max [y(t)]. (1.7.16)

If y(t) = €', where a # 0, then the integrating by parts yields the relation

2n 7 eiatdt
n (t - Z)z

n

1
Iny = . €
1a

iat

Hence, I,y — 0 as n — oo. Therefore, this fact is valid for trigonometric polynomials y such
that my = 0, ie., for finite sums of kind (1.7.2) such that a; # 0 for any j. Then, taking into
account (1.7.16), we conclude that I,y — 0 as n — oo for any almost periodic function y such that
my = 0.

Consider the almost periodic function y from (1.7.15). Since m(y — my) = 0 (see the property
mentioned above), the relation (1.7.15) implies the relation my = 0. It remains to recall that
my = Ind x.

Note that the existence of limit (1.7.14) implies the existence of the similar limit

n
1 t)dt
F(z) = lim (Inz)(?)
n—00 t—z
-n
for any point z such that Imz # 0. The said limit defines a function F(z) analytic on the complex
plane outside R. To prove this, it suffices to represent F' in the form

re = rE+ [TV e =0 [

t—1
R R

(Inz)(t)dt
(t—z)(t—1)

and to take into account the fact that if the function Inx is bounded, then the integral at the right-
hand side of the second relation is understood in the standard sense and defines a function analytic
outside R. The same argument yields that the point ¢ in the theorem can be replaced by any other
point z such that Im z # 0.
Consider an analog of the algebra C' in the band Ay < Re { < A5 of the complex plane of the variable
C.
This band is denoted by [A1, Ag] (the difference of this notation from a segment of the line is clear
from the context). Let C[A1, A2] denote the Banach algebra of all functions continuous and bounded
in this band and analytic inside it (provided that A\; < A3). All the above notions are extended for
functions z(¢) from C[A\1A2] in a natural way. For example, to define their almost periodicity, we
replace (1.7.1) by the condition |z(¢+i7) —z(()] <&, A1 < Re( < A\y. Trigonometric polynomials are
replaced by linear combinations of the functions e®¢ with real powers a;. The expansion (1.7.3) in
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the argument theorem is changed for Inz(¢) = a¢ 4+ y(¢). The mean values m*x of functions x from
C[A1, A2] are defined similarly to (1.7.4):

2in —in
1 1
mTx = lim /x(g)dg, m~r = lim / z(¢)dC. (1.7.17)
n—oo n n—oo n
in —2in

If there exist x(£oo) = limz(¢) as Im{ — Foo uniformly in the band [A1, Ag], then the one-sided
mean values m¥ 2 exist and coincide with 2(+00). An example of such a function is s(¢) = tanh(
belonging to C[A1, A2] provided that Ay < A2 and such that s(+o0) = +1.

The semi-almost periodicity definition given by (1.7.7) is extended to functions = from C[A1, A2] in
the same way. Assuming that z(¢) is nondegenerate, one can introduce almost periodic functions y*(¢)
replacing (1.7.8) by the condition z(¢) — 2%(¢) — 0 as Im ¢ — Fo0. Using these functions, we can
define the Cauchy index by the same relation (1.7.9). Obviously, the properties (1.7.10) and (1.7.12)
of the Cauchy index are also valid in the case considered.

In the same way, an analog of Theorem 1.7.1 is still valid. According to the remark to this theorem,
the role of the singular integral (1.7.14) is played by the integral

A+in
[ @O _ [ im0
¢ = <o n—00 ¢—¢
Re(=A\ A—in
where A\ < X\ < A9 and the point (j lies outside the band [A1, \2].

The Cauchy index is related to the involution of the of the complex conjugation * — z in the
algebra C[\1, A2], defined by the relation

z(C) = z(¢), (1.7.18)

where the bar on the right-hand side denotes the complex conjugation. For x, the analog of (1.7.8) is
the limit relation In z(¢) — a*¢ — yT(¢) — 0 as Im ¢ — +oo. Taking into account the obvious relation
my = my for the mean values of almost periodic functions, we arrive at the relation

Indz = —Indz, (1.7.19)

where the bar on the right-hand side denotes the complex conjugation.

In addition to scalar semi-almost periodic functions, matrix functions also broadly occur. As we
note in Sec. 1.1, the space of n x n-matrix-functions such that their elements belong to C[A1, Ag], is
denoted by the same symbol. For a matrix-function, the nondegeneracy condition is treated as the
nondegeneracy condition for its determinant det z. The Cauchy index Ind z = Ind(det z) is treated in
the same way. Since (z129)* = 25, it follows that the determinant det z* coincides with (det z)*.
Therefore, (1.7.11)—(1.7.12) also hold for det x.

If the nondegeneracy condition is satisfied only for selected lines Re{ = A, A1 < A < Ao, then, in

general, increment (1.7.9) with respect to Indet x(A + it) depends on A.

Lemma 1.7.1. Let an n X n-matriz-function x(¢) be semi-almost periodic in a band \y < Re )\ < g,
its almost periodic components x* be nondegenerate, and x(¢) be nondegenerate on the boundary lines
Re( = Mg of this band. Then there exists a rational matriz-function r(C) from C[A1, A2] vanishing at
infinity and such that ©(¢) 4+ r({) is nondegenerate in the considered band and the difference

Ind z(Ag + it) — Ind x(\1 + it)

coincides with the number of zeroes of the function det x(¢) in the band A1 < Re( < A2, counted with
their multiplicities.
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Proof. Since x(¢) — 2% (¢) — 0 as Im ¢ — +o00 and the functions z*

there exists a positive integer n such that

are nondegenerate, it follows that

|Inllré\on [z(¢)] > 0.
Taking into account the nondegeneracy of x(\; + it), we conclude that the number m of zeroes of
det z, mentioned in the lemma, is finite indeed. If m = 0, i.e., there are no such zeroes, then z(() is
nondegenerate in the whole band.

Let ¢ be a zero of the function detx. Then (det z)(¢1) = 0 and, therefore, there exists a nonzero
vector £ from C" such that z((1)§ = 0. Consider the matrix p from C™*™ projecting (as a linear
operator) C" onto the one-dimensional space spanned by the vector &. Thus, p? = p and z(¢1)p = 0.
According to Sec. 1.7, the matrix p is similar to a diagonal matrix such that all its diagonal elements
except for one are equal to zero. Therefore, for any nonzero ¢ from C, we have the relations

det(cp+1—p)=¢c, (p+1—p)t=clp+1-p (1.7.20)

Fix A exceeding Ao and consider the matrix-function

_ ¢—¢

7(Q) =2(Or Q) Q)= _\p+l-p
Obviously, the rational matrix-function
A= Qo
1=
r1(¢) C— A p

belongs to C°[A1, \o]. Taking into account (1.7.20) and the relation z(¢;)p = 0, we conclude that the
function

21(¢) = [£(¢) — (¢l + 2(¢)(L —p)

belongs to C[A1, A2]. The matrix-function z1(({) satisfies all the assumptions of the lemma, but its
determinant detz = (¢ — (1)~ ! detx(¢) has one zero less than detz. Continuing this procedure till
the mth step, one can expand the function z(¢) into the product

l‘(C) = xm(g)rm(C)a (1.7.21)

where x,, is a nondegenerate function from C[\1, 2], while the function r,,({) is rational, has the
only pole at the point ( = A, and tends to 1 as ( — oo. Assigning r = r,,, — 1, we obtain the validity
of the first assertion of the lemma.

By virtue of (1.7.10), to prove the second assertion of the lemma, it suffices to prove it for the second
factor 7, (¢) of (1.7.21). In this case, it follows from the known Rouché theorem on the increment of
the logarithm of an analytic function along the boundary contour.

1.8. Lebesgue Integrals and Generalized Functions

Recall elements of the Lebesgue integral theory, skipping the definitions of a Lebesgue-measurable
set G C R*, its Lebesgue measure mes G, measurable functions, and the Lebesgue integral. Consider
the class L(G) of functions summable on a measurable set £ C R¥. This class is a vector space, and
the relation

mL:/vmmm (18.1)
G

defines a norm in this class under the assumption that any two functions that differ on a zero-measure
set are identified.

It is known that L is a Banach space with respect to norm (1.8.1). This completeness property of L
is one of the main advantages of the Lebesgue integral. Another important property of the Lebesgue
integral refers to the passage to the limit under the integral sign.
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Theorem (on majorized convergence, Lebesgue). Let {f,(z)} be a sequence of measurable functions
such that fp(z) — f(z) as n — oo for almost all x from G and there exists a nonnegative summable
function ¢ such that |fn(x)| < @(z) for any n. Then the limit function f is summable and

nh_)n;()/fnda;:/fdm.
G

G

In particular, the denumerable additivity property

[e.e] [ee]
/ﬂh:il/ﬂ% ¢=\]Ja,
& i=1¢ i=1

where the sets G; are pairwise disjoint, is a corollary of the Lebesgue theorem. To prove this, it suffices
to apply the said theorem to the sequence of functions f,(z) equal to f(z) for z from G; U...UG,
and to zero otherwise. In this case, the function |f(z)| plays the role of ¢. Here, we take into account
the finite-additivity property of the integral, following from its linearity.

Usually, the Banach space L(G) is considered for open or closed sets G. Let D be an open set and

Co(D) denote the class of continuous functions with compact supports contained in D. This class is
dense in L(D) and

flo= sw (fe), (frg) = / f(@)p(x)da, (18.2)
D

lelc<t

where the supremum is taken over functions ¢ from Cy(D).
Let B(z,r) denote the ball of radius r centered at x. Points x satisfying the relation

1
e 50 mes B(z,¢)

(/|ﬂw—fmm@=o (1.8.3)

B(z,e)

are called Lebesgue points of the function f. Note that all continuity points of the function f are its
Lebesgue points a fortiori.

Theorem (on Lebesgue points). If f is locally summable, then (1.8.3) holds for almost all x.

By definition, a function ¢ from C(D) is continuously differentiable on an open domain set D if its
partial derivatives d¢/0x; exist and are continuous at any point x of D, i.é.,

Oy dp
/I
@_<&M“”6m>ecu» (1.8.4)

For an m-vector-function ¢, this gradient is treated as the Jacobi m X k-matrix Dy such that its
columns are the partial derivatives d¢/0x;.
Most frequently, the Lebesgue majorized convergence theorem is used in the following situation.

Theorem 1.8.1. Let a function p(x,y) be given on the product G x G, summable with respect to y
for any x, and continuous with respect to x from G for almost all y, where G is an open subset of R®.
Let there exist a nonnegative function f from L(G) such that |p(z,y)| < f(y) for all z from G and
almost all y from G. Then the integral

sz/w%w@

G

defines s function continuous in G.
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If the above is satisfied, the function p(z,y) is continuously differentiable with respect to x, and its
partial derivatives Op/0x; satisfy the same conditions as ¢ itself, then ¥ (x) is continuously differen-
tiable and its derivatives can be computed under the integral sign:

oa, = | oa

Proof. The first assertion immediately follows from the Lebesgue theorem. To prove the second one,
it suffices to verify that the partial derivative with respect to the variable x; exists and coincides with
the function v; defined by the integral of the corresponding partial derivative of ¢. Therefore, without
loss of generality, one can assume that s = 1 and G is an open interval of the line. Fix a from G and
select a sequence {z,} of points of G such that z,, — a. We must show that the difference

blan) —la) [ D

T, — a Ox
G

(a,y)dy

tends to zero as n — oo, but this follows from the majorized convergence theorem applied to the
sequence of functions
p(n,y) —play) Oy

nly) = T, —a oz (@9).

The next results related to the change of the order of integration and the change of variables under
the integral sign are well known.

Theorem (Fubini). Let a function p(x,y) be summable over the product G x G, where G C R*. Then
it is summable with respect to y over G for almost all x from G, the integral with respect to y defines
a function summable over G, and

| etwwis| ar= [ olz.)dudy.

G LG GxG
If the function ¢ is nonnegative, then the inverse assertion also holds: the existence of the iterated
integral at the left-hand side of this inequality implies the summability of the function ¢ over G X G.

Theorem (on change of variables). Let D be an open subset of R* and a k-vector-function o(y) from
CY(D) realize its homeomorphism onto G = «(D). Then, for any function f(x) from L(G), the
function fla(y)]|(det Da)(y)|, where Da = (Ja;/y;)%, denotes the Jacobi matriz, is summable on D
and the relation

/f d:c—/f )]l det (D) (y)|dy

holds.

On smooth surfaces, the Lebesgue integral with similar properties can be defined with respect to
the (k — 1)-dimensional Lebesgue measure. For example, consider the unit sphere {2 consisting of
points y from R¥ such that |y| = 1. The transformation (r,y) — ry maps [r1,72] x Q to the spherical
layer r1 < |z| < ry and the previous two theorems for this transformation yield the relation

/ olz)dz = frk_ldr / o(ry)di 1y (1.8.5)
T1 Q

r1<|z|<re
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In particular, the function ¢(x) = |z|~® is summable in the ball |z| < R for o < k and is summable
in its complement for |a| > k :

Q Q
/ |z|”Ydx = e RF2 o<k, / |z| " Ydzx = e Rk a>k (1.8.6)
k—« oa—k
|z|<R |z|>R
Here mes (2 denotes the area of the (k — 1)-dimensional unit sphere Q.
A similar relation is also valid for the function ¢(z) = (In|z|)™|z|~®.
The following Green formula (of integrating by parts) is closely related to the integrating over
smooth surfaces.

Theorem (the Green formula). Let functions ¢; from C(D), 1 < j <k, be continuously differentiable
in a domain D bounded by a smooth surface I' and their partial derivatives Op;/0x; be summable in

this domain. Then
k 8g0 k
/ (Z 8m-> dz = / <Z @j(y)nj(y)> -1, (1.8.7)
p vt 7 Lo\

where the vector n(y) = (n1,...,ng) denotes the unit outer normal to the surface I' at the point y.

Denote by C™(D) the class of all functions ¢(z) continuously differentiable n times on an open set

D, i.e., functions such that all their partial derivatives

804Q0 aal—l—...—l—akgo

Oz Oz ... dzo’
where |a| = a1 + ... 4+ o < n, exist and are continuous at each point of the set D. Here the ordered
collection o = (avy, . .., ay) of nonnegative integers is called a multi-index of length |a.

The class C*°(D) of infinitely differentiable functions is defined as the intersection of classes C"
with respect to all n. The symbol C§°(D) denotes the class of infinitely differentiable functions ¢ such
that each one vanishes outside a compact set contained in D. Obviously, if ¢ € C§°(D), then the
intersection of all compact sets such that ¢ = 0 outside each one is also a compact set. This compact
set is called the support of the function ¢ and is denoted by supp ¢.

A broad class of infinitely differentiable functions can be obtained by means of averaging kernels.
Let a nonnegative function h(y) from C$°(R¥) be such that

h(y)=0 for |y/>1 and /h(y)dyzl. (1.8.8)
ly|<1

Such a choice is always possible. For example, one can assign h(y) = cel/ A=191*) for ly| < 1, where ¢
is the appropriate positive constant.

Assuming that a function ¢(z) is locally summable over R” (i.e., is summable over any compact set
K), consider the family of functions

(Tzp)(z) = Elk /h <a: . y> e(y)dy, 0<e<l. (1.8.9)
RF
Obviously, the last integral exists since, by virtue of (1.8.8), the integration domain is the ball B(z,¢) =
{y, ly — 2| <e}. If x varies in the ball |z| < R, then, arguing in the same way, one can integrate over
the ball |y| < R+ 1. Hence, due to Theorem 1.8.1, all functions T.¢ belong to the class C*(RF). Tt is
clear that if the function ¢ vanishes outside a compact set, i.e., has a compact support, then functions
T. possess the same property, i.e., belong to C§°(RF).
Family (1.8.9) is used to approximate the function ¢.

Lemma 1.8.1. Let a function p(x) be bounded and uniformly continuous on R*. Then T.o — o with
respect to the sup-norm as € — 0.

737



Proof. Since the function ¢ is uniformly continuous on R*, it follows that

w(e)= sup |p(z)—¢(y)] >0 as e—0.
le—y|<e

Using the substitution  — y = €z, represent (1.8.9) as follows:

(Tep)(z) = / h(2)p(a — ex)de.
Rk

Taking into account (1.8.8), we derive the relation

(Tep — 0)(z) = / hw)le(z — ey) — p(@)ldy,

ly|<1

which yields the estimate

T — oo < wle) / h(y)dy = w(e).
ly|<1

This estimate shows that T.¢ — ¢ with respect to the sup-norm as € — 0.

Let a domain D contain a compact set K such that the distance

=  inf -
"= eiiop ! Y
between K and the boundary of this domain is positive. Then, if a summable function ¢ is equal to
zero outside K, then the function T;¢ belongs to the class C§°(D) provided that ¢ < ¢ < r. Indeed,
for any point x, introduce the distance

d(z,K) = ylél}f( |z — y| (1.8.10)

between x and K. This function is continuous. Hence, K; = {z, d(x, K) < ¢} is a compact set
contained in D. If x ¢ K7, then the ball B(x,¢) does not intersect K. Hence, ¢ = 0 on this ball and,
respectively, (Tz¢)(x) = 0. Thus, the function T.¢ from C*°(D) is equal to zero outside the compact
subset K of D, i.e., it belongs to C°(D).

In the same way, if ¢ = 1 on the compact set K1 and ¢ = 0 outside this set, then, if ¢ is sufficiently
small, then the nonnegative function x = T.¢ belongs to C§°(D) and is identically equal to 1 on the
compact set K. Functions of this kind are called cut-off functions. Their value is as follows: for any
function ¢ from C*°(D), the product x¢ belongs to C§°(D).

Combining the above reasoning with Lemma 1.8.1, we see that the supremum at (1.8.2) can be
taken over ¢ from C§°(D). Indeed, due to the specified lemma, for any function ¢ from Cy(D), the
sequence T¢ belongs to C3°(D) (provided that € are sufficiently small) and uniformly converges to ¢
as e — 0.

Also, cut-off functions lead to the so-called partition of unity.

Lemma 1.8.2. Let the union of open sets Vq,...,V,, contain a compact set K. The there exist
nonnegative functions x; from C3°(V;) such that their sum is identically equal to 1 on K.

Proof. Since the compact set K; = V; N K is contained in V}, it follows that there exists a cut-off
function ¢; from C§°(V;) identically equal to 1 on Kj. Therefore, the nonnegative function ¢ =
01+ ...+ @ from Cgo(Rk) is greater than or equal to 1 at any point x of K. Hence, there exists an
open set V' O K such that p(z) > 1/2 for any x from V. Therefore, 1/¢ belongs to C°°(V) and the
functions x; = ¢,/ satisfy the claims of the lemma.
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Introduce the notion of generalized functions in a domain D. To do this, define the following notion
of the convergence in the class C3°(D). The sequence ¢y, tends to ¢ in this class as k — oo if there
exists a compact set K C D such that, for sufficiently large k, the supports of the functions 5 and
the function ¢ are contained in K and all partial derivatives satisfy the limit relations

(0% (%
%pr _ 0%
Ox® ox®
as k — oo uniformly on K.

Linear functionals u(¢) over the class C5°(D) continuous with respect to this convergence are called
generalized functions. The class of such functionals is a vector space. It is denoted by (C§°)'(D).

If a function f is locally summable on D, i.e., is summable on any compact subset K of D, then
the relation

f(o) = / Fw)o(y)dy (18.11)
D

defines a linear functional f over the class C§°(D). Obviously, it is continuous with respect to the
introduced convergence, i.e., it is a generalized function. As we note above, the supremum at (1.8.2)
can be taken over all ¢ from C§°(D). Therefore, if f =0, i.e., f(p) = 0 for all ¢ from C$°(D), then
f = 0 almost everywhere. Thus, the generalized function f is uniquely defined by f and it can be
identified with f. In the sequel, such an identifying is assumed. Generalized function of such kind are
called regular.

If f € C®DD) and u € (C§°) (D), then the linear functional a(y) = u(fy) is also a generalized
function. It is denoted by @ = fu and is called the product of f and u. Obviously, the convergence
¢©n, — @ in C§° also implies a similar property for partial derivatives. Therefore, the differentiation
operation in the class of generalized functions can be introduced as follows:

;Z' (9) = —u <§;’;> . (1.8.12)

For regular generalized functions u from C'(D), this operation corresponds to the classical differenti-
ation. Indeed, let ¢ € C§°(D). Select a domain Dy with a smooth boundary such that Dy C D and
@ € C3°(Dy). Then, from the Gauss-Ostrogradskii relation, it follows that

ou B dy
/8$j90dy B _/ual‘jdy
D D

since the integrals over 9Dy vanish. According to the definition of regular generalized functions,
given by (1.8.11), this relation corresponds to (1.8.12). Partial derivatives 0“u/0z“ of any order
la| = o + ...y are defined in the same way.

In the vector space (C§°)' (D), introduce the notion of the pointwise convergence as follows: u, — u
if up () — u(p) as n — oo for any ¢ from C3°(D).

Theorem (on the completeness of the space of generalized functions). Letu, € (C§°) (D), n=1,2...
and the limit u(y) = lim u, (@) ezists for any ¢ from C§°(D). Then u € (C§°)' (D).

Assume that there exists an open subset Dy of D such that a generalized function u vanishes on
any function ¢ from C§°(Dyp). Then we say that v = 0 on Dy. The complement to the union of all
open sets such that uw = 0 on such a set defines the support supp u of the generalized function u. An
example of a generalized function with a compact support is the J-function § = §, concentrated at a
point a from D. This is defined by the relation

da(p) = p(a), ¢ € Cy”. (1.8.13)

Its support consists of the unique point {a}.
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Being a linear functional, a generalized function u with a compact support can be defined on the
whole class C*°(D) in a natural way. Indeed, consider a cut-off function x from C§°(D) equal to 1 on
supp u. Then xyu = u and one can assign u(y) = u(xy), ¢ € C>°(D). Thus, it is reasonable to denote
the class of generalized functions with compact supports by (C°°)'(D). According to the next lemma,
the action of a generalized function with a compact support on functions depending on parameter
commutes with the differentiating and integrating with respect to this parameter.

Lemma 1.8.3. Let u be a generalized function with compact support suppu C D, a domain G be
a subset of R, and a function o(x,t) belong to C°(G x D). Then the function ¥(x) = u¢p(x,t)]

belongs to C°(G),
oy Op .
0z, Uy <8zz> , i=1,...,s, (1.8.14)

and

/1[)(:3)61:1: =u /go(:r,t)da: (1.8.15)
Q Q
for any compact subset Q of G.

Here the symbol u; means that u acts on a function with respect to the variable t.

Proof. For simplicity, we consider only the one-dimensional case where G is and interval of R. Let
a cut-off function x from C§°(D) be equal to 1 on the support suppu. If z € G and z, — z, then
X(t)p(zn,t) = x(t)e(z,t) in C§°(D). Then the function ¢ is continuous at the point z. In the same
way, we have the following limit relation:

90(1‘ +, t) - go(:n, t)
t
X(t) - O
in C§°(D) as € — 0. Therefore, we have the limit relation

Yk, Tele et —vlnt] L, (%)

€ € Ox

implying (1.8.14).
Further, let @ = [a,b] € G. Decompose this segment into n equal parts by points zg = a,
Z1,...,Tn = b and consider the Riemann sum

Swp= vl
1

Obviously, if n — oo, then

n

OS2 = ) > x(O(nt) > [ (el
1
Q
in C§°(D). Then

Suth = ul(Su) (£)] — / o, t)dz
Q

as n — 0o, which leads to the relation (1.8.15).
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1.9. Second-Kind Fredholm Equations

Illustrate properties of Fredholm operators on the example of second-kind integral equations. As-
suming that G is a compact subset of R¥ and q(m y) € C(G x G), consider the integral operator

/ y)dy, =€, (1.9.1)
|z — ylo‘

where 0 < a < k. By virtue of (1.8.6), this integral exists for any bounded measurable function ¢. It
is obvious that, without loss of generality, one can assume that

k/2 <a<k. (1.9.2)

If there exists a (sufficiently small) ¢ such that g(x,y) = 0 for |[x—y| <, then the kernel ¢(x, y)|x—y| ™

of the integral operator is continuous on G x G and the operator T is compact in the space C(G), i.e.,

belongs to 7(C). This fact easily follows from the Arzela—Ascoli theorem since, for any sequence ¢,

bounded in C(G), the function sequence (T'¢,,)(x) is uniformly bounded and equicontinuous.
Actually, this also holds in the general case.

Lemma 1.9.1. For any function q from C(G x G), the operator T(q) is compact int the space C(Q).

Proof. Let | - |p denote the sup-norm of functions. Then, by virtue of (1.8.6), we have the estimate
|(Te)(z)| < Clglo|elo with the constant
—sup/lﬂf— |~ dy.
zeG

1Telo < Clglolelo- (1.9.3)

Thus, the following inequality holds:

In the same way, one can verify that
Telo < C6*|glolelo (1.9.4)

under the additional assumption that ¢(z,y) = 0 provided that |z — y| > 6.

Let a nonnegative continuous function x,(s) not exceed 1, x,(s) =0 for |s| < 1/2n, and x,(s) =1
for |s| > 1/n. Then the operator T'(gy), where ¢,(x,y) = xn(Jz — y|)q(z,y), is compact in the space
C(G). Applying (1.9.3) to the difference T'(q) — T'(gn) = T'(¢ — qn), we obtain the estimate

IT(q — qn)lo < Cn® *|qlolpol. (1.9.5)

It shows that the sequence of continuous functions 7'(g, )¢ uniformly converges to T'(¢)¢. Then the
last function is also continuous. Then, taking into account (1.9.3), we conclude that the operator 7'(q)
is bounded in the space C. Actually, the estimate (1.9.5) means that the sequence T'(g,,) of operators
from T(C) converges to T'(q) with respect to the operator norm. Then, due to Theorem 1.2.3, we
conclude that the operator T'(q) is also compact.

Combining Lemma 1.9.1 with the Riesz—Schauder theorem (see Sec. 1.3), we see that 1 —T'(q) is a
Fredholm operator and its index is equal to zero. It is easy to see that the operator T'(¢q) admits an
associated operator with respect to the bilinear form

(0.0 = [ ey
G
and the associated operator belongs to the same type:

[T(@)) =T(@), alz,y) =a(y,).
Hence, the associated operator [1 — T'(q)]’ = 1 — T(q) is also a Fredholm operator of index zero and
N =1—-1T(q) is an associatedly Fredholm operator (due to Theorem 1.3.2).
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Thus, the following classical alternatives are valid for the second-kind Fredholm equation:

p(z) - [T(@)¢el(z) = f(z), =€ (1.9.6)
(1) the homogeneous equation corresponding to (1.9.6) has a finite set of linearly independent
solutions 1, ..., p, from C(G);
(2) the homogeneous associated equation 1(x) — [T'(¢)¥](x) = 0 has the same amount of linearly
independent solutions 1, ...,1, € C(G);
(3) the heterogeneous equation (1.9.6) is solvable if and only if (f,4;) =0, 1 < j <n.
If the kernel ker[1 — T'(q)] contains only zero element, then the operator 1 — T'(q) is invertible. Our
main aim is to verify that the inverse operator has the same form, i.e., [1 —T(¢)]~* = 1 —T(q1), where
¢ € C(G x Q).
To do this, introduce the following bilinear operation p x ¢ in C'(G x G):

(p*q)(z,y) = [z — yl“/ |$p(_$;f2(|1;ziyz)|adz, x #y. (1.9.7)
G

This definition is motivated by the fact that the change of the order of the iterated integrating
T(p)[T(q)¢] leads to the relation

T(p)T(q) =T(px*aq). (1.9.8)
First, we must verify that the result of operation (1.9.7) remains in the class C(G x G).
Lemma 1.9.2. Map (1.9.7) boundedly takes C' x C into C' and the linear operator R(p)q = p * q is
compact in the space C(G x G) for any fixed p.
Proof. The scheme of the proof is the same as for Lemma 1.9.1. For x # y, we have the inequality
|z — y|*dz

* <
(o )| < oo [T
RFE

where the integral is treated as improper with respect to z = x, 2 = y, and z = oo. By virtue of
(1.8.6) and (1.9.2), this integral exists. The change z =y + |z — y|z’ reduces it to the form

d _
|$—y|k_a/ : , e= 7Y
[ elelz el T eyl

R

Obviously,
1 Y
<2%Clz—e|™, 1/2< 2| <2
|2|%]z — el ’ ’
272 el > 12

Therefore, taking into account (1.8.6), we conclude that the last integral is bounded uniformly with
respect to |e| satisfying the condition |e| = 1. Thus, we have the estimate

Ip * qlo < Clplolglo- (1.9.9)
If g(z,y) =0 for |z — y| > I, then, in the same way, we obtain that

dz

< ko .
[(p* q)(z,y)| < |z —y*“Iplolalo 2] |z — eo

lz—yllz|<é

For |z — y| < v/d, we have the obvious inequality

& — y[Fe / L asawﬂ”{/ o
2] |2 — el J ez =l

lz—yllz|<é
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If |z — y| > /6, then the ball {|z| < §/|z — y|} is contained in the ball {|z| < v/§ and, therefore,

dz < Rh-ogl—a)/2,

k—a
vl 2o e — el =

|z —
lz—yllz|<é
where R is the diameter of G. This yields the estimate
[p # qlo < Cplolglod™ ">, (1.9.10)
In the same way, this estimate is proved in the case where p(z,y) = 0 for | — y| > 0.
As in the proof of Lemma 1.9.1, define p,, and ¢, by p and g respectively. Then take the relation
P*q—Pp*qn=(p—DPn)*q+Pn*(q— qn)
and apply the estimate (1.9.10) to the terms at its right-hand side. We obtain the inequality
P * ¢ = Pn * qn| < 200 "R |plo|qlo. (1.9.11)

Hence, the sequence of functions p,, * g, from C(G x G) uniformly converges to p * g. Combining this
result with (1.9.9), we conclude that the bilinear map * boundedly takes C' x C into C.
Represent the operator R, ¢ = p,, * ¢ in the form

(R = [0 g
G

where 7, (z,2) = pp(z, 2)|z — 2| 7% is a continuous function. If the variable y is treated as a parameter,
then this operator is expressed by (1.9.1), where the function ¢(z,z) is replaced by the function
rn(x, z). Hence, similarly to the proof of Lemma 1.9.1, we verify that R, is a compact operator in the
space C(G x @). Similarly to (1.9.11), one can obtain the estimate

|R(pn)g — R(p)glo < Cn'®/2|p|o|q|o

implying that the sequence R(p,,) converges to R(p) with respect to the operator norm. Hence, R(p)
is a compact operator.

Now we present the main result.

Theorem 1.9.1. There ezists a discrete (at most countable) set A C C such that the operator 1—\T'(q)
is invertible for any A outside A and

[1=AT ()] =1="T(ry), (1.9.12)

where the function r,(z,y) belongs to C(G x G), is analytic with respect to z in the open set C\ A,
and admits poles at points A of A.

Based on the notion of analytic vector-functions valued in Banach spaces, introduced in Sec. 1.4,
we complement the properties of Fredholm operators, listed in Sec. 1.3, by the following result.

Theorem 1.9.2. Let X be a Banach space endowed with a duality with respect to a bilinear form (., )
on X x X. Let an operator-function N(X) from L(X) be analytic with respect to X in the disc |\| < 1
and N(0) be a Fredholm operator of index zero. Then there exist r from (0,1) and a positive integer
m such that the operator N()) is invertible for 0 < || < r and the operator-function N™N~1(\) is
analytic in the disc || < r.

Proof. By assumption, the space X contains linearly independent vector systems xi,...,x, and
Y1, -, Yn such that

ker N(0) = [z1,...,2n], X =[y1,...,yn] & Im N(0). (1.9.13)
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Let a system 21, ...,Z, be biorthogonal to z1,...,z,. Consider the operator
n
NNz =Nz - (2,3)y;, z€X. (1.9.14)
j=1
By virtue of (1.9.13), the relation N(0)z = 0 implies the relations N(0)z = 0 and (z,zj) =0,1<
7 < n, which are equivalent to the relation x = 0. Thus, N (0) is a Fredholm operator of index zero
and its kernel contains only zero. Hence, it is invertible. Then there exists r from (0,1) such that

the operator N()) is invertible provided that |A| < r. It is clear that the operator-function N~(\) is
analytic in the disc |A| < 7. From (1.9.14), it follows that

n

N Nz =2 - Y@ @50, 50) = N1y, (1.9.15)
j=1
Consider the n x n-matrix A()) consisting of the elements A;;(\) = d;; — (z4,y;(X)). Obviously, it is
analytic in the disc |A\| < r. Let m be the order of the zero of the function det A(\) at the point A =0
(if det A(0) # 0, then we assign m = 0). Select a (sufficiently small) positive r such that det A(\) # 0
provided that 0 < |A\| < r. Then the function B(\) = A™A~()) is analytic in the disc [\ < r. If
0 < |A| < r, then the equation

n

w =Y (2,850 =y (1.9.16)
j=1
is uniquely solvable. Indeed, multiplying it by Z; scalarly, we obtain the system A(\)§ = 7, where

n; = (y,%;), for the vector & from C", consisting of the elements & = (x,Z;). Converting this system,
we obtain the relation

k=1
Thus, we obtain the following inversion formula for system (1.9.16):
z=y+A" Y BNy &)y (N
1<j5,k<n

Denoting the right-hand side of this relation by A™™M(A)y and taking into account (1.9.15), we
conclude that the operator N()) is invertible and N=1(\) = A™™ M (A\)N—1(\).

Proof of Theorem 1.9.1. Fix a complex A\g and apply Theorem 1.9.2 to the operator N(z) =1 — (z +

X0)T'(g). We obtain that there exist a positive r and a nonnegative integer m such that the operator

1—AT(q) is invertible for 0 < |A — \g| < 7 and the operator-function (A — Xg)™[1 — AT (q)] ! is analytic

in the disc |A — X\o| < 7.

By virtue of (1.9.8), the operator relation [1 — T'(Aq)|[1 — T'(r))] = 1 is equivalent to the relation

AG+ 1y = Ag * 7). (1.9.17)

Let us treat this relation as an equation with respect to ry. If 7 is another solution of it, then

[1=TAIL =T(ra)] =1 =TIl = T(ry)] = 1.

Since the operator 1 — T'(Aq) is invertible for A # Ao, it follows that zy = 7). Thus, Eq. (1.9.17)
admits at most one solution. In the notation of Lemma 1.9.2, it can be written in the form

[1 = AR(q)]rn = —Aq,

where R(q) is a compact operator acting in the space C(G x G). Therefore, Eq. (1.9.17) is uniquely
solvable.
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Thus, for any fixed complex \g there exist a positive r and a function ry(z,y) from C(G x G)
analytic with respect to A in the domain 0 < |\ — A\g| < r such that

[1=AT(q)]"' =1—="T(ry)

and, at the point A = Ag, the function r)(z,y) admits a pole of order not exceeding m.
Since the point \g is selected arbitrarily, this implies the claim of the theorem.

in [55], second-kind Fredholm integral equations are explained in more detail.

CHAPTER 2
HOLDER SPACES

2.1. Holder Condition

Let C(G) denote the class of all functions o(z) continuous on the set G C RF. If we add a
requirement of the uniform continuity on G, then any such function ¢ is extended as ¢ from C(G).

Indeed, if a sequence x,, converges to z from G\ G, then, due to the uniform continuity on of ¢, the
number sequence ¢(z,,) is a Cauchy sequence. Therefore, there exists a limit lim ¢(z,) independent
of the choice of the sequence; denote this limit by @(z). Assigning ¢(x) = ¢(z), © € G, we obtain the
function ¢; it is easy to see that it is continuous on G.

Functions satisfying the Holder condition form a more narrow class than the class of uniformly
continuous functions. We say that a function ¢ satisfies the Hélder condition with power p from (0, 1)
(if p = 1, then we call this the Lipschitz condition) on a set G, if the estimate

lp(z) —o(y)| < Clz -y, z,y€G, (2.1.1)

where C' is a positive constant independent of x and y, is satisfied. The least C in this Holder condition
is equal to

P, =  sup (@) = e(y)l (2.1.2)

z,y€G, x#y “T - y‘#

This relation determines a seminorm, i.e., [],, satisfies all norm conditions (1)—(3) from Sec. 1.1 except
for the first one: if [p],, = 0, then the function ¢ is constant on the set G. Notation (2.1.2) is also used
in the case where = 0: in this case, [p]g is the least upper bound of |p(z) — ¢(y)| and it characterizes
the oscillation of the function ¢ on the set G. To indicate the dependence of seminorm (2.1.2) on G,
we use the notation [¢], q.

From the definition given by (2.1.1), it is clear that the function ¢ is uniformly continuous on the
set G; therefore, it is extended to the closure G as a continuous function satisfying the same estimate.
This is why the Hélder condition is usually considered for closed sets G (without loss of generality).

Consider several examples. For 0 < s < 1, the inequality 1 — s# < 1 —s < (1 — s)* shows that
[¢], = 1, where ¢(t) = t* on the positive semiaxis. In particular, the following double inequality
holds:

[z = ly "] < [l=] = [yl < o —yl" (2.1.3)
Here, the second inequality follows from the triangle inequality; it means that the function ¢(z) = |x|
satisfies the Lipschitz condition with constant [¢]; = 1. Another example of a function of such type
is the distance d(z, F') between a point = and a set F:

d(z,F) = inf |z — z|. (2.1.4)
z€F

Let us prove that it satisfies the Lipschitz condition:
|d(z, F) —d(y, F)| < |z —yl. (2.1.5)
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Indeed, if z € F, then d(z) < |z — y| + |y — z| due to the triangle inequality and, therefore, d(x) <
|z — y| + d(y). Since the points x and y can be swapped, it follows that (2.1.5) is valid.

Note that the function ¢(x) = d(x, F') vanishes at a closed set F' and is positive outside it. It is
easy to see that its seminorm [p]; is equal to 1.

Similarly to (2.1.4), one can introduce the distance between sets as follows:

d(E,F)= inf —yl.
(B, F)= _inf |-y

If these sets are closed and disjoint and one of them is bounded (i.e., compact), then d(E, F') > 0.

The following simple estimates are valid for seminorms [ ], of products and superpositions of func-
tions:

(a) [l < lelo[¥ly + [elultlo;

®) [foelue <[fliplelue, «(G) € D; (2.1.6)
(@) lpoalz < luclall s al@CG.
Note that the Holder condition can be also used for vector-functions ¢ = (p1,...,ps) valued in R®.

In this case, |p(z) — ¢(y)| on the left-hand side of (2.1.1) is replaced by a fixed norm of the space R®.
Then ¢ from (2.1.6)(b) can be treated as a vector-function valued in D C R*, while « from (2.1.6)(c)
as a vector-function values in G C RF.

The interpolation property

el < [ele M e, 0<p<, (2.1.7)

of the Holder seminorm immediately follows from the relation

|z —y|# Ix—yV ’
This inequality is well known; it is frequently used in the operator interpolation theory (see [33]).

A detailed explanation of properties of functions satisfying the Holder condition is provided by [45].
Most frequently, these spaces occur in investigations of differential equations (see, e.g., [34, 36]). Below,
we provide results not covered by the above books; regarding these results, it is not always possible
to provide pertinent references.

Rather frequently, it suffices to verify the Holder condition locally at neighborhoods of points. For
example, let G be bounded and for any point a from G there exist a ball B(a) centered at this point
such that ¢ satisfies the Holder condition with power p inside this ball. Then one can select a finite
set of such balls B(a;), 1 < j < m, covering G. Then ¢ satisfies the Holder condition on the whole
set (see the next theorem).

Let a neighborhood of co be treated as a set containing the exterior of a ball.

Theorem 2.1.1. Let a closed set G be contained in the union of open sets Vq,...,V,, such that one
of them is a neighborhood of oo if G is unbounded. Then the estimate

[QD]M,G < Omax(|90|0,G7 [@]H,Gﬂvlv SRR [@]M,Gﬂvm% (218)

where C' is a positive constant independent of @, holds.

Proof. There exists a positive r such that for any pair =,y of points from G such that the distance
between them does not exceed r there exists ¢ such that the specified pair lies in G;. Indeed, assuming
(to the contrary) that no such i exists, we see that there exist sequences x,, and y, from G such that

—y, — 0 as n — oo and, for any n, the points x,, and y, belong to two different sets V;. Passing
to subsequences, one can assume that either both sequences converge to a same point a from G or
|x,| — oco. Let a set V; contain a in the former case and be a neighborhood of oo in the latter one.
Then, for both cases, both points x,, and y, belong to a same set V; provided that n is sufficiently
large, which leads to a contradiction with our assumption.
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Thus, for any pair z,y of points from G such that the distance between them does not exceed r
there exists ¢ such that the said pair lies in G;. Therefore,

p(2) — ()l —y[™ <max(lgluc, - [Pluen)

provided that = € G, y € G, and |z — y| < r. On the other hand, for |z — y| > r, we have an obvious
inequality

lp(z) — ez =yl < r Hlploc-

Then, in (2.1.8), one can assign C' = max(1,r™#).

In the general case, if G is represented as the union of sets G1,...,G,, and a function ¢ defined
on G satisfies the Holder condition on each set G, then a problem to find whether this condition is
satisfied on the whole set G arises. The following example shows that it is not always guaranteed.

Let G = Go U Gy C R?, where Gg is the segment {zy = 0, 0 < x; < 1}, while Gy is the arc
{xg = 2%, 0 <x; <1} of a parabola. On G, consider the function

(x)_ 0, x € Gy,
v = r1, =€ Gy.

It is easy to see that this function satisfies the Lipschitz condition on G;. On the other hand, for the
points x = (¢,0), y = (¢,t?) from G, the expression

lp(x) — p(y)||z —y| T+ =t

is bounded for p > 1/2.

However, there are assumptions about the set G, guaranteeing the fulfillment of the Holder condition
on the whole set.

Any homeomorphic image y(I) of a segment I of the line R is called a simple (or Jordan) arc I' from
RE. The map 7 itself is called an arc parametrization; it determines the natural order of arc points,
i.e., the orientation of the curve. We say that I' is a rectifiable arc if it admits a parametrization 7 such

that it is a bounded-variation vector-function or, which is the same, there exists a positive constant
C such that

Y(t1) = ()| + [v(t2) = v(E3)[ + - + [y (1) = ()| < C

for any collection t1,ts,...,t, of the segment I such that t; < to < ... < t,,. From the geometrical
viewpoint, the above sum is the length of a broken line inscribed in the curve I'. For this reason, the
upper bound of this sum is called the length of the arc I'; notation [(T").

We say that a connected set is linearly connected if any pair of its points can be connected by a
Jordan arc. For example, domains are linearly connected. This definition can be strengthened. A set
G is called uniformly connected if there exists a positive constant M such that any two points z and
y from G can be connected by a rectifiable arc I'; , from G such that its length admits an estimate

I(Tyy) <Mz —vy|, zyed. (2.1.9)

This definition depends on the constant M. For this reason, such sets are also called M -uniformly
connected; another term is sets reqular in the Whitney sense (see [28]).

An obvious example of a uniformly connected set is a convex set such that a segment can be taken
instead of the arc I'; 4, i.e., inequality (2.1.9) becomes the equality with M = 1.

Theorem 2.1.2. Let an M -uniformly connected set G be the union of its subsets Gy,...,Gp,. Then
the estimate

[Pl < (m = 1)M* max([¢]ucys - [Plnenm) (2.1.10)
holds.
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Proof. Without loss of generality, one can assume the sets G and G1,...,G,, to be closed. Let x € G,
y € G, and I' =T'; , be the arc from (2.1.9). Then this arc contains points z1 = x, z2,...,z, = v,
n < m (the order corresponds to its orientation), such that any two neighboring ones belong to a same
set G, k = 1,m. This fact is easily proved by means of the induction with respect to m as follows.
For m = 1, no proof is required. Assume that the assertion holds for m — 1 sets GG, and consider
the case where the sets are Gy, ..., G,,. Without loss of generality, one can assume that the points x
and y belong to different sets Gy; for definiteness, let x ¢ G,, and y € G,,. Take a point 3/ from T’
such that it is closest to x among points of G,,; this is possible since G,, is closed. Since the arc I' is
connected, this point also belongs to the set G; U...UG,,_1. Then the arc I'' C I" with the ends z, 1/
is covered by m — 1 sets GGy, ...,Gm,m_1 and it remains to use the inductive assumption.

Thus, let any two neighboring points of the arc I', belonging to the finite sequence =1 = z, o, .. .,
Tn, =1y, n < m — 1, belong to one set of G1,...,G,,. Then

(@) = e < le(z1) = p(e2) + .- + |p(zn-1) — p(zm)|

< max(|@lucys - lelpen ) ([0 = zol* + . |zn1 — 2nf").
Taking into account the inequalities |x;—1 — ;| < (I ) and (2.1.9), we obtain the estimate (2.1.10).

To illustrate this theorem, consider the following case. Let G be an arbitrary set and a function ¢
from C*(G) vanish at OG. Then the function ¢ extended by zero to G = RF satisfies the assumption
of the theorem with G1 = G, G2 = R*\ G, and M = 1. Then [3], = [¢],.¢ due to (2.1.10).

From the proof of Theorem 2.1.1, we see that there exists a positive r such that the seminorm

lp(z) — (vl
[, o= sup (2.1.11)
G z,YeQG, |lz—y|<r |x - y|M

is finite. The following estimate with respect to this seminorm is obvious:

[£lu < max(r~*[¢lo, [#],)-

If the set G is connected, this estimate can be strengthened.

Theorem 2.1.3. If G is a bounded connected set, then the estimate

(el < Clel,,

where C' is a positive constant depending only on r and the diameter R of the set G, holds in notation
(2.1.11).

Proof. Tt suffices to estimate [¢]o via [¢]},. Let a closed ball B of radius R contain the set G. This ball
can be covered by the union of a finite set of open balls By, ..., By, of radius r/3 each. Obviously, the
least amount m of such balls depends only on r and R. Among these balls, take the ones such that
their intersections with GG are nonempty; denote their union by D. Since G is connected, it follows
that the set D is also connected. In particular, each two points x and y from G can be connected by
an arc I' such that I' C D. Repeating the arguing from the proof of Theorem 2.1.2, one can select
points 1 = x, T9,...,x, =y, n < m, such that any two neighboring points x; and z;1 belong to a
same set Bj, such that B; C D. By assumption, for any k£ between 1 and n there exists a point 2
from Bj, NG such that

|2k — zit1] < |2k — @k + |2k — Tog1| + 2641 — Tpg1| < 7

Assigning z; = = and z, = y, we obtain that
n—1

lo(x) — o) < el Y 12k — 2raa [ < nrtfe]),,
k=1

which completes the proof of the theorem.
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The next lemma provides an important property of Holder functions.

Lemma 2.1.1. Let a function ¢ (x,y) satisfy the Hélder condition with power v on the set G X G and
vanishes for © = y. Then, for 0 < u < v, the function yo(z,y) = |z — y|* Y (z,y) extended by zero
for x =y satisfies the Holder condition with power p and admits the estimate

[Yol < 6]l (2.1.12)
Proof. First, we note that

[Y(z,y)l = ¥z, y) — Pz, 2)| < [Plo|z—yl”

and, therefore, ¢ x,y) = 0 as z —y — 0.
Fix xy from G and consider functions ¢(z) = ¥ (x, ) and pg(z) = ¥o(x, o) of one independent
variable x. These functions are linked by the relation ¢o(z) = |x — zo|* Y ¢(x). Let us prove that

[polu < 3[plu. (2.1.13)

Obviously, it suffices to prove this estimate under the assumption that zo = 0 (otherwise, it suffices
to apply the change 2’ = = — z¢, leaving the seminorm [-], unchanged). Let z € G, y € G, and (for
definiteness) |y| < |z|. For brevity, assign ¢ = v — u. Then

_5‘

lpo(2) = wo(y)l < le(x) = e@)llz] + le@)] | 2] = ly]
Using the inequality |¢(y)| < [¢], ||+, we obtain that

[p0(x) = po(y)] <lolA, A= o =yl (2l = Pl

|z — y[~ || |z — y|#|x|®
It is obvious that
A < Uel+1yD®  (2* = lyF)lyl _ (148 +1 1t
-z (|| = lyl)#|=|® (1—1t)’

where t = |y|/|]z] < 1. Since 1 —¢° <1 —1¢ < (1 —t)*, it follows that A < 3 and, respectively, the
estimate (2.1.13) holds.
Using the estimate (2.1.12), we obtain the inequality

W}O(xa y) - %(m,a y/)| < WO(% y) - 1/}0(:1:,7 y)‘ + W}O(x/? y) - 1/10(33/7 y,)‘
Applying (2.1.13) to the terms at the right-hand side, we obtain the inequality
[Yo(z,y) — vol(a’,y) < B[] (Jz — 21" + [y — y'|").

Here, neither |2 — 2’| nor |y —1/| exceeds the distance between the points (z,y) and (2/,y') in R* x R¥,
This yields the estimate (2.1.12).

To conclude, we complement Theorem 2.1.2 as follows. Any set K containing the ray {7 + t(z —
7), t > 0} for any point x of K is called a cone with vertex 7.

Lemma 2.1.2. Let K1 and Ky be closed cones in RF such that the only their common point is their
vertex 7. Then the number

r=min[d(K; NQ, K2),d(K2NQ, K1),
where Q denotes the unit sphere {€, €] = 1} in R¥, is positive and
|21 — 22| > r(lzr — 7|+ |22 — 7)), z; € Kj. (2.1.14)
In particular, if a set G is contained in K1 U Ko, then

[¢lue < rFmax(|olu,anky, [€luenks)- (2.1.15)
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Proof. Without loss of generality, one can assume that 7 = 0. Since Kj N Ko = {0} by assumption,
it follows that the intersection K7 N 2 is a compact set disjoint with Ks. Therefore, the distance
d(K1N8Q, K9) between these sets is positive. Hence, the number r is also positive. Thus, the inequalities
|z1 — 2| > r|z|; hold for all z; from Kj, j =1,2. Adding these inequalities, we obtain (2.1.14).

Let a set G (without loss of generality, we assume that it is closed) be contained in K; U K3. Then
the following inequality holds for any z; from G N Kj, j =1,2:

p(21) = p(@2)] < lp(21) = P(0)] + |9(0) — p(a2)] < max(lgluc: llne;) (22" + |z2]").

Taking into account the fact that 1 + t* < (1 + ¢)* provided that ¢ > 0, we combine the last double
inequality with (2.1.14) to deduce that

lp(w1) — @(x2)] < r7Hmax(|¢luc, l¢lua, )z — x|

Obviously, a similar inequality holds in the case where x; and x5 belong to G N K;. Thus, we obtain
the estimate (2.1.15).

2.2. Holder Spaces C*(G)
In C(G), consider the class of all bounded continuous functions, denoted by C°(G). Obviously, this

is a Banach space with respect to the sup-norm

llo = sup [p(z)]. (2.2.1)
zeG

If the set G is compact, then the boundedness requirement for the functions can be omitted in the
given definition and, respectively, the sup-norm can be replaced by max |p(z)|. However, if the set G
is not compact, then C(G) and C%(G) are different classes. In the general case, no requirements are
imposed on the set GG; most frequently, it is assumed to be closed or open.

By C*(G), 0 < u < 1, denote the space of all bounded functions ¢ satisfying the Holder condition
with power y on G. This space is endowed with the norm

lelen = lelo + @]y (2.2.2)

For y1 = 1, the similar class of Lipschitz functions is denoted by C%!(G). This class is different from
the class C19(G) of continuously differentiable functions. A similar notation C* = C%* is also used
in the case where 0 < p < 1. In particular, this notation is important for the definition of Holder
spaces of differentiable functions (see Sec. 2.7 below). In the sequel, unless the opposite is stated, it
is assumed that 0 < p < 1.

Let us verify that C%* is a Banach space for any such p. Let ¢, be a fundamental sequence in
CO*(@), i.e., for any positive ¢ there exists a number N such that |, — ¢m|, < € provided that
m > N and n > N. Due to the completeness of the space CY, this implies that there exists a function
¢ from C° such that the said sequence converges to ¢ with respect to the sup-norm. For any fixed
and y from G, the inequality |(¢n — ¢m)(x) — (pn — ©m)(Y)| < €]z — y|* holds provided that m and
n are positive integers. In the last inequality, we pass to the limit as m — oo. We obtain a similar
inequality for ¢, — ¢. It shows that ¢ belongs to C%#*(G) and |y, — ¢, — 0 as n — oco.

From inequality (2.1.6)(a), it follows that norm (2.1.2) possesses the property ||, < |¢|u|¥|.,
i.e., that the space C* is a Banach algebra with respect to multiplication. Assuming that elements of
this algebra are complex-valued scalar functions, we can easily verify that the inequality igf lp(z)] >0

is a necessary and sufficient condition of their invertibility. This obviously follows from (2.1.6)(b).
Relation (2.1.6)(c) means that the superposition T ()¢ = p o« is a linear bounded operator operator
from C*(G) to C*(G) and its norm does not exceed [o/],,.

In the interpolation inequality (2.1.7), change [p]o and [p], for their maximums. We obtain the
following estimate for Hélder norms:

llen < 2[plev, p<v <1 (2.2.3)
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Another application of this inequality is related to the approximation operator T. introduced at
Sec. 1.8. The claim of Lemma 1.8.1 about this operator can also be extended to the case of Holder
spaces.

Lemma 2.2.1. If ¢ € C*(R¥) and 0 < pu < v, then T.p — o with respect to the norm of the space
CH(RF) as e — 0.

Proof. Proving Lemma 1.8.1, we found the estimate for the sup-norm of the difference 1. = T.p — ¢:
[e|lo < w(e), where w denotes the continuity modulus
w(e) = sup |p(z) — oyl
lz—y|<e
of the function ¢. If p € C¥(R¥), then it is obvious that w(e) < [p],€”. Hence, [t:]o < [¢],€”. Due to
(2.1.7), this implies the estimate

[eli < Q@lelue”) Y [l = 26"y

completing the proof of the lemma.

Inequality (2.2.3) shows that a the family of Banach space (C*) monotonously decreases with respect
to the embedding. Then it is convenient to introduce the class

cro=|Jomte, o<p<t, (2.2.4)
e>0

of functions satisfying the Holder condition with a power exceeding p. For p = 0, this class is denoted
by C*t9. In [17, 45], the class C*° is denoted by H.

The following important property of Holder spaces is also a consequence of (2.1.7): if a function
sequence ¢, is bounded in C” and converges to a function ¢ with respect to the sup-norm, then
w € C” and ¢,, — @ in C* for any p such that pu < v.

Indeed, by assumption, [¢,], < C for all n. Passing to the limit as n — oo in the inequality
lon () — en(y)| < Clz —y|”, we obtain that ¢ € C¥. Changing the function ¢ for ¢ — ¢, in (2.1.7),
we obtain that [¢ — ¢,], — 0 as n — oo.

In particular, if GG is a bounded set, then, taking into account the Arzela—Ascoli theorem, we conclude
that the embedding Cv(G) C C*(G) is compact provided that 0 < v < v < 1. To prove that, we take
into account the fact that one can assume that the set G is closed and, therefore, compact.

It is convenient to use the distance function (2.1.4) to approximate functions vanishing on F' and
oo by functions vanishing in neighborhoods of these sets. In the sequel, we treat neighborhoods of F'
as sets of the kind {x, d(z, F') < r}, where r is positive.

Theorem 2.2.1. Let ¢ € CY(G) and ¢ = 0 on a subset F' of G. Let o(x) — 0 as |x| — +oo in
the case where the set G is unbounded. Then there exists a sequence of functions ¢, from CY(G)
identically equal to zero in a neighborhood of F and (in the case where the set G is unbounded) in a
neighborhood of oo such that it converges to ¢ with respect to the norm of the space C*(G) provided
that 0 < p < v.

Proof. Let a function h(t) from C%!(R) be equal to 1 for |t| < 1, be equal to zero for |t| > 2, and be
equal to 2 — t for 1 < [t| < 2. Obviously, |hlp = [h]1 = 1 for this function. Introduce the notation
d(z) = d(z, F) (for brevity) and consider the function

Xe(z) = hle7td(x)], &> 0. (2.2.5)

Obviously, this function is identically equal to one in the e-neighborhood of the set F' and is identically
equal to zero outside its 2e-neighborhood. Taking into account (2.1.5)—(2.1.6), we have the following
estimate:

Xelo <1, [xei <l (2.2.6)
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Let us prove that

[Xely < 5o (2.2.7)
First, we note that, inverting the function ¢ on F', we obtain the estimate
lp(x)| < [p]vd”(2). (2.2.8)

Indeed, if z € F, then |p(x)| = |p(x) — ¢(2)| < [p]u|x — 2z|”. Since the point z from F is selected
arbitrarily, this implies inequality (2.2.8).
Getting back to the proof of (2.2.7), consider the expression

_ Ixe(@)p(r) = x=(w)e(y)]
: |z —y| '

Obviously, it is equal to zero provided that min[d(z), d(y)] > 2e. Therefore, estimating it from above,
one can assume (without loss of generality) that min[d(z), d(y)] < 2e.

The following two cases are possible: 2|z —y| > d(y) and 2|z —y| < d(y). Consider them separately.
In the former case, we have d(z) < |z — y| 4+ d(y) < 3|z — y|. Then, taking into account (2.2.8), we
obtain the estimate

[d(=)]”_ dy))” )
A. < |h gol,< + < |hlo(3” + 2)[¢] 2.2.9
< bl (o) ) < b+ 2l (2.2.9)
Now, let 2|z — y| < d(y). In this case, we have the inequality
[o(z) = e(y)] | IXe(2) = Xe(¥)]
|z —y|” |z —y|”
Combining this with (2.2.6) and (2.2.8), we deduce the inequality
Ac < |hhfglo[t + 71" (y)le -y
From the inequalities |d(x) — d(y)| < |x — y| < d(y)/2, it follows that d(z) < 2d(y) and d(y) < 2d(z).
Taking into account the fact that min[d(z),d(y)] < 2e, we deduce that max[d(x),d(y)] < 4e. Then
Ac < [l {1+ e Hd(y)) [dly) /2 7} < Blels.

Combining this with (2.2.9), we obtain that the estimate (2.2.7) holds.
Using notation (2.2.5), introduce the function sequence

on(z) = [1 = xe(@)]h(elz))p(x), €=1/n, (2.2.10)

Obviously, each of these functions is identically equal to zero in a neighborhood of F' and in a neigh-
borhood of co. By virtue of (2.2.8), the C¥(G)-norms of these functions are bounded uniformly with
respect n = 1,2,... On the other hand, the difference p(x) — ¢, () is equal to zero provided that
d(z) > 2/n and |z| < n. Since |p,(z)| < |p(x)], it follows that

Ac < [xe(z) + le(y)

— <2 2 .
|0 — nlo < L5 o(2)] + max o ()|
Taking into account (2.2.8), we conclude that each term at the right-hand side of the inequality tends

to zero as n — 0o. Hence, due to (2.1.7), the sequence ¢,, — ¢ tends to zero with respect to the norm
of the space C*(G).

Now, we do not assume that the set G is arbitrary. Instead, we consider the case where it is open and
denote it by D. Recall that connected open sets are called domains. All domains can be decomposed
into three classes with respect to the point at infinity: a domain is finite if it is bounded, i.e., lies in a
finite part of the space R¥, a domain is infinite if it is a neighborhood of oo, i.e., contains the exterior
of a ball, and a domain is semi-infinite if its boundary is not compact.
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Consider the class C1(D) of all functions continuously differentiable in the domain D. Recall that
the gradient vector

8%17“"81%

corresponds to any ¢ from C'(D). If ¢ is an m-vector-function, then this gradient is treated as the
Jacobi m x k-matrix Dy such that its columns are the partial derivatives 9p/0x;. The notation Dy
is also used in the case where m = 1; in such a case, Dy is treated as a matrix-row. In the case of
vector functions, the corresponding differential relations

D(pY) = Do + Dy, D(foy)=(Dfoyp)Dy (2.2.12)

are treated in the sense of the multiplying of rectangular Jacobi matrices.

For example, consider the case where the domain of a scalar function ¢ contains a segment [a, b].
Then the function ¢g(t) = p[ta+ (1 —1t)b] of the variable ¢ from [0, 1] can be considered. Its derivative
satisfies the relation

o = (89" 89") from  C(D) (22.11)

oh(t) = ¢'[ta+ (1 — t)b)(a — b), (2.2.13)
where the right-hand side is the scalar product of the vectors ¢’ and a — b.

The notation C'0 is used for the space of functions ¢ from C'(D) such that ¢ € C°(D) and
¢’ € C°(D). Obviously, this is a Banach space with respect to the norm |¢| = |¢|o + |¢'|o. We define
the class C1(D) as the set of functions ¢ from C(D) such that the derivative ¢’ of each one is extended
as a function continuous on D. Notation (2.2.11) is preserved for the limit values of the derivative
at boundary points x from dD. The corresponding space C19(D) of bounded functions has a similar
sense. Finally, let C1#(D), 0 < p < 1, denote the space of all functions ¢ from C1(D) belonging to
CH(D) together with all their first-order derivatives. This is a Banach space with respect to the norm

ol = lplen + |¢lcn.
Let us investigate the relation between the space C%! of functions satisfying the Lipschitz condition
and the class C! of continuously differentiable functions.

Theorem 2.2.2. Let a function ¢ be continuously differentiable in a domain D and a finite domain
Dy together with its closure be contained in D. Then the estimate

[¢]1.00 < Cl¢' 0., (2.2.14)

where C' is a positive constant depending only on the diameter of the domain Dy and its distance to
the boundary 0D, holds.
If a rectifiable arc I' of length | with ends a and b is contained in D, then

ol@) = 9(0)] < max | (@)] 1. (2.2.15)
In particular, if D is a M-uniformly connected domain, then

[plip < M|g'lo.p- (2.2.16)

Proof. Let 2r = d(Dy,0D) and the distance between the points a and b from Dy not exceed r. Then
the segment with ends a and b is contained in D and the following relation holds due to (2.2.12):

1

p(a) — ()] = / Sh(tydt(a —b)| < |¢'lop.
0

Therefore, the estimate (2.2.14) follows from Theorem 2.1.3.
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To prove the second claim of the theorem, we start from the assumption that I" is a broken line
with tops a = cg, 1, ...,c, = b. Then, similarly to the above arguing, we prove that

o |<§]wa o(ci)] < &0 1(D).

Now, let I' be a rectifiable arc and 2r be the distance between it and the boundary 0D. Then, for
0<e<r, theset G. = {x | d(z,T") < e} is contained in D and

lim |¢'[o,c. = |¢[o,r-

e—0

On this arc, select points a = ¢y, ¢q, ..., ¢, = b are such that |¢;_1 — ¢;| < r for any i. Then the broken
line I'; with tops at these points is contained in G. and, therefore, we have the inequality

[p(a) = o(b)] < max |’ ()| I(T2).

Since [(T';) < I(T"), it follows that this inequality passes into (2.2.15) as € — 0.

Finally, if D is a uniformly connected domain, € D, and y € D, then, by the definition given
by (2.1.9), the points x and y can be connected by a rectifiable arc I' C D of length [ such that
I < M|z — y|. Due to (2.2.15), this implies the estimate (2.2.16).

The estimate (2.2.16) shows that the following embedding takes place for uniformly connected

domains:
(D) c c*(D). (2.2.17)

Theorem 2.2.2 is still valid if the domain D is a neighborhood of co and the subdomain Dy is un-
bounded. Indeed, there exists a ball B such that the domain D contains its exterior B’. Obviously,
B’ is a uniformly connected domain. Thus, there exists a ball By such that the closed domain D can
be covered by By and B’. The estimate (2.2.16) can be applied to each of these two sets. Thus, it
remains to use Theorem 2.1.1.

The next useful assertion complements Theorem 2.2.2.

Lemma 2.2.2. Let a function p(x) be continuously differentiable in a cylinder B = {|z| < r1, |xg| <
ro} C RF=1 x R of wariables x = (Z,x,) and its gradient derivative ¢’ admit an estimate

¢/ (x)] < Mzi™', =z e B. (2.2.18)
Then ¢ € C*(B) and [p], < CM, where C is a positive constant depending only on p, ri, and ra.

Proof. Let points  and y from B be such that the inclination angle between the segment [z,y] and
the base xp = 0 of the cylinder is equal to 7/4. Then

| — y| = V2] — yil. (2.2.19)
Then, taking into account the relation (2.2.13), we deduce the inequality

[o(a) — olo)] < Mo~y [ltan+ (1= O as
from the estimate (2.2.18). Using (2.1.3), we obtain the following estimate for the last integral:

1
B
/tﬂck—l— (1 — )y Ldt = [k = vl < ! e
J plek —ykl — plee — yeltH

Combining this with (2.2.19), we deduce that

lo(2) — p(y)] < CoMz — g, Co=v2""/p. (2.2.20)
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Now, let points 2 and y be such that the segment [x,y] be parallel or orthogonal to the cylinder base
and a two-dimensional plane P passing through these points be parallel to the base. Consider points
2’ and ¢y from P such that the quadrangle formed by the points z, y, 2/, and 3 is a rthombus with
the opposite vertex pairs z,y and 2’,%3’. Then, for

|z — y| < min(ry,72), (2.2.21)

at least one of the points 2’ and 3’ belongs to B; let this be z’. Since the inclination angle with respect
to the cylinder base is equal to 7/4 for both segments [z, 2] and [y, 2'] and |z —y|? = |z —2'|?+|2'—y]?,

it follows from (2.2.20) that

le(x) = o)l < le(@) — @) + (@) = e(y)] < 2CoM |z —yl*.
Now, consider points © = (Z, ) and y = (y,yx) from B and assign z = (7, yx). The last point belongs
to B and, assuming that (2.2.21) is satisfied, one can apply the previous inequality to the point pairs
z,z and y, 2. Since |x — y|? is still equal to |z — z|> + |z — y)?, this yields the inequality
o(z) — ()| < 4CoM |z — yl*. (2.2.22)

Finally, let  and y be arbitrary points of B. Obviously, they satisfy the inequality |z —y[? < 4r% +r2.
Select a positive integer n satisfying the condition \/ 47’% + T% < nmin(ry,re) and divide the segment
[z,y] into n equal parts. Then inequality (2.2.22) is applicable to neighboring dividing points. This
yields the estimate

lp(2) = @(y)| < 4nCoM|z — y|*

completing the proof of the lemma.

2.3. Lipschitz Maps and Domains

We say that a homeomorphic map = a(x) of a set G C R¥ onto a set G C R? is a Lipschitz map if
it and its inverse map satisfy the Lipschitz condition. In terms of the constant M = max([a]q, [a"1]1),
this condition takes the form of the two-sided estimate

M_l\m —y| <|a(z) —aly)| < Mz —y|, z,yeGqG. (2.3.1)

If this constant is to be indicated explicitly, then we say that « is an M -Lipschitz map.
According to the definition given by (2.1.4), the estimate (2.3.1) is extended to the distance from a
point to a set: if FF C G, then

M~ Yd(z, F) < d[a(z),a(F)] < Md(z, F). (2.3.2)
In the same way, if a map B(a,r) = {|z —a] < r} is contained in G, then
Bla(a),r/M] C a[B(a,r)] C Bla(a), Mr]. (2.3.3)

Indeed, if |a(z) — a(a)] < r/M, then, by virtue of (2.3.1), we have the inequalities |x — a|/M <
la(x) — a(a)| < r/M implying that «(z) € a[B(a,r)]. The second inclusion of (2.3.3) is considered in
the same way.

In the same way, we verify that the image I = a(I") of a rectifiable arc I is a rectifiable arc and

M~N(T) < I(T) < MI(T). (2.3.4)

Indeed, by definition, I' admits a parametrization v : I — I', which is a bounded-variation vector-fun-
ction. Then the vector-function 7; = « o v belongs to the same type. Really, due to (2.3.1), for any
point collection t1,ta,...,t, of the segment I such that t; < te < ... < t,, the sum |y;(t1) — 11 (t2)| +
oo M (tn—1) — 71(tn)| does not exceed

M(ly(t) =v(E2)[ + -+ [y(tn1) = y(ta)]) < MUT).

Hence, the arc T'y is rectifiable and {(I'y) < MI(T"). Since the arcs I' and I'; can be interchanged, it
follows that (2.3.4).
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This implies that uniformly connected sets are invariant under Lipschitz transformations.
A bounded domain D is called a Lipschitz domain if for any point a from 9D there exist a neigh-
borhood V' (a) and a Lipschitz map « from V onto the ball V' = {|y| < r} such that

aVND)={yeV, y. >0}, a(VNID)={yeV, y, =0} (2.3.5)

For example, if a Cartesian coordinate system exists in a neighborhood of any point a from 9D such
that its origin is the point a and the boundary D in this neighborhood is the graph z; = f(2/),
2 = (r1,...,25_1) € G, of a real function f from C%!(@), then D is a Lipschitz domain. This follows
from the fact that the transformation a(x’,z;) = (2/,xp — f(2')) of the set G x R onto itself is a
Lipschitz map. In particular, finite convex domains are Lipschitz domains. If the function f from this
definition is continuously differentiable, then we say that D is a domain with a smooth boundary.

Theorem 2.3.1. Lipschitz domains are uniformly connected.

Proof. Each domain D is linearly connected. To any pair x,y of its points, one can assign the value
l(z,y; D) = inf [(I'y ),

where the infimum is taken over all rectifiable arcs I'; , € D. It is easy to verify that this function of
the variables x and y satisfies all three distance axioms. It is called the inner metric of the domain D.
Inequality (2.1.9) defining the uniform connectedness is equivalent to the estimate (z,y; D) < M|z —y|
for this metric. This estimate and the triangle inequality imply that

(2, y) = U(xo,y)| < Uz, 20) < M|z — ol

Therefore, the function I(z,y) is continuous with respect to both variables.

From the definition given by (2.3.5), it follows that the domain G = DNV (a) is uniformly connected
for any point a from 0D. If a € D, then there exists a ball G C D centered at this point. Obviously,
it is also uniformly connected.

Assume that the domain D is not uniformly connected. Then, according to the definition given by
(2.1.9), there exist sequences of points z,, and y, from D such that

UZpyYn; D) > nlzy —ynl, n=1,2,... (2.3.6)

Without loss of generality, one can assume that there exist points a and b from D U oo such that the
sequences x, and y, converge to them respectively. Obviously, due to (2.3.6), the case where a # b
is impossible. However, the case where a = b € D is also impossible. To prove that, we assume that
such a case takes place. Then there exists a neighborhood G such that the condition (2.3.6) is not
satisfied in it, but the points z, and y, lie in it provided that n is sufficiently large.

in [74], the notion of Lipschitz domains is considered in detail: it is used to construct extension
operators from D to R¥ for functions in the whole scale of Sobolev spaces. For Lipschitz domains, it
is easy to extend functions, preserving their Holder property.

Theorem 2.3.2. Let D be a Lipschitz domain. Then there exist bounded extension operators p and
P acting from CH*(dD) and C*(D) (respectively) to C*(R¥), i.e., operators such that (pp)(x) = (z),
x € 0D, and (Py)(x) = ¢(z), v € D.

Proof. First, we assume that a function v (z’) of variables 2’ = (x1,...,z;_1) belongs to the class C*
in a ball By = {|2’| < r} and vanishes in a neighborhood of its boundary. Let x(¢) belong to C§°(B),
where B = {|z| < r}, and is identically equal to 1 in a neighborhood of the origin. Then the operator
(q)(z) = x(x)(2"), x € B, boundedly maps C*(B’) into C*(B) and (¢q¢)(x) = 0 in a neighborhood
of 0B.

Cover the boundary 9D of the domain D by a finite set V7,...,V,, of neighborhoods mentioned
in the definition given by (2.3.5). Consider the corresponding Lipschitz maps «; of the sets V; onto
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the map B (or its exterior). Let the partition (x;) of unity be defined by this covering according to
Lemma 1.8.2. Then the operator p; acting according to the relation

(pig) 0 a7 ' = ql(xiw) 0 a7 '] (2:3.7)
boundedly maps C*(9D) into C*(V;) and p; = 0 in 9V;. Therefore, extending p;¢ by zero, one can
treat p; as a bounded operator from C*(dD) to CHRF). If x € V;NID, = = a;(y/'), and iy € By, then

(pip)(x) = x(W) (i) (') = xlai(x)]xi(z)p(x).

Obviously, the function x from the definition of the operator ¢ can be selected such that the relation
Xi(x)x[ai(z)] = xi(x), x € V; N OD, is valid for any i. Since Y x; = 1, it follows that the operator
p = Y_p; is an extension operator.

Consider the extension of functions from a domain D. Let a function % belong to C* in a semiball
G = {|z| < r,zx > 0} and vanish in a neighborhood of the manifold |z| = r. Then the operator
(QU) (2!, x) = x(x)¢Y(2/, |xk|) boundedly maps C*(G) into C*(B).

Further reasoning is the same as above. Consider an open covering V1,...,V,,, m > n, of a closed
domain D, where the sets Vi,...,V,, cover the boundary and mean the same as above, while any
other set Vj is either a ball located in D together with its closure or the exterior of a ball (in the case
where the domain D is infinite). Let the partition (;) of unity be defined by this covering according
to Lemma 1.8.2. Introduce the operators F;, 1 < ¢ < m, as follows: for i < n, they are defined
similarly to (2.3.7), while P, = x;¢ otherwise. As above, we immediately verify that it is possible
to select a function x in the definition @ such that the operator Py = > P,y satisfies the necessary
requirements.

Theorem 2.3.2 is a special case of the general Whitney result about the extension of a function from
any compact set such that its Holder smoothness is preserved (see [46]).
In Lipschitz domains, Theorem 2.2.1 can be substantially strengthened.

Lemma 2.3.1. Let D be a Lipschitz domain. Then, under the assumptions of Theorem 2.2.1, the
claimed sequence {¢n} can be selected from the class of functions from C§°(RF) vanishing in a neigh-
borhood of F'.

Proof. Let a function ¢(z) from C”(D) be equal to zero on a closed subset F' of D. Then the function
Py from C¥(RF) possesses the same property. Fix v; such that v; < v. Then fix p such that pu < v;.
Apply Theorem 2.2.1 with vy instead of y and R* instead of G to the function Py. Thus, for any
fixed positive & there exists a function v from C¥1(RF) vanishing in a neighborhood F and satisfying
the inequality | — |, < d. Then apply Lemma 2.2.1 to the function 1 to find a positive ¢ such that
1 — Teap|,, < 6. Obviously, T € C§°(RF). Arguing as in the proof of Lemma 1.8.1, we find that the
function 7.1 vanishes in a neighborhood F' provided that ¢ is sufficiently small. It remains to note
that previous estimates combined with (2.2.3) yield the inequality |¢ — 19|, < 34.

One more important property of Lipschitz domains is provided by the next assertion.

Lemma 2.3.2. Let D be a Lipschitz domain and o € C1(D). Then for any positive € there exists a
positive & such that

lo(2) —(y) — ¢'(2) (2 —y)| < elz -y (2.3.8)
for any points x, y, and z from D such that |x — z| <& and |y — z| < 4.

Proof. 1t suffices to prove the local variant of the lemma, i.e., to prove that for any point a from D
there exists its neighborhood V' such that inequality (2.3.8) holds for any triple x,y, z of points from
DNV such that |x —y| < d and |z — y| < 4.

Indeed, let this local variant takes place, but the claim of the theorem in the whole domain D
is not fulfilled. Then there exist a positive ¢ and sequences {x,},{y,}, and {z,} in D such that
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|zy, — 2| < 1/n and |y, — 2, < 1/n, but

|o(@n) = @(yn) — @' (20) (@n — yn)| = elzn — ynl. (2.3.9)
By virtue of the compactness of D, without loss of generality, one can assume that all the three
sequences converge to a point ¢ from D. Then, beginning from sufficiently large n, they belong to the
neighborhood V of this point, defined at the local variant of the lemma, and the distances |z, — z,| and
|yn — zn| do not exceed § corresponding to the neighborhood V. Thus, inequality (2.3.9) contradicts
the claim of the local variant of the lemma.

Pass to the proof of the local variant of the lemma. For any point a from D there exists its
neighborhood V' such that there exists a Lipschitz map « of the the domain G = DNV onto a convex
domain G. For points a from 0D, this follows from the definition of Lipschitz domains. If a € D,
then a ball of a sufficiently small radius centered at a can be taken as G, while the identity map can
be taken as «.. Let the considered map be an M-Lipschitz map, i.e., satisfy the condition (2.3.1) with
the constant M. Since the vector-function o is uniformly continuous on the compact set G, it follows
that there exists a positive dg such that

|/ (x) — @' (y)| <e/M for |z —y|<d. (2.3.10)

Assuming that § = §y/M?, consider points z, y, and z from G such that |z — y| < 6 and |z — y| < 4.
By virtue of the convexity, the segment [Z,y| with endpoints Z = a(z) and § = a(y) is contained in
G. By virtue of (2.3.1), the distances |Z — Z| and |§ — 2| do not exceed dy/M. Let a rectifiable arc
I';y C G be the preimage of this segment under the map . Then |a(t) — a(z)| < éo/M for any point

t from I'; ,. Then, taking into account (2.3.1), we deduce that
|t —z| <dp forany ¢ from I',,. (2.3.11)

Consider the function ¢(z) = ¢(x) — ¢'(2)(x — y), where y and z are fixed. For this function, we have
the relation ¢/(z) = ¢/(z) — ¢/(2). Then, by virtue of Theorem 2.2.2, the following inequality holds:

o(x) = p(y) — ¢ (2) (& —y)l = [P(z) — d(y)] < nax 6'(t) = " () 1T )-

By virtue of (2.3.4), the length I(T'; ;) does not exceed M|z —y|. Combining this with (2.3.10)—(2.3.11),
we obtain inequality (2.3.8).

If a sequence of functions ¢, from C!'(D), n = 1,2,..., converges to ¢ with respect to the norm of
the space C'1(D), then there exists a value of § such that the lemma is valid for all n. This follows
from the fact that all functions ¢, can be selected to satisfy the condition (2.3.10).

Let a map « be a continuously differentiable homeomorphism D — D of open subsets of R such
that the inverse map is also continuously differentiable. Such maps are called diffeomorphisms. Due
to the chain rule, its Jacobi matrix o/ = Da is linked with the similar matrix DS of the inverse
map 3 = a~! by the relation [(DfS) o a]Da = 1, where 1 denotes the unit k x k-matrix. Therefore,
(det Dar)(x) # 0 provided that x € D. Then, from Theorem 2.2.2, we conclude that, for any compact
subset K of D, the map « treated as a map of K onto the compact set K= a(K) C Disa Lipschitz
map.

From the inverse map theorem, it follows that if a k-vector-function o from C'(D) satisfies the
condition (det Da)(a) # 0 at a fixed point a of D, then there exists a subset Dy of D such that Dy
contains this point, there exists a domain 130 such that « is a homeomorphism of Dy onto 50, and
the inverse map is continuously differentiable in the domain Dy. Thus, if the specified condition is
satisfied everywhere in D, then « is a locally Lipschitz map. For s > k, this fact can be extended to
continuously differentiable s-vector-functions in closed Lipschitz domains.

Lemma 2.3.3. Let s > k and « be a continuously differential one-to-one s-vector-function in a closed
Lipschitz domain D C R, Then, if

rang(Da)(x) =k, x € D, (2.3.12)
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where Da is the Jacobi matriz, then « is a Lipschitz map. Conversely, if o is a Lipschitz map, then
(2.3.12) holds.

Proof. By virtue of Theorems 2.3.1 and 2.2.2, the function « satisfies the Lipschitz condition. There-
fore, under the assumption that the map « satisfies (2.3.5), it suffices to prove the left-hand side of
the two-sided inequality (2.3.1). By condition, (Da)(z)¢ # 0 for any unit vector ¢ from RF. Let Q
denote the unit sphere in R¥. Then the function |(Da)(z)€| is continuous on D x Q and vanishes at
no point of this set. Therefore, there exists a positive constant m such that

[Da)(x)§| = 2m|¢] (2.3.13)

for any ¢ from R* and any « from D.
According to Lemma 2.3.2, there exists a positive ¢ such that

a(z) — aly) — (Pa)(y)(z —y)| < m|z —y|
provided that |z —y| < 4. Taking into account (2.3.13), this implies that
() — a(y)| = (D) (y)(x — y)| —m|z —y[ = m|z —y|

provided that |z — y| < §. It remains to note that the function f(x,y) = |a(z) — a(y)|/|z — y| is
continuous on the compact set {(z,y) € D x D, |x —y| > r} and, therefore, is bounded from below
by a positive constant.

Conversely, let a from C1(D) be an M-Lipschitz map. By virtue of Theorem 2.3.2, one can assume
that there exists an open subset D! of D such that the function « is continuously differentiable in D?.
Then, for any fixed a from D, the relation

a(z) - a(a) = (Da)(a)(z — a) = |z — alo(z), =€ D',
where o(z) is a vector-function such that o(z) — 0 as x — a, holds. As above, we use the estimate
[(Pa)(a)(z — a)| = |a(z) — ala)] —[o(z)[|z - al.

Here, we assume that x = a +r&, r > 0. Then we fix £ from € and pass to the limit as » — 0. Then,
due to (2.3.1), we arrive at the estimate (2.3.13) with 2m = 1/M, which is equivalent to (2.3.12).

2.4. Smooth Surfaces

Consider main notions related to (k — 1)-dimensional surfaces in R* (curves in R?). Let G be a
finite Lipschitz domain in R¥~!. Let + from C'!(G) valued in R¥ be a one-to-one vector-function such
that its Jacobi matrix (D+)(s) satisfies the following condition:

rang(Dy)(s) =k—1, se€q. (2.4.1)
The columns of this k x (k — 1)-matrix are vectors
O
asi ’

and the condition (2.4.1) means that these vectors are linearly independent. The image I' = v(G) is
called a smooth surface (with boundary) and the map ~ itself is called its smooth parametrization. We
say that a surface I belongs to a class C'V# if it admits a parametrization v from this class. The points
v(s), s € 0G, form the boundary OI' of this surface. Other its points are called its interior points.
Note that, by virtue of Lemma 2.3.3, the smooth parametrization v : G — I is a Lipschitz map. In
particular, the operator ¢ — ¢ o is a bounded and invertible operator from C*(I') to C*(G).

In the two-dimensional case (i.e., for kK = 2), G is a segment of the line R. Respectively, I" is called
a smooth arc and the endpoints of the segment are mapped into the endpoints of this arc. The vector
+'(s) determines the line tangential to I' at the point ¢ = ~(s). In the general case (i.e., for k > 2),

1<i<k-1,
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the vectors 0v/0s; form a base of the plane tangential to this surface at the point y(s). The normal
to this plane can be described as follows. Consider the vector

m= (my,...,my), m;=(—1)7Fdet Mj, (2.4.2)

where the (k — 1) x (k — 1)-matrix Mj is the matrix Dy without its jth row.

If we take the matrix (D7v)(s), add a vector ¢ from R¥ treated as its kth column, and expand
k

the determinant of this matrix with respect to its kth column, then we obtain the sum ) m;(s)¢;.
1

If we substitute £ = 0v/0s; in this matrix, then we obtain the zero determinant. Thus, the vector
m(s) = (mi(s),...,mg(s)) is orthogonal to the plane tangential at the point ~(s). Hence, the unit
vector normal to I' at this point can be defined by the relation n[y(s)] = m(s)/|m(s)|.

Applying the parametrization, one can introduce the surface integrating: the class of summable
functions ¢ is defined by the condition ¢ oy € L(G) and, by definition,

/ o)1y = / b (3)]1m(s)ldx15,

r G

where the vector m is defined by (2.4.2). Respectively, if Gy is a measurable subset of GG, then the
relation

mes{y(Go)] = / jm(s)|ds
Go

defines the surface Lebesgue measure of the set v(Go) C I'. In other words, dx_1y = |m(s)|dg_15s is
the area element on the surface. It is easy to verify that all above definitions do not depend on the
choice of the parametrization. All main properties of integrals, described in Sec. 1.8, are also extended
to the case considered.

A basic example of a smooth parametrization is the vector-function ~(s) = (s, f(s)), where f is a
scalar function from C1(G). The corresponding surface I' = v(G) is the graph of the function f. The
next theorem shows that any smooth surface I' has a similar structure in a neighborhood of any its
interior point a. Let u = (@, u) from R¥ be a local system of Cartesian coordinates with the origin
at the point a, such that its axis uy is directed along the normal n(a). In this coordinate system,
introduce neighborhoods of the point a of the kind

Cpla) = {]ii] < p, |ui] < 20} (2.4.3)

Theorem 2.4.1. Let ' be a smooth surface with boundary, determined by a parametrization v : G —
I, and a compact set K be a subset of '\ OI'. Then there exists a positive pg = po(T', K) such that, for
any point a from K, the intersection of I' with the neighborhood Cy(a), p < po, in the local coordinate
system is described by the equation uy = f(u) in the ball B, = {|u| < p}, where f is a continuously
differentiable function such that

f0)=0, f(0)=0, [flo<1. (2.4.4)
IfT € CY¢, then f € CY*(B,) and the seminorm [f'],, depends only on [v'],.

Proof. According to Lemma 2.3.3, the parametrization v is an M-Lipschitz map. Taking this into
account, assign

2Mr = d(K,dT), (2.4.5)

where d is the distance between the compact set K and the boundary 0I"' = v(9G).
In notation (2.4.2), add the column m(s) to the rectangular k x (k — 1)-matrix (Dv)(s) to obtain
a square matrix and denote the latter one by A(s). Obviously, its determinant det A(s) is equal to
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|m(s)|2. Therefore, the inverse matrix-function A~1(s) belongs to C'(G). By virtue of the uniform

continuity of Dy and Lemma 2.3.2, there exists a positive § such that
[ A7 (s0)[(D)(51) — (Dy)(s2)]| £ 1/2 for |51 — 52| <26,
|A™ (s0)[v(51) = (s2) = (D7) (s0) (51 = s2)]| < 1/2 for [s; — 50| < 6.

Since the three-variable function A=!(sg)[v(s1) — 7(s2)]|s1 — s2|~* does not vanish on the compact
subset G X G x G determined by the inequality |s; — s2| > ¢ and is continuous, one can introduce a
positive constant ¢ such that

(2.4.6)

[ A (s0)[v(s1) = v(s2)

0<g<1, 2¢< min (2.4.7)
S50, |81 — 82|
[s1—s2|>6
Assuming that r,§, and ¢ are given, define pgy as follows:
po = min(r, 9, q). (2.4.8)
Applying the change of variables
(@ ug) = A™(s0) (2 — a) (2.4.9)

in a neighborhood of the point a = (sg) belonging to K, we obtain the local Cartesian coordinate
system mentioned above. Indeed, (2.4.9) is equivalent of the relation x —a = ~/(so)u + m(sg)ux
showing that the axis wy is directed along the normal n(a). Taking this into account, consider the
vector-function

(@(s), ak(s)) = A7 (s0)[r(5) — 7(50)] (2.4.10)
in the ball By = {|s — so| < 2r}. According to (2.3.2) and (2.4.5), this ball is contained in G and
inequalities (2.4.6) are satisfied for all s; and sy from By. Note that

& (s0) =1, aj(so) =0, (2.4.11)
where 1 denotes the unit (kK — 1) x (kK — 1)-matrix. Hence,

A7 (s0)[Y (s1) = 7 (s2)] = [@ (s1) — @ (s2), v (51) — ap(s2)]
and
A7 (s0)[Y (s1) = 7' (s2)] = [@(s1) — @(s2) — (51 — s2), k(51) — ar(s2)]-
Then, by virtue of (2.4.6), we conclude that
ls1 — s2]/2 < |a(s1) — a(s2)| < 2|s1 — s9] (2.4.12)

and, in particular,

1/2 < |a)(s)] €2, s e By. (2.4.13)
Therefore, « is a Lipschitz map taking the ball By into a domain Eo containing the point @ = 0. Due
to Lemma 2.3.3, it diffeomorphically maps By onto Eo.

Assign

B=a ', f(@) = axlB@)].

By virtue of (2.4.12), the derivative 3’ satisfies the inequalities |¢]/2 < |8/(@)¢| < 2/¢] and @ € By.

Combining this with (2.4.13), we deduce the estimate |f’|o < 1 for the derivative of the function f.
Then, taking into account (2.4.11), we see that the conditions (2.4.5) are satisfied for this function.
Thus, the vector-function () = (@, f(@)), & € By, is a smooth parametrization of the surface
v(By). In other words, this surface is the graph of the function u = f(u), u € Eo, in the local
coordinate system. By virtue of (2.4.12), the distance between the point & = 0 and the boundary
of the domain Eo is not less than r. Thus, taking into account (2.4.8), we conclude that the ball

B, = {|u] < p} is contained in the domain By. Thus, it remains to consider the function f in this
ball and verify that the intersection of the surface I' with neighborhood (2.4.4) is the graph of this
function.
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Assume that, in addition to the point (u, f(u)), another point (u,uy) of the surface I' lies inside
Cy(a). Then

(@ f(@) = A (s0)[v(s) = 7(s0)], (@ ug) = A" (s0)[v(s:) = 7(50)],
where s € By and s, ¢ By. Therefore, |s, — so| > 2r. By virtue of (2.4.12), we have the inequality
|s — so| < p/2 implying the inequality |s — s.| > 2r — p/2. On the other hand, the relation

(@, f(@) = ug) = A7 (s0)[v(5) = 7(s4)]
combined with (2.4.4) and (2.4.7) shows that

3p > | f (@) — uk| = [A7 (s0)[7(s) = ¥(s:)]| = 24]s — 5]
(we take into account the fact that the function f satisfies the inequality |f(u)| < |u|, uw € B,, by
virtue of (2.4.5)). Thus, 3p > 2q(2r — p/2) and, therefore, 4p > (3 4+ q)p > 4qr, which contradicts
(2.4.8).

It remains to consider the last claim of the theorem. If the parametrization v belongs to C1#(G),
then it is obvious that the functions & and oy, from (2.4.10) belong to the same class. Combining the
relation ' o & = (&’)~! with (2.4.12), we conclude that the Holder constant [3'],, in the ball |a| < p
is uniformly bounded with respect to a from K. Hence, the derivative of the function f = apo
possesses the same property.

Let I' be a smooth surface with boundary. Then, due to Theorem 2.4.1, for any point a from
I'\ OI" there exists a positive p such that the surface I"' decomposes the neighborhood C,(a) into two
connected components C'pi (a) defined by the condition +[f(u) —ug] > 0. They are called the left- and
right-hand half-neighborhoods for the signs of minus and plus respectively. These signs depend on the
choice of the normal n(a). We say that a domain D is located to the left (to the right) of T if for any
point a of I' \ 9", the domain D does not intersect right-hand (left-hand) half-neighborhoods of this
point provided that p are sufficiently small. In this case, it is obvious that D NI' = @ and the vector
n(a) is the inner (outer) normal with respect to D for any point a from D NT.

Using Theorem 2.4.1, one can consider the following generalization of Lemma 2.2.2.

Theorem 2.4.2. Let the boundary of a finite domain D contain a smooth surface I' with boundary
such that D is located from one side of I'. Let a subdomain Dy of D be such that 'y = DonNoD C T'\JT'.
Let a function ¢ be continuously differentiable in the domain D and its gradient derivative ©' admit
an estimate

| (x)] < Md*(2,T), x € Dy, (2.4.14)
where M > 0 and 0 < p < 1. Then ¢ € CY™"(Dy) and [p], < CM, where C is a positive constant
depending only on I" and the distance between the domain Dy and 0D \ T (for any fixed u).

Proof. For definiteness, let the domain D lie to the left of I'. Introduce the notation IV = 0D \ T'. By
assumption, the number 2ry = d(Dy,I"”) is positive and one can introduce a compact set K = {a € T,
d(a,I") > ro}. Obviously, it contains I'g. Select the number py = po(I', K) with respect to K as it is
done in Theorem 2.4.1.

Obviously, the number 2p = min(pg,79) depends (as the set K) only on the distance between
the domain Dy and I". Fix such a number 2p and consider the neighborhood C,(a) of the point a
from K, mentioned in Theorem 2.4.1. In addition to this neighborhood, introduce the neighborhood
D,(a) € Cy(a) defined by the inequalities |f(u) — ux| < p and |u| < p in the local coordinates. As
above, let one-sided half-neighborhoods D;E (a) be determined by the sign of f(u) — uy.

Note that the ball of radius p/+/2 centered at a is contained in this neighborhood. Indeed, it suffices
to verify that [u|? + |f (@) + p|? < p?/2. Since |f(@)| < |ul, it follows that this inequality is reduced to
the inequality s> + (p — s)2 > p?/2 for 0 < s < p, which is obvious. Taking into account the fact that
the domain D is located to the left by assumption, this implies that the intersection of the domain D
with the disc {|z — a| < p/v/2} is contained in Df(a).
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Introduce the notation I'y = I' N Cy,(a). Let us prove that
d(z,T') > d(x,I'2)/9, x € Cy(a). (2.4.15)

Indeed, the neighborhood Cs,(a) is contained in the ball {|z — a| < 2v/5p} and, therefore, d(z,T2) <
3v/5p < 9p. Since the distance between Cp(a) and I' \ I'y is not less than p, it follows that

d(z,T') = min[d(z,T3),d(z,T" \ T's)] > min [d(m,pfg)’l] d(z,T),
which yields the estimate (2.4.15).

In local coordinates, the transformation a(u) = (, f(#) — ug) maps D (a) to the cylinder B, =
{la] < p, |ug| < p}, while the boundary surface I N C,(a) is mapped to the base of this cylinder.
Since a(u) — a(v) = (0,s), where s = f(u) — f(v) — (ur — v), and [f]1 < 1, it follows that the
vector-function « satisfies the Lipschitz condition, where the seminorm [a]; does not exceed 2. The
inverse transformation 3 = a~! acts according to the relation a(u) = (@, u; — f(u)) and, therefore,
satisfies a similar Lipschitz condition. Thus, « is a Lipschitz map such that M = 2 in (2.3.1).

By virtue of the choice of p, it can be replaced by 2p in these assertions. Therefore, due to (2.3.2)
and (2.4.15), we have the inequality d(8(y),I") > yx/18, y € B,. Combining it with (2.4.14), we
conclude that Lemma 2.2.2 can be applied to the function 1(y) = ¢[8(y)] in the cylinder B,; then
the function 1 belongs to C*(B,) and its seminorm is estimated accordingly. Hence, ¢ also belongs
to C*(D/}) and its seminorm satisfies the estimate [p], < CoM, where Cy is a positive constant
depending only on p and p.

Now, consider two arbitrary points x and y from Dy such that |x —y| < p/8. First, we assume that
d(xz,T) < p/2. Let a from I be a point, where the distance d(z,T") is achieved, i.e., d(z,T') = |z — al.
Since p(a,I") > p(x,I") — |z — a| > 2rg — p/2 > 719, it follows that the point a belongs to K. Since
ly —a| < |y — x|+ |z —a| < p/V/2, it follows that both points = and y belong to Df(a). Then, as we
proved above, the following estimate holds:

lp(x) — @(y)] < CoM|z —y|*. (2.4.16)

Now, consider the case where d(z,I') > p/8. In this case, the ball B of radius p/8 centered at a
contains the point y and d(B,T') > p/4. Since d(B,I") > 2rq > p/4, it follows that the distance of
the ball B to the full boundary 0D is not greater than p/4, Then, due to Theorem 2.2.2, we have the
estimate

o(z) = e(y)| < CLM |z —yl*,
where C1 is a positive constant depending only on p. Once this estimate is combined with (2.4.16), one

can apply Theorem 2.1.3, where p/8 and Dy are taken instead of r and G respectively; this completes
the proof of the theorem.

Investigate stability conditions for the constant C' from Theorem 2.4.2 under changes of the surface
I'. We say that a sequence I'y,, n = 1,2,..., of surfaces with boundaries converges to I as n — oo
in the class C' if there exist a Lipschitz domain G and their parametrizations v, : G — I',, in G,
converging to the parametrization «y of the surface I' in the space C!(G). The convergence in the class
CH" with respect to the space C1(G) has a similar sense.

Lemma 2.4.1. Let sequences {I',}, {D,}, and {D%} from D, satisfy the assumptions of Theo-
rem 2.4.2, the diameters of the domains D, be uniformly bounded, the surfaces I',, tend to I' as
n — oo in the class C', and

inf d(D2,0D,, \ T'y) > 0. (2.4.17)
Then, if functions , from CY(D,) admit estimates
|on(@)| < Mpd"~'(2,Ty), x€ Dy,
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then the estimate
[plu,po < CMy, (2.4.18)

where C' is a positive constant independent of n, holds.

Proof. Let 2ry denote the infimum of (2.4.17). Similarly to the proof of Theorem 2.4.2, assign K,, =
{a € Ty, d(a,T") > ro}. Then the sequence {po(K,,T',)} determined by Theorem 2.4.1 can be selected
to satisfy the condition

inf d(K,,dT,) = po > 0.

Indeed, the sequence of parametrizations v, : G — I',, converges in the class C*(G) by condition. Using
Lemma 2.3.3, one can easily verify that ~,, are Lipschitz parametrizations uniformly with respect to n,
i.e., there exists M such that each -, is an M-Lipschitz map. Let a positive r be such that 2Mr < rq.
This corresponds to the choice of (2.4.5) for K,, and JI',,. By virtue of the remark to Lemma 2.3.2,
a unique J for all v, can be selected in (2.4.6). Obviously, ¢ in (2.4.7) possesses the same property.
Therefore, it remains to select py according to (2.4.8).

Assign 2p = min(pg, o) and take into account the fact that only p and the diameter of the domain
D,, are involved in further arguments on Theorem 2.4.2. This yields the estimate (2.4.18), where the
constant C' is independent of n.

Theorem 2.4.1 is consistent with the definition of domains with smooth boundaries from Sec. 2.3.
This theorem allows one to provide the following general definition: a set I' from R” is called an open
smooth surface if each its point has a neighborhood of kind (2.4.4) such that the specified set is the
graph of a continuously differentiable function f(u), |u| < p, inside the specified neighborhood. We
say that the specified surface belongs to a class C* if the function f belongs to this class. If the
above takes place and the set I' is compact, then it is called a closed smooth surface and the number
p from the theorem can be selected to be unique for all points a from I.

Indeed, the surface I' can be covered by a finite set of surfaces I';, 1 < 5 < m, with boundaries such
that open surfaces I'; \ OI'; cover I'. Moreover, there exist compact sets K; C I'; \ OI'; possessing
a similar property. Therefore, if p; is defined by I'; and K as in Theorem 2.4.1, then it suffices to
assign

p=min (pj7),

where 3r; denotes the distance between K; and I'\ I';, and to take into account the fact that neigh-
borhood (2.4.3) is contained in the ball |z — a] < 3p. The number p defined this way is called the
standard radius of the closed smooth surface I'.

In the same way, Theorem 2.4.2 can be proved for the full domain D bounded by the smooth closed
surface I': if a function ¢ from C1(D) admits the estimate (2.4.14), then ¢ € C%*(D) and [¢], < CM,
where C'is a positive constant depending only on the standard radius p and the diameter of the domain
D.

2.5. Smooth and Piecewise-Smooth Curves

In the two-dimensional case (i.e., for k& = 2), we deal with plane curves instead of surfaces and
with smooth arcs instead of surfaces with boundaries. It is convenient to treat the two-dimensional
space R? as the complex plane C. Respectively, a parametrization of a smooth arc I' is a one-to-one
complex-valued function ~ from C[0,] such that its derivative is different from zero everywhere. Any
segment other than [0,(] can also be taken as the parametrization domain. The function 7 defines the
unit tangential vector

e(t) ='(s)/IV(s)], t=1(s), (2.5.1)
at a point ¢ of the arc I and determines its orientation, i.e., the natural order of points, determined
by the parameter s. The endpoints and interior points of the arc correspond to the endpoints and
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interior points of the segment I respectively. Taking into account Lemma 2.3.3 and using notation
(2.5.1), one can define the class C1* of smooth arcs by the condition e € C*(T).
As in the case of surfaces, the expression dit = |y/(s)|ds is the element of the arc length. The
integral
l

/ ()it = / oy (s)]17 (5)]ds, (25.2)
T 0

which is independent of the choice of the parametrization, is understood in the same sense. In
particular, the relation

!
meslfz/\’y'(sﬂds
0

determines the length of the full curve I'. Any smooth arc admits the so-called natural parametrization
70 such that |yy(s)] = 1. In this case, | coincides with curve length. For any smooth parametrization
v :[0,1] — I', the natural parametrization can be defined by the relation vy(s) = y[a(s)], 0 < s <,
where the map « of the segment [0, ] onto [0, 1] is inverse to the function

B(r) = / 1Y (u)|du, 0<r<1.
0

Thus, the parameter s of the natural parametrization plays the role of the arc length, counted from
its end.

On an oriented arc, one can introduce the operation ¢ — ¢, of differentiation with respect to the
natural parameter s. Using this operation, one can introduce the class C1(I'). The relation between
this operation and an arbitrary parametrization v coordinated with the orientation is as follows:

ooy =(por)lI™ (2:5.3)

Obviously, if a from C(T) is a one-to-one complex-valued function and o/(t) # 0 for any ¢ from T,
then the image «(I') is a smooth arc with the parametrization « o. Maps of such type are called
translations of smooth arcs. It is clear that the translation « is a Lipschitz map since « and a o~y
possess this property. In this sense, the map 7! inverse to the parametrization v : [0,]] — T is a
translation acting from I" to [0, ].

Using the unit function e = e1 4 ies from C(T'), defined by (2.5.1), one can introduce line integrals
with complex differential dz = dx + idy on an orientable smooth arc I' as follows:

/fl(z)dac + fa(z)dy = /(flel + foeg)d1z, e =ey +ies. (2.5.4)
r

T

Note that the change of the orientation changes the sign of such an integral.

The union of a finite set of smooth arcs such that their pairwise intersections can contain only their
endpoints is called a piecewise-smooth curve. The integral of a function ¢ defined on such a curve is
treated as the sum of the integrals (2.5.2) over the corresponding arcs. If all connected components
of the considered curve are homeomorphic to a circle, then the curve is called a piecewise-smooth
contour. For domains bounded by piecewise-smooth contours, the Green formula from Sec. 1.8 can be
presented in terms of line integrals of kind (2.5.4).

Theorem (the Green formula). Let a plain domain D be bounded by a piecewise-smooth contour T
positively oriented with respect to D (i.e., the domain D is located to the left under the moving along
I to the positive direction). Then, if functions f and g from C(D) are continuously differentiable in
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the domain D, then

/(gi gg> dgz—/fdy gdx
D

provided that the integrand at the left-hand side of the relatzon 1s integrable in the domain D.

To prove, it suffices to note that if the direction of the unit tangential vector e is coordinated with
the orientation of the contour, then e = in, where n = nj 4 ins is the unit vector of the outer normal.

We say that I' is a radial arc with respect to its endpoint a if it admits a parametrization of the
kind

v(r)=a+ref 0<r<p, (2.5.5)
where the real function f is continuously differentiable on (0, p], and there exists a constant 6 such
that lim f(r) =6, and lim r f'(r) = 0.
r—0 r—0

Obviously, the function ~y(r) defined above is a one-to-one function on [0, p] and its derivative
v (r) = [L+760'(r)]e?") is continuous on this segment and vanishes nowhere. Thus, the relation (2.5.5)
defines a smooth parametrization indeed. Its parameter is r = |t — al, t € ['; in particular, p is the
distance between the endpoints of the arc. If the unit tangential vector e(t), t € T, is determined by
this parametrization similarly to (2.5.1), then its value at the end of a coincides with €.

We say that (2.5.5) is a radial parametrization. The next lemma provides a simple criterion of the
parametrization to be radial.

Lemma 2.5.1. Let I be a smooth arc and the oscillation m = [e]y of its unit tangential vector e(t)
satisfy the condition
m = max |e(t1) — e(t2)| < 1/4. (2.5.6)
t;er

Then this is a radial arc with respect to any its endpoint a, the derivative of its radial parametrization
~v(r) admits the estimate
1/3<|y(r)] <3, 0<r<p, (2.5.7)

and the arc ' lies in the w/2-sector such that its vertez is a and its bisectriz is directed along the vector
e(a).

Proof. Let vp(s) and 0 < s <[ be the natural parametrization of the arc I" with endpoint a = 7,(0).
In the square I = {0 < sg,s < I}, consider the function

1
s
also.s) = " T o (- sl
S — S0
0

for s = s, its value is equal to 7((s). Since e[yo(s)] = 7((s), it follows that m coincides with the
oscillation of the function ~{(s). Obviously, this is valid for the oscillation of the function ¢(sg,s) in
the square I x I. Thus, ||g(u)|—|q(v)|| < |¢(u)—q(v)| < m, where u, v, ... denote points of the square.
Since |q(v)| = |7/ (s0)| = 1 for v = (so, o), it follows that |g(u)| > 1 — m. Hence, for all v and v from
I x I, we have the inequality

q(u) _ q() | _ lg(u)llg(w)| = la@)[| +la(v)lla(w) —q(v)l] _ 2m
lg(w)| la(w)]| lq(u)l]q(v)] T l-m
Taking into account (2.5.7), we deduce the inequality

‘Iq(U)I B Iq(v)l‘ =3 (2.5.8)

This inequality implies that the angle ¢ between the unit vectors e; = ¢(u)/|q(u)| and es = q(v)/|q(v)]
satisfies the inequality 1 — cos¢ < 2/9, whence ¢ < 7/4. For u = (s,0) and v = (0,0), this angle
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coincides with the angle between the vector vy(s) —70(so) and the tangent to I' at the point a = 70(0),
which proves the last claim of the lemma.

Now, consider the functions a(s) = |y(s) —70(0)| and a(s) = arg[yo(s) — 70(0)]. It is obvious that
a(s) — 0 as s — 0, where ¢ = e(a). The derivatives of these functions are expressed as follows:

et b0 = 0O(s) _ o lals.Oats ] )
(&) =Re =00 T gl 0“6 =0

In particular, sa’(s) — 0 as s — 0. It is obvious that
0
1—-d(s)=ReQ, Q= |q(s,s)— 7 §| q(s, s),

and |@Q| < 2/3 by virtue of (2.5.8). This yields the inequality
1/3<d/(s) <3, 0<s<l. (2.5.9)

Therefore, there exists a function s = 5(r), 0 < r < p = «(l), inverse to a. It is obvious that
f(r) =alB(r)] = 6 and rf'(r) — 0 as  — 0 and the relation yo(s) —75(0) = a(s)e’*®) in the notation
(1) = 7[B(r)] can be expressed by (2.5.4). Then I is a radial arc. On the segment [0, p], the derivative
[’ satisfies an estimate similar to (2.5.9). Then, taking into account the relation 7' = (v o 8)3’, we
obtain the estimate (2.5.7) completing the proof of the lemma.

Lemma 2.5.1 shows that any smooth arc I' is radial with respect to its endpoint in a sufficiently
small neighborhood of this endpoint.

In the considered two-dimensional case, circle (2.4.3) is the rectangle Cy(a) = {|u1| < p, |ua| < 2p}
containing the disc {|z —a| < p}. If a is an interior point of a smooth arc I', then the local coordinate
system w1, ug with origin at the point a is uniquely determined by the curve since the axis u; is directed
along the tangential vector e(a), while the axis ug is directed along the normal to the curve. In this
case, Theorem 2.4.1 can be refined.

Lemma 2.5.2. Let a be an interior point of a smooth arc I' and p be selected with respect to K = {a}
as in Theorem 2.4.1. Then the point a decomposes the arc I'y = I' N Cp(a) into two arcs radial with
respect to their common endpoint a. In particular, the intersection I' N {|z — a| < p} is an arc itself
and a is its interior point.

Proof. According to Theorem 2.4.1, the arc I', is the graph of the function uy = f(u1), where the
function f from C'[—p, p] is such that f(0) = f/(0) = 0 and |f’(u1)| < 1 provided that |u;| < 1.

We must show that the graph of the function y = f(x), 0 < = < p, is a radial arc with respect
to the point z = 0. As in the proof of Lemma 2.5.1, it suffices to verify that the derivative of the
function r = /22 + f2(z) is positive, i.e., z + f(z)f'(z) > 0 for z > 0. This fact easily follows from
the inequality |f/| < 1.

Indeed, assume, to the contrary, that there exists a positive ¢ such that f’(¢)[f(c)/c] = —1. Since
neither |f(x)|/x nor |f/(x)] exceeds 1, it follows that
Fl©)=+1, flc)Ec=0. (2.5.10)

The last relation can be represented in the form

1
/1:|:f (tc)ldt =0,
0

which is possible only if f/(x) = F1, 0 < z < ¢. However, this property contradicts the first relation
of (2.5.10).
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Consider the common piecewise-smooth curve I'. We say that its point 7 is interior if there exists
a (sufficiently small) radius p such that the intersection of the curve with the disc {|z — 7| < p} is a
smooth curve such that 7 is its interior point. Other points of the curve are called boundary points,
their set is finite, and they form the boundary OI'. In particular, the boundary of a smooth curve
consists of two points that are its endpoints. The case where OI' = @& is possible: I' is called a smooth
contour in such a case. According to Lemma 2.5.1, the disc of radius p centered at 7 from OI is
decomposed by the curve into a finite set of radial arcs I'; ;, j = 1,...,n,, with the joint endpoint 7
provided that p is sufficiently small. Thus,

nr

Tn{lz—7/<pt=JTrj, TrinTr;j={r}, i#j (2.5.11)
7j=1

In this case, we say that arcs I'; ; converge to 7.

Obviously, if 7 € F'\ OT', i.e., 7 is an interior point, then the angle between the arcs I'y; and I'; 5 is
equal to 7, i.e., these arcs form a smooth curve. In the general case, if n, > 2, then it is possible that
the angle between the arcs I';; and I'; ; is equal to zero, i.e., they touch each other at the point 7 in
the interior way. Then 7 is called a cusp of the curve I.

For n, = 1, the point 7 is called the endpoint of the curve I'. If n, = 2 for any 7, then the
curve I is a piecewise-smooth contour, i.e., its connected components are homeomorphic to a circle.
If all boundary points are endpoints, i.e., n, = 1 for any 7 from OI', then I' is a union of pairwise
disjoint smooth arcs. If the boundary OI' consists of one point 7, then all connected components are
homeomorphic to an open interval of the line and are called open smooth arcs (with the common
endpoint 7).

The strict definition is as follows. An open smooth arc I' is the image of the interval (0,1) of a
complex-valued function « from C[0, 1] if it is a one-to-one function on the semi-open intervals (0, 1]
and [0,1) and 7/(s) # 0 provided that 0 < s < 1. The above function ~ is called the parametrization.
As above, the notation I' € C'* means that the parametrization v belongs to C#[0, 1].

We say that an open arc I is disjoined if ¥(0) # (1) and joined otherwise. Thus, to obtain a
disjoined open arc I, it suffices to take a smooth arc I’ and exclude its endpoints. Any joined open
arc I united with the common endpoint 7 = v(0) # (1) forms a simple piecewise-smooth contour (its
smoothness is not guaranteed).

The notion of a translation a : I' — I'; of open arcs is introduced in the same way as above: if ~
is a parametrization of I', then « o ~v has the same sense with respect to I';. Thus, the function « is
continuously differentiable on I, it and its derivative o/ has limits at the endpoints of the arc (if the
arc is joined, then they are one-sided limits), and o is different from zero everywhere, including these
limits at endpoints.

The convenience of the accepted terminology of open arcs is as follows: for any finite subset F' of
a curve I'; containing all boundary points of I', any connected component of the set I' \ F' is either a
simple smooth contour or an open (joined or disjoined) smooth arc. Thus,

\F=Tyulyu...ul,, arCF, (2.5.12)

where Ty is a smooth contour (in general, it is a composite one), fj are open smooth arcs, and all
these curves are pairwise disjoint. Usually, the set F' is contained in I'; sometimes, it might contain
points not belonging to this curve. It is easy to see that the number 2m in the notation (2.5.11) is
equal to the sum of all n, such that re ' N F.

If a domain D is bounded by a piecewise-smooth contour such that its corner points are not cusps,
then D is a Lipschitz domain. Indeed, let a be a corner point such that two arcs I'x 1 and I'; » converge
to it. Consider a local system of Cartesian coordinates such that its origin is the point a and its axis
y is directed along the line bisecting the interior angle of the domain D at the point a. Then the
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arcs I'-; and I'; o form the graph of a piecewise-smooth function y = f(z) satisfying the Lipschitz
condition. Then, as we know from Sec. 2.3, D is a Lipschitz domain in a neighborhood of a.

Let the boundary 0D of an open set D be a piecewise-smooth curve I' (we say that such set is
piecewise-smooth). Consider a family of subdomains D; € D, 1 < j < n, bounded by piecewise-
smooth contours such that D = Dy U ... U D,. We say that a function ¢ from C(D) belongs to
the class C(D, F) if its restrictions to Dj belong to C(D;), 1 < j < n. Obviously, this definition is
independent of the choice of Dy,..., D, and C (lA)) is a Banach space with respect to the norm

ol = m?X‘SO‘c(Dj)'

This definition is introduced to take into account possible one-sided limit values at boundary points
a from dD. The boundary of the closure D of the set D is a piecewise-smooth contour I'y C D.
Therefore, I' = I'1 UT's, where the amount of common points of the piecewise-smooth curve I's and I'y
is finite. Other points of this curve are interior points of D. Obviously, in a neighborhood of a point a
from I'; \ OI" (a € 'y \ OT"), the set D lies from one side (from both sides) of I'. The curve I'y is called
a cut of the set D. Respectively, the function ¢ from C (ﬁ) has one or two limit values at the point a.

These boundary values can be described more strictly. Let a compact set K be a subset of I\ JT".
Then, by virtue of Theorem 2.4.1 and Lemma 2.5.2, there exists a positive p such that, for any point
a of K, the intersection of I" with the disc B(a) = {|z — a| < p} is a smooth arc I',(a) such that a
is its interior point. In particular, the complement of B(a) \ I' consists of two connected components
B*(a). Obviously, each one lies in a connected component of C \ I'. Hence, the two following cases
are possible: either one of them is contained in D, while another one is contained in C\ D, or both
ones are contained in D. In the former case, the point belongs to I'y and any function ¢ from C (IA))
has one limit value at this point, denoted by

¢t (a) = lim p(z), a€ KNTy. (2.5.13)
T—a
In the latter case, it has two limit values
¢ (@)= lim ¢(z), ac KN, (2.5.14)
wGBi(a)

It is convenient to fix the signs of the one-sided neighborhoods B*(a) by means of the orientation of
the arc T'(a) as follows: moving along this arc in the positive direction, we leave the set BT (a) from
the left. Thus, the function ¢ has one boundary value ¢(*) from C (T'1\ 9T') and two boundary values
@t from C(I'y \ OI'). At a point a belonging to dI', there might be several such boundary values: in
the notation (2.5.11), their amount is equal to n,. Thus, D can be treated as a compactification of
the open set D, determined by the described one-sided neighborhoods.

The space C“(ﬁ) is introduced as above: if the subdomains D; C D are bounded by piecewise-
smooth contours and D = Dj U ... U D,, then this space consists of all functions ¢ from C(D),
belonging to C*(D;), 1 < j <n.

Lemma 2.5.3. The space C’“(ﬁ) is independent of the choice of the subdomains D-,..., D, and it
is a Banach space with respect to the norm

ol = m?XIsOICM(Djy (2.5.15)

Proof. Similarly to Theorem 2.3.1, it is easy to show that any domain bounded by a piecewise-smooth
contour is uniformly connected. Let D;- C D, 1< j <7/, be another family of subdomains such that

the union of their closures coincides with D and let |p|" be defined by this family similarly to (2.5.14).
Then each D; is the union of the subsets DN D;, 1 < i <n, and it follows from Theorem 2.1.2 that

[elen oy < Clél,
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whence |¢|" < C|¢|. The opposite inequality is proved in the same way. Hence, the norms || and |¢|’
are equivalent.

2.6. The Space C{(G) on the Riemann Sphere

Let G be an unbounded subset of R¥. By C,(G), denote the class of functions ¢ from C(G), admit-
ting a limit ¢(co0) = lim p(z) as |x| — oo. It is convenient to introduce the one-point compactification
R* = RFU{o00} of the Euclidean space R* by means of the element oo denoting the the point at infinity.
In this compactification, its neighborhoods are defined as complements to balls. In particular, C\(G)
can be treated as the class of functions continuous in G U co with respect to the said topology. For
n = 2, the stereographic projection establishes a homeomorphism of the compact set C onto the unit
sphere Q) of the three-dimensional space; this is the reason to call it the Riemann sphere. For k > 3,
a similar projection can also be introduced; therefore, the specified term can also be preserved in this
case.

It is obvious that the inversion

r—a

5(z) (2.6.1)

|z — af?
with respect to the sphere |z — a] = 1 centered at point a is a homeomorphic map of the compact
set R¥ onto itself such that §(a) = co and §(oco) = 0. For a = 0, this map is denoted by d(x) = z*.
Obviously, it rearranges the points 0 and co and is mutually inverse. In the general case, the inverse
map to (2.6.1) is the map y — a + y*.

The compact set R¥ can be endowed with a natural metric space structure: to any pair x,y of its
points, we assign the nonnegative number d(z,y) as follows:

d(z,y) = (L+ [z)) L+ [y) 7 e —yl, @ # oo, y # oo,
d(z,00) = d(co,z) = (1 + |z|)7!, 2 #o00; d(co,00)=0.

Then d(z,y) — d(z,00) as y — oo.

(2.6.2)

Lemma 2.6.1. The function d(x,y) is a distance such that inversion (2.6.1) satisfies the two-side
estimate

(1+ [al)2d(z,y) < d[5(x), 5(y)] < (1 + |a])%d(z, y) (2.6.3)
with respect to it.

Proof. To prove the first assertion, we verify the triangle inequality for a triple x,y, z of points from
R . If one of these points coincides with oo, then the said inequality is established immediately.
Therefore, we must prove the inequality

|z —y ly — 2

o — 2 N
(1+ )L+ Jyl) (L [yl + J2])

I+ |z + =)
or, which is equivalent, the inequality
I+ lyhle =z < A+ [2D]z —yl+ (1 + |z])]y — 2].

It suffices to verify that |y||z — 2| < |z||z — y| + |z|ly — z|. This inequality is obvious if one of the
points z,y, and z coincides with 0. In the general case, dividing by |z||y||z|, we transform it into the
inequality

<

z z z Y Y z
LI O 1T o R R I T
where Z = z/|z| and § and Z are defined in the same way. We have
A L | 1 i A 2 P
— = — = — = \xr —Z
e B B o N 1 £ e
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and similar relations for other point pairs. Therefore, the last inequality coincides with the triangle
inequality with respect to the Euclidean metric.
The proof of the second assertion of the lemma is based on the relation

lz* —y*| = (2.6.4)
equivalent to the relation
lyI*z — |2y > = |2 Ply[*| — y|*,
Its left-hand side is equal to
2 = 2|2 |y ey + |=[Yy1> = 2Py (2 + |y - 22y),

which coincides with its right-hand side.
By virtue of (2.6.1) and (2.6.4), the distance d[d(z),d(y)] can be represented in the form

1 \! 1 \! - -
<1+ > (1 N > lz—yl |z =yl ,
|z — al ly—al) |z—ally—al QQ+|z—a])(1+][y—al)

1o
1+ ]z —al

whence
dlé(z),(y)] = q(x)q(y)d(z,y), q(z)

It remains to note that the estimate (1 + |a|)™! < g(z) < 1 + |a| holds due to the obvious inequality
1+ |z +b < (14 |z[)(1+ |b]).

For functions defined on an arbitrary metric space, one can introduce the Holder condition with
respect to its metric d(x, y) as follows: at the right-hand side of (2.1.1), |z —y|* is replaced by [d(z, y)].
The corresponding class is denoted by C*(G) = C*(G;d). This is a Banach space with respect to the
norm

el = 10lo + [Pl [l = sup P18 ~ @ W)l (2.65)

ary A2,y
Using the Holder condition da[a(x), a(y)] < C[di(x,y)]*, one can introduce the class C*(G1,G2) of
maps « from the metric space Gy to Gs.

Relations (2.1.6), (2.1.7), and (2.2.3) as well as Theorem 2.1.1 also hold in the case considered since
the properties of the Euclidean distance were not used in the proof.

In the sequel, in addition to the Euclidean distance, we use the metric (2.6.2). The space C*(G)
with respect to this metric is denoted by the special symbol C4'(G). The notation C¥'(G1, G2) has the
same sense for maps from Gy to G with respect to this metric. For example, due to Lemma 2.6.1,
inversion (2.6.1) belongs to the class Cr%(RF, R¥).

Obviously, if a set G is bounded and, e.g., is contained in the map |z| < R, then the space C¥(G)
and C*(G) coincide and the corresponding norms are equivalent. This follows from the equivalence
of metric (2.6.2) and the Euclidean one in the specified ball:

1+ R) 2z —y| < d(z,y) < |z —yl|

Similarly to Sec. 2.3, a homeomorphism « : G — G2 of two sets G, from R¥ is called a Lipschitz map
(in the generalized sense) if the following two-side estimate is satisfied:

M~td(z,y) < da(z),ay)] < Md(z,y). (2.6.6)

For example, due to Lemma 2.6.1, the inversion is a map of the above type. The following lemma
shows that, using compositions with inversions, one can reduce such maps to Lipschitz maps in the
classical sense.
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Lemma 2.6.2. Let a be a homeomorphism from G to Ga, both sets G; be unbounded, and
a(o0) = oo. (2.6.7)

Then « is a Lipschitz map with respect to the metric d if and only if it is a Lipschitz map in the
classical sense. In particular, any Lipschitz map with respect to the metric d can be represented as the
superposition of a Lipschitz map in the classical sense and inversion (2.6.1).

Proof. By virtue of (2.6.7), on the set Ej, the function
_ 1+ Ja(z)]
1 =" 4

is bounded from above and from below by positive constants. Since

dle(z), afy)] _ (@) — a(y)]
= a\r)q\y),
d.y) oy A
it follows that the conditions (2.3.1) and (2.6.7) are equivalent.

An unbounded domain D is called a Lipschitz domain if there exists its inversion to a bounded
Lipschitz domain. An analog of Theorem 2.3.1 also holds in this case.

Theorem 2.6.1. Unbounded Lipschitz domains are uniformly connected.

Proof. Let D be an unbounded Lipschitz domain. Then there exist a bounded Lipschitz domain Dy
and an inversion mapping it to D. Without loss of generality, one can assume that 0 € Dy and the
inversion is d(x) = z/|z|>. According to the definition of Lipschitz domains (see Sec. 2.3), one can
assume that if 0 € dDg, then there exists a neighborhood of the point & = 0 such that its intersection
with Dy is a semiball {|z| < p, x > 0}. Then the intersection Vo, N D, where V, is the corresponding
neighborhood of the point oo, is the exterior of a semiball, i.e., a set of the kind {|z| > 1/p, x; > 0}.
It is easy see that this set is uniformly connected. Obviously, if 0 € Dy, then such a neighborhood
of oo is the exterior of a ball; also, it is contained in D and is a uniformly connected set. Therefore,
it remains to repeat the corresponding reasoning of Theorem 2.3.1, taking into account the fact that
if sequences {x,} and {y,} possessing the property (2.3.9) converge to oo, then their elements get to
Voo N D provided that n is sufficiently large.

The space CL'(G) can be describes without the distance (2.6.2) as follows. Cover the Riemann
sphere by two intersecting neighborhoods

Up={lz| <2}, U;={lz|>1} (2.6.8)
of the points 0 and co. To any function ¢ defined on the set G C R¥ assign the function pair
po(z) = p(), * € Go =GNy, ¢i1(z)=p(@"), v € G =(GNU), (2.6.9)

where E* is the image of the set F under the involution  — «*. Then, by virtue of Theorem 2.1.1
and Lemma 2.6.1, the relation

— 2.6.10
|| max lok|on ( )

defines an equivalent norm of the space CL'(G). If one of the sets G N Uy is empty, then the norm |y |
at the right-hand side of (2.6.10) is assigned to be equal to zero.

For maps ¢ : G C R¥ — R®, the reasoning is the same. Let notation (2.6.8) be preserved for both
spaces R¥ and R®. Then ¢ € C¥(G,R?) if and only if

err(z) € C*(Gk), k,r=0,1, (2.6.11)

*

where ¢ro and @i are defined similarly to (2.6.9) with respect to the functions p(x) and [p(z)]
respectively.

If the set G is a domain D, then classes C?(D) are defined in the same way. The sphere RF can be
treated as a compact k-dimensional manifold of the class C° (see, e.g., [37]) defined by means of two
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charts (2.6.8). In this sense, the class C]'(D) with respect to D treated as a domain coincides with the
class C™(D) on this manifold. Note that involution (2.6.1) can be treated as a C'°°-diffeomorphism of
the considered manifold R* onto itself.

To conclude, consider the case where k = 2 in detail. This is the planar case and, as in Sec. 2.5, it is
convenient to treat the plane as the complex plane. In this case, C = C U oo is the classical Riemann
sphere and inversion (2.6.1) is a linear-fractional function (up to a complex conjugation):

1
0(z) = s_a
Conversely, any linear-fractional function can be expressed via involutions respectively. Therefore, the
class CY can be defined by the condition of the invariance with respect to linear-fractional transfor-
mations of the plane. Smooth arcs and piecewise-smooth curves on the Riemann sphere are defined in
the same way: we say that an infinite curve I' is piecewise-smooth if the image I' of this curve under
the linear-fractional transformation z — z/(z — a), where a ¢ I', lying in a finite part of the plane, is
a piecewise-smooth curve in the sense of the definition from Sec. 2.5. For any such curve, the point
oo belongs to its boundary 0I'. All the corresponding terminology of Sec. 2.5 is preserved unchanged.
In particular, classes C (13) are defined for domains with infinitely smooth boundaries.

Consider radial arcs with edge 7 = oo in detail. Recall their definition: we say that an arc I' is
radial with respect to the said edge if the arc I' is radial with respect to the edge 7 = 0. If the second
edge of the arc I" does not coincide with the point z = 0, then, similarly to (2.5.5), this arc can be
defined by the parametrization

eif(r)
wWry="_, 0<r<p, (2.6.12)
where f is a real function from C[0, p] such that it is continuously differentiable on (0, p] and rf'(r) — 0
as 7 — 0. Indeed, under the inversion z — 1/z, this relation passes to (2.5.5). Frequently, it is
convenient to replace f(r) by f(1/r) to define this arc in the form

v(r) =refM > p, (2.6.13)
where f(r) is a continuously differentiable on [p, 00) function such that
. - . 1N
Tli}n;o 0(r) = O, Tli}n;o rd'(r) =0. (2.6.14)

The limit case is an infinite arc with edges 7 = 0 and 7 = oo such that it is radial with respect to both
edges. It is defined by the radial parametrization (2.6.13) with respect to the interval (0, 00), where
the function 0(r) satisfies not only (2.6.14), but similar conditions as r — 0, i.e.,

lim 0(r) = 6y, lim76'(r) = 0. (2.6.15)
r—0 r—0

2.7. Homogeneous Spaces CJ(G)

It is obvious that seminorm (2.1.2) is invariant with respect to translations * — x + a. Hence, the
space C* possesses the same property. The relation

{p}y = sup (2.7.1)

defines a seminorm possessing the same property with respect to extensions x — rx, r > 0. Here, the
point x = 0 does not belong to the domain of the function ¢, i.e., this function is defined on G\ 0.
Since the points z and y can be interchanged, the factor |z|* under the supremum sign can be replaced
by the symmetric expression max[|z|*, |y[*].

As in Sec. 2.1, Definition (2.7.1) immediately imply the following relations similar to (2.1.6):

(@) {ev}u < lelofvtn + {etul¥lo,
0) {fovtue <[flhpletue ¢(G)CD, (2.7.2)
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(© {rea}l,q< (Ml ) {etuc, oG)CG,

where M = sup(|a(z)|~!z]).
zeCG
In the same way, the definition immediately implies the interpolational property

{o}y < el ™" (e}, 0<pu<v, (2.7.3)

of the considered seminorm, similar to (2.1.7).
Introduce the space C{'(G) of all bounded on G \ 0 functions ¢ such that the seminorm {¢}, is
finite. As in Sec. 2.2, we show that it is a Banach space with respect to the norm

ol = lelo + {0} u- (2.7.4)

For p = 1, we denote this space by C’é ’0, preserving the symbol C} for other purposes.

The points 0 and oo, which are limit points for G, play a special role for functions ¢ from C}(G).
It is obvious that ¢ satisfies the Holder condition with power p outside neighborhoods of these points
and remains to be bounded, approaching 7. If neither 0 nor co is a limit point, i.e., if the set G is
contained in the spherical layer § < |z| < =1, § > 0, then seminorms (2.1.2) and (2.7.1) are equivalent
and, therefore, the spaces C* and C}j coincide.

For example, verify the relation

sin(In|z]) € C§(B), B={z, |z| <1} (2.7.5)

Indeed, the function p(z) = |z|* can be taken instead of p, in (2.7.1) for this case. Hence, it suffices
to estimate the difference relation
jz#sin(In |z[) —sin(ln |y[)| _ [z|*|Infz] —Inly[] _ t*|nt] — _ |a]
|z —yl el =yl 1 -t lyl

Since the expression on the right-hand side of this inequality treated as a function of ¢ is bounded on
the semiaxis {t > 0}, it follows from Definition (2.7.4) that (2.7.5) holds.
As in Sec. 2.2, using the interpolational inequality (2.7.3), we show that the inequality

lolen < 2[elcy (2.7.6)

(similar to (2.2.3)) holds provided that p < v <1, which implies the embedding Cg v C Cg ' of Banach
spaces.

From the relation (2.7.2)(a) it follows that C/'(G) is a Banach algebra with respect to pointwise
operations. In the same way, the relation (2.7.2)(b) means that if a (vector) function ¢ belongs to
C4(G) and a function f belongs to C%1(G), where G contains the image ¢(G), then the superposition
f o ¢ belongs to C¥'(G, F). In particular, the inequality

igf lp(z)| >0 (2.7.7)
is a necessary and sufficient condition of the invertibility of the scalar complex function ¢ in the Banach
algebra Cfj'. Indeed, if this condition is satisfied, then there exists a positive (sufficiently small) § such
that the ring § < |z| < 1/6 of the complex plane contains the image ¢(G) of the function . It remains

to note that the function f(z) = 1/z satisfies the Lipschitz condition in this ring.
The next important lemma describes the relation between seminorms (2.1.2) and (2.7.1).

Lemma 2.7.1. The space C§(G) consists of all bounded functions ¢ such that the function (z) =
|z|Hp(z) satisfies the Holder condition with power p on G. The relation

lol = [¥(e)| + [¥]u, (2.7.8)

where ¢ is a fived point of the set G, defines an equivalent norm in C{'(G).

e



Proof. 1If ¢ € C§(G), then

() = )| < lz[*le(x) = o)l + le@)lllzl* — Tyl

Then, taking into account (2.1.3), we obtain the estimates

[l < {etu + lelo,  [(e)] < [el*|elo- (2.7.9)

Conversely, let ¢ be a bounded function such that the function ¥ (x) = |z|*¢(z) satisfies the Holder
condition with power p on G. Then there exists a positive constant C' independent of ¢ such that

p(@)] = [P (@)l < C(Y () + [¥]), =€ (2.7.10)

Indeed, if 0 € G, then [¢(z)| < [¢]u|z[* and the claimed estimate is obvious. If 0 ¢ G, then there
exists a neighborhood of the point 7 = 0 such that the set G does not intersect it and, therefore, both
functions |z|™* and |x — ¢|#|z|# are bounded on G. Therefore, the inequality

[(@)[|=[ < ([9()] + Wl — e[

shows that the estimate (2.7.10) also holds in this case.
To estimate the seminorm {¢},, assume that = € G, y € G, and

1/2 < |z Myl < 2. (2.7.11)
Then, taking into account (2.7.10), we have the inequality
[z[*lo(x) — ()] _ [yl e (z) — |z (y)]

< Wl + O] + Wlar, b= I =l

|z —y|# |y[#|z — y|~ |y[#|z — y[»
It is obvious that
M < |||zl = Jy[] _ s]s" = 1|7 o \m|7
ly|#]|z] — |y||» |s — 1|r |yl

and, by virtue of (2.7.11), the value of M is bounded by a constant depending only on .
If the condition (2.7.11) is violated, then, taking into account the fact that s#|1 — s|~# < 2 for
0 < s<1/2 and for s > 2, we conclude that

zlp(x) = ply |k
ot o@) = o0l g, e
|z —y| [lz| = lyl|
Combining the obtained inequalities and taking into account (2.7.10), we obtain the estimate

{¢}y < max(C + M, 2" C)(J(0)] + [W],).

Combining it with (2.7.9), we complete the proof of the lemma.

The next two theorem add two different descriptions of the space C} in terms of C*.

Theorem 2.7.1. Let 0 < 6 <1 and G; = {6 < |y| < 671, 0’y € G}, j = 0,£1,... Then the space
CH(G) can be defined by the equivalent norm

ol = llo + suplpjluc,,  @i(y) = @(y). (2.7.12)
J

Note that norm (2.7.12) has a sense for any function ¢ satisfying the Holder condition with power
p on G outside any neighborhood of the points 0 and co. Since the open sets &1 < |y| < §771,
j=0,%1,..., cover R¥\ {0}, it follows from Theorem 2.1.1 that the function ¢ possesses the specified
property if and only if ¢;(y) = ¢(6y) € C*(G;) for any j. If a set G; is empty, then [p;],q, is
assigned to be equal to zero.
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Proof. If z € G, y € G, and one of the inequalities |y| < d|z| and |z| < dly| is satisfied, then
|z —y| > || —|y| > (1—=9)|z| or |z —y| > (1—9)|y| respectively. In both cases, we have the inequality

|x|“|s0(:r) =Wl _ 2lelo

lz—ylr T 1-46
Therefore, norm (2.7.4) is equivalent to the norm
|o(z) = e(y)|
ol =lelo+ @l [elu=  sup  [zf* . (2.7.13)
T slshyl<o el & =yl

Let x € G, y € G, and || < |2'| (for definiteness). Then the points z = /2’ and y = 6’2’ belong to
G and 6%|z| < |y| < |z|. Therefore, the relation

105 (@) = @i ()| _ giulel@) =)l _ |2]* [e(z) = w(y)]

|z — o |P lz —ylr = o0 |z —yln

holds, which implies the estimate of norm (2.7.13) via norm (2.7.12), where § is to be replaced by §2.

Conversely, let z € G, y € G, and §|z| < |y| < 6~ !|z|. Select an integer j to satisfy the inequality
&1 < |y| < 7. Then &1 < |z| < ¢/~'. Hence, the points 2/ = § 7z and y' = 67 belong to G;.
Therefore, the relation

|x|uls0(:r) —o)l _ |x/|ﬂls0j(ﬂf’) —@i@) 1 (@) — o)
|z —y|+ |z —y/|n T o | =y

holds, which yields the opposite estimate of norm (2.7.13) via norm (2.7.12).
The following assertion easily follows from the proved theorem.
Lemma 2.7.2. If a function ¢ from C1(R*\ 0) is bounded and its gradient ¢ admits an estimate
¢ (2)] < C/|z], (2.7.14)
then ¢ € C’g’l(Rk).

Proof. By virtue of (2.7.14), the sequence of functions ¢;(z) = ¢(6’z), j = 0,=£1,..., is uniformly
bounded in the spherical layer S = {§ < |z| < 1/d} together with their derivatives. Since S is a
uniformly connected domain, it follows from Theorem 2.2.2 that these functions are also uniformly
bounded with respect to the norm of the space C%!(S). Therefore, by virtue of Theorem 2.7.1, the
function ¢ belongs to C’g L(RF).

In particular, it follows from the lemma that for any real o, any positive €, and any nonnegative
integer n, the following relations hold:

[ " |« € Cy' (@), G = {|a| < R},

. o (2.7.15)
|| In" |z € Oy (G), G ={|z| = R}
Let © denote the unit sphere of the space R¥. It is obvious that the transformation
w(s,u) =e€e*u, (s,u) e RxQ, (2.7.16)

is a homeomorphism of R x € onto R¥\ 0. The inverse map is z — (In |z, z/|z|).

Theorem 2.7.2. Let a set G from R x Q be the image of G\ 0 under the mapi,u_l(:n) = (In|z|, z/|x|).

Then the operator v — 1) o w isomorphically maps the Banach space C*(G) to the Banach space
Ch(@).
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Proof. For the group of translations (s,u) — (s + sg, u) of the set R x Q onto itself, the corresponding

analog of Theorem 2.1.1 is valid in the space C*(G). Namely, fix a positive r and consider a sequence
of sets

Gj={(s,u) € (=r,r) x Q| (s + jru) € G}, j=0%1,....
Further, define a function 1 on G and assign the following function sequence to it:
wi(s,u) = ¥(s + jru), (s,u) € Gj.
Then the space C’“(é) can be defined by the equivalent norm
vl = suplslce. (2.7.17)

Assign r = |Ind|, where ¢ is from Theorem 2.7.1. In the notation of this theorem, substitution (2.7.15)
homeomorphically maps éj onto G; and the relation ¢ = 1 o w is equivalent to ¢; = 9, o w for any
4. It is immediately verified that the vector-functions w and w™! satisfy the Lipschitz condition on
the sets [—7,7] x Q and S = {z € R¥, 671 < |z| < §} respectively. Therefore, the operator ¢ — 1 o w
isomorphically maps the Banach space CO#([—r,r] x Q) to the Banach space Cj*(S). Therefore,
norms (2.7.13) and (2.7.17) are equivalent.

An intermediate application of Theorem 2.7.2 is as follows: the space C}j is invariant with respect
to the involution z* = x/|z|2. Moreover, the superposition operator ¢(z) — ¢(z*) is invertible from
CH(G) to CL(G*), where G* = {z, z* € G}.

To prove that, it suffices to note that the involution z — z* passes to the transformation (s,u) —
(—s,u) under substitution (2.7.16).

2.8. Weight Spaces C{ (G, F)

In this and the previous sections, we treat the closure G of a set G from RF as the closure with
respect to the Riemann sphere, i.e., we assume that the closure contains the point oo if the set G is
unbounded.

Let F' be a finite subset of G such that it contains oo if G is unbounded. Consider the neighborhoods

By(r) ={lz —7| < p}, T#£ 00, By(r)={|z| >1/p}, 7 =00, (2.8.1)

of points of F', where the positive p is sufficiently small to guarantee that these neighborhoods are
pairwise disjoint.
To any function ¢ defined on G \ F, assign the function family
or(z) = @z + 1), xEGT:GmBP(T)—T7 T # 00,
or(x) = p(z), z€Gr=GNB,(1), T =00,

” (2.8.2)
B(x) = p(), v€G=G\JB,p().

Let A = (A+, 7 € F) be a family of real numbers. By C{(G, F) denote the class of all functions ¢

such that @, (z) = |z| ¢, (v) € C{(G,), T € F, and § € C*(G). It is obvious that this is a Banach

space with respect to the norm

ol = max |$T|Cg(G-,—) + |¢|Cu(é)‘ (2.8.3)

If 4 = 1, then this space is denoted by C’B’I(G, F). Sometimes, it is convenient to include points 7 to
the set F' such that 7 ¢ G. In this case, (2.8.2) and (2.8.3) are treated with respect to 7 from F N G.
For consistency, it is also convenient to consider the space C’ﬁf (G, F) for the empty set F’; in this case,
this space is identified with C*(G).
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In this notation, the space C§(G) (see the previous section) can be represented in the form

CY (G, 0), 0€G, GC{lz[ <R},
CH(G) = CH(G,), €G, GC{z|> R},
Cy(G;0,00), 0,00 € G.

From the definition, we see that the space C§j(G, F') consists of bounded functions and is a Banach
algebra with respect to multiplication (since this is valid for the spaces C* and C} introduced in
Secs. 2.2 and 2.7). In the same way, we conclude that if ¢ € C/'(G, F') and a function f satisfies the
Lipschitz condition on the image ¢(G), then fo¢ also belongs to Cfy (G, F). In particular, for complex
functions ¢, the condition (2.7.7) is necessary and sufficient for the invertibility of ¢ in the algebra
Cl (cf. Sec. 2.7).

Arguing in the same way and taking into account (2.2.3), (2.7.6), and (2.7.15), we conclude that
the family C{/(G, F') of Banach spaces monotonously decreases (in the embedding sense) with respect
to both parameters p and A, 7 # oo, and monotonously increases with respect to As. From Defi-
nition (2.8.2)—(2.8.3), it immediately follows that the product of functions, treated as a bilinear map
(p1,92) = w192 from CY x Cy to CY ., , is bounded. This is the reason to call C} the weight space
and to call the family A = (A, 7 € F) the weight order. If \; is independent of 7, then the weight
order is identified with a real number.

If a function p does not vanish on G\ F', then we call it a weight function for the space Cﬁf provided
that p*! e C’i y- It is obvious that the operator ¢ — py of the multiplication by this weight function
isomorphically maps the Banach space C} to the Banach space Cf\L and Cﬁ\‘, to C’ﬁf Ve

A simple example of a weight function is the function

pala, F) = T pa. (2, 7), (2.8.4)
Tel
where

=P+ ]2))7°, T # oo,
ps(,m) = {(1+|a:|)5, T = 00.

It is easy to see that this function belongs to C’g’l(G, F) for any \. Indeed, by virtue of Lemma 2.7.2,
the function

2| pa(z +7), T # o0,
ar(x) = Y
|1‘| Tp)\(l‘)’ T = 00,
belongs to Cg’l(B), where B = {|x| < p} for 7 # oo and B = {|z| > p} for 7 = oc.

If there exist points 7 from F, lying outside G, then the function p)(x, F') still belongs to the space
C’f\)’l(G, F). This follows from the fact that if Fy NG = &, then the function p)(z, Fy) belongs to
Cg (G, F) for any weight order A on Fp.

In the considered case, the following analog of Lemma 2.7.1 holds.

Lemma 2.8.1. The space Cl/(G,F) consists of functions () such that they satisfy the Hélder con-
dition with power p and vanish at finite points T of F'. The relation

[ = ¥ + [y, (2.8.5)
where c is a fived point of the set G, defines an equivalent norm in C} (G, F).

Proof. Let v belong to C}/(G, F). Then, form Lemma 2.7.1 and Definition (2.8.2)-(2.8.3), we conclude

that, on both sets G N B(7), 7 € F, and G, the function v satisfies the Hélder condition with power
1 and the corresponding norm estimates

[Ylucnp) +19(e)l < Cllop, 9], 6+ 9] < Clylep
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are valid for any fixed point ¢, from G N B(7) and any fixed point ¢ from G. Ifr = 00, then one can
assign ¢; = 7. Thus, the term |¢(c;)| can be excluded from the above estimate.

By virtue of Theorem 2.1.1, this implies that v satisfies the Holder condition with power u on the
whole set G and norm (2.8.5) is estimated via the norm [¢| in C§. One must take into account the
fact that the point ¢, with 7 = co and the point ¢ are allowed to coincide with the point c.

Conversely, let a function 1 satisfy the Holder condition with power p and vanish at finite points
7 from F. Then, by virtue of Lemma 2.7.1, the functions |z|~*7%,(z) belong to C}(G,). Hence,
Y € Cl(G, F) and the claimed norm estimates are valid by definition.

Using Lemma 2.8.1, one can extend Theorems 2.1.1 and 2.1.2 and Lemma 2.1.2 to the spaces C’ﬁf.

Theorem 2.8.1.
(a) Let open sets Vj, 1 < j < m, cover G. Let one of these sets be a neighborhood of oo in the case
where G is unbounded. Then the relation

ol = pax lelesav;, F)

defines an equivalent norm in the space C{ (G, F).
(b) Let a set G be a uniformly connected union Gy U ...UG,,. Let ¢ belong to C(G'\ F). Then the
relation

lpl = 1%?;@|¢|C§(ij)

defines an equivalent norm in the space CY(G, F).
(c) If the assumptions of Lemma 2.1.2 are satisfied, then the relation

ol = max lelena;
defines an equivalent norm in the space CY(G, 7).

Recall that the spaces C*(G) and C*(G) coincide. If g = 0 (this case is stated explicitly each time),
then these spaces are different. Obviously, the same is also valid for weight spaces. The only exception
is the space C*(D) in two-dimensional domains D with piecewise-smooth boundaries (see Sec. 2.5)
such that one-sided boundary values of its elements are treated as different ones. Theorem 2.8.1(b)
allows one to introduce weighted spaces C{ (13, F) in the same way. Namely, if subdomains D; C D

are bounded by piecewise-smooth contours and D = Dy U ... U Dy, then C¥ (E,F ) consists of all
functions ¢ from C(D) such that their restrictions to D; belong to C§'(D;, F'), 1 < j < n. This space
is endowed with the norm

ol = mj‘{.j‘x|90|C§f(Dj),F;

it is a Banach space with respect to this norm. This definition is independent of the choice of
subdomains D, ..., D,, which is proved in the same way as Lemma 2.5.3 (if we take Theorem 2.8.1(b)
into account). Another way to the proof is as follows. For A = p, the claimed fact follows from
Lemma 2.5.3 and Lemma 2.8.1; for other weight orders, it suffices to use the multiplication by an
appropriate weight function.

The following assertion is easily deduced from Lemma 2.8.1: if the set G is bounded and the
inequalities ¢ < v and A < A’ are strict, then the embedding C¥, C C’ﬁf is compact.

Indeed, select a positive (sufficiently small) e such that the inequalities v —pu > ¢ and X' — X\ > ¢ are
satisfied for all values of 7. Then it suffices to prove the compactness of the embedding C’ﬁsz C C’ﬁf .
Multiplying these spaces by the weight function p,,_», one can assume (without loss of generality) that
A = . In this case, it remains to use Lemma 2.8.1 and the compactness of the embedding C#t¢ C CH
proved in Sec. 2.2.

Investigate the boundedness of the superposition operator T'(a)¢ = ¢ o a in weight spaces, where
«a : G — (G is a continuous map.

779



Theorem 2.8.2. Let G C R*, G1 C R®, and a map o : G — G satisfy the Lipschitz condition. Let
a(00) = oo provided that G is an unbounded set. Let the image a(F') be contained in a finite subset Fy
of G1 and there exist pairwise disjoint neighborhoods U, of points T from F such that the inequality

la(z) —a(r)| > qlze —7|, z€GNU;, (2.8.6)
where 0 < q < 1, is satisfied for T # oo, while the inequality
la(z)| > qlz|, =€ GNUx, (2.8.7)

is satisfied for T = oo.
Then the operator T'(a))p = poa boundedly maps C’ﬁ\‘l (G1, F1) to C{(G, F), where the weight orders
X and Ay on F' and Fy (respectively) are such that Ai[a(T)] = N(T), 7 € F.

Note that the conditions (2.8.6) and (2.8.7) are satisfied for any Lipschitz map a. Only (2.8.7) is
to be justified. By virtue of the Lipschitz condition satisfied for «, we have the inequality |a(x)| <
la(e)| + [a]1]x — ¢|, where ¢ is a fixed point of G. Therefore, |a(z)| < (1 + [a]1)|z| provided that
|z| > |a(c)| + [a]1|e|. Applying this arguing to the inverse map 3 = a~!, we obtain the validity of the
condition (2.8.7).

Proof. We use the weight function notation (2.8.4) both with respect to the sets G and G;. If this
weight function is treated as a multiplication operator, then it suffices to verify that the operator
A= p;i“T(a)pA_u from C!(Gy, F1) to Cl(G, F) is bounded. This operator acts as follows:

(49)(x) = ale)glo(@)).  ale) = )

Pr—p(T)
Therefore, due to Lemma 2.8.1 and (2.1.6)(c), it suffices to verify that the function a belongs to
Cl(G, F). If there exists a neighborhood of F such that a subset K of G lies outside this neighborhood,
then the image K; = «(K) possesses the same property with respect to Fy. Therefore, p,_» €
CH(K), px,—p € C*(K1), and, due to (2.1.6)(c), the function a belongs to C*(K). Thus, according to
Theorem 2.8.1, it suffices to verify that a € C{'(G,7) for any point 7 of F, where G, = G NV, and
V; is an appropriate neighborhood of 7. More exactly, let V; = {|x — 7| < 0} for finite points 7 and
Vi ={]z| > 1/} for 7 = oo, where 4 is positive and such that V; C U..

First, consider the case where 7 is finite. In this case, we have the relation

(@) = (@b, () = 10~ O
|z — 7|
where ag € CH(G,). It is obvious that the function c¢(x) = |a(x) — «(7)| satisfies the Lipschitz
condition and vanishes at the point 7. Therefore, due to Lemma 2.8.1, it belongs to 010 ’1(GT, 7). Then
b(x) = |z — 7|7 te(z) € C’g’l(GT 7). By virtue of (2.8.6), this is valid for the function b*(")=#. Hence,
a also belongs to C§' (G-, 7).
Now, consider the case where 7 = co. In this case, the relation

ofe) = f@gla@p@P o = s (288
holds, where the function f(z) is continuously differentiable in the domain V' = {|z| > 1/6} and its
derivative satisfies the estimate |f/(x)| < C|z|~!, while the function g(y) is defined in the domain
Vi = {ly] > ¢/é} (taking into account (2.8.7)) and possesses a similar property in this domain.
Therefore, due to Lemma 2.7.2, the function f belongs to C’g ’l(V, 7) and, in the same way, the function
g belongs to 0871(‘/1, 7). In terms of these functions, the relation (2.8.8) takes the form

a(z) = f(x)h(x)b), (2.8.9)
where h(x) = |z|"g1[a(z)] and g1(y) = |y|*g(y). By virtue of Lemma 2.7.1, the function g; (y) satisfies
the Lipschitz condition on V;. Hence, the function g;[a(x)] satisfies this condition on G,. Applying
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Lemma 2.7.1 to g; o and «, we conclude that the functions h(x) and b(x) belong to C’g’l(GT, 7). The
values of the function b lie outside the neighborhood of zero, i.e., they lie in the set, where the function
|t|* satisfies the Lipschitz condition. Therefore, b belongs to the class C’g’l together with . Thus,
all the three factors of product (2.8.9) belong to this class. Hence, a also belongs to C’g’l(GT, 7).

Theorem 2.8.2 can be complemented by superposition operators defined by the inversion. Since any
inversion can be expanded as a superposition of the inversion z — z* and a translation satisfying the
assumption of Theorem 2.8.2, it follows that it suffices to consider the case where a(x) = x*.

Lemma 2.8.2. Let a map a(x) be the inversion x* = x/|z|?> and the point x = 0 either belong to F or
be located outside G. Then T(«) is a bounded and invertible operator from CX.(G*, F*) to C{(G,F)
with respect to G* = o(G), F* = a(F), and the weight order

>\T*7 07 )
A= 770,00 (2.8.10)
=X, 7=0,00.

Proof. Let Fy = FN{0,00}, F} = F \ Fy, and G, = GNUg, k=0,1, in notation (2.8.1), where

Uo= | By(r), Ui =RF\ ] B,

T€F) T€Fy

According to Theorem 2.8.2, T'(«) is a bounded and invertible operator from C§. (G7, F}) to C§'(G1, F}).
Since [B,(1) N GI* = B,(7*) N G*, it follows that the same assertion for Gy follows from the remark
to Theorem 2.7.2 and Definition (2.8.2)-(2.8.3). Hence, it remains to use Theorem 2.8.1(a).

According to Lemma 2.6.2, Theorem 2.8.2 together with Lemma 2.8.2 cover all maps Lipschitz
with respect to the distance on the Riemann sphere. Applying the same arguing to Lemma 2.8.1,
we see that, in the notation of Sec. 2.6, the space C* (G, 00) coincides with the subspace C(G) of
functions vanishing at the point 7 = co. In particular, for M’ > XA and 0 < p < v < 1, the embedding
CX(G,0) C Cf,(G, 00) is compact.

The following standard way to introduce weight spaces is broadly propagated. If X(G) is a main
Banach space of functions defined on a set G and p is a weight function positive on G, then the weight
space X (G, p) is defined by the condition pp € X(G). This is a Banach space with respect to the
corresponding norm

o] = |PSO\X(G)-

For Holder spaces, X = C*" or any its subspace 5“((}) of a finite codimension is usually selected.
For example, let the latter subspace be the class of all functions ¢ satisfying the Holder condition
with power p and vanishing at the endpoints 7 from F, endowed with norm (2.8.5). Then, due to
Lemma 2.8.1, the space C*(G, pr—p) coincides with C{'(G, F). This leads (see Chap. 5 below) to the
following phenomenon: for classical Fredholm operators on a piecewise-smooth curve, considered in
the weight space C*(G, ps), the Fredholm property criterion depends not only on §, but also on .

The weight spaces Cf\L in the above form are introduced in [65], where their main properties are
described; they are contained in this section and two following ones.

2.9. Holder Spaces of Differentiable Functions

Consider the class C™(D) of functions n times differentiable in a domain D. Recall that C(D) =
C%9(D) is the Banach space of functions continuous and bounded in the closed domain D. According
to definitions of Sec. 2.2, gradient (2.2.11) is called the derivative of the function ¢ from C' though
(2.2.11) is a vector, while the derivative at a point a from D is usually treated as a linear map
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¢ — ¢/(a)¢ in R*. The notation C! covers also vector-functions: in this case, ¢ is a matrix with the
columns Op/dz;. Similarly to (2.2.11), an ordered (in any way) collection

aOl
(m) _ ® —
© < e || m>

of m-order partial derivatives can be introduced for functions ¢ from C™(D); the obtained vector ¢(™)
is also called the deriative of order m. For m = 0, we assign (0 = ¢.

By C™*(D), 0 < u < 1, denote the space of functions ¢ from C™(D) such that all their partial
derivatives go(m), m < n, are bounded, can be extended to the boundary of the domain D as continuous
functions, and belong to the class C%#(D). The notation of these derivatives is preserved for their
limit values at boundary points. The continuous extendability requirement has a sense only for u = 0.
If 0 < pp <1, then it is already satisfied (due to the requirement for ) and C™*(D) = C™*(D). This
is a Banach space with respect to the norm

ol = > 1™ o (2.9.1)

m<n

Indeed, if {ps} is a fundamental sequence in C™%(D) and « is a multi-index such that its order |/
does not exceed n, then the sequence 0%ps/0x™ converges as with respect to the sup-norm as s — oo.
Denote its limit by ¢®. Then (as is well known from the general course of calculus) the function
¢ = ¢ belongs to the class C™ and its corresponding partial derivatives coincide with ¢®. Hence, ¢
belongs to the space C™*(D) and @5 — ¢ in this space.

In the sequel, unless otherwise stated, it is assumed that p > 0 and, therefore, we may write D
instead of D. The only exception is the space C™#(D) for two-dimensional piecewise-smooth open
sets D, defined from C’“(IA)) as above.

Similarly to (2.2.18), the space C™*(D) can be introduced inductively with respect to n by means
of the conditions that ¢ and ¢’ belong to C"~%#(D). Its norm is defined as follows:

ol = lelon-1 + [ lcn-1n. (2.9.2)
Sequentially applying this relation, we obtain expression (2.9.1).

According to the remark at the end of Sec. 2.6, the sphere R¥ can be treated as a C'°°-manifold
and, respectively, the space C"*'(D) can be introduced by means of charts (2.6.8). If the set D is
bounded, then the notation C™#(D) can be used instead of Ci"*'(D).

It is convenient to combine all properties of the introduced space in one theorem, assuming (ac-
cording to Sec. 2.2) that 0 < u < 1. If 4 = 0, then this result is also valid for spaces considered in the
closure of the domain.

Theorem 2.9.1.

(a) If p < v <1, then the embedding C™*(D) C C™¥(D) of Banach spaces takes place. If the domain
D is uniformly connected, then the embedding C™°(D) C C"~Y1(D) also holds.

(b) The product of functions is bounded as the bilinear map (p1,92) — w1p2 from C™F x C™H to
C™H; hence, the space C™*(D) is a Banach algebra with respect to multiplication. If an s-vector-
function o belongs to Cy"*(D, F), a function f belongs to C™(G), G CR®, and ¢(D) C G, then
the superposition f o ¢ belongs to C™*(D). In particular, (2.7.7) is a necessary and sufficient
inwvertibility condition for its elements.

(c) Let a vector-function o from C™(D) satisfy the Lipschitz condition, a(D) C D;, and Da €
C"=LH(D) (provided that n > 1). Then ¢ — @ o« is a bounded operator from C™F(D1) to
C™H(D).

If the above assumption is satisfied, o is a Lipschitz map, and Dy = o(D) is a domain of RF,

then the inverse map 3 = a~ 1 belongs to the class C™(D1) and its derivative D3 belongs to the
class C"~LH(Dy).
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Proof. The first part of assertion (a) follows from (2.2.3) and the inductive definition (2.9.2) of the
norm of the space C™*. For n = 0, the second part of assertion (a) is covered by Theorem 2.2.2.
Assume that it is valid in the case where the order of the space does not exceed n — 1 and the function
¢ belongs to C™°, n > 2. Then ¢ € C" 10 C C" 2! due to the induction assumption. In the
same way, we prove that ¢ € C"~10 C C"=21 Hence, ¢ and ¢’ belong to C"~2%!. Then due to the
inductive definition of the spaces, ¢ € C" 1! and the corresponding estimate of norms holds.

For n = 0, assertion (b) and the first part of (c) follow from the relations (2.1.6). In the general
case, as above, we use induction with respect to n and assume that the specified assertions hold
with respect to C"~1L#. Then the inequality |p1| < C|g|[ty| holds for the norm in C"~ b where C
is a positive constant independent of ¢ and . Differentiating the product, we obtain the relation
(py) = @' + py'. From this, taking into account (2.9.1), we deduce a similar estimate for the
norm in C™*. In the same way, differentiating the superposition of functions, we obtain the relation
D(f o) = (Df o ¢)Dyp, where the right-hand side is the product of Jacobi matrices. Due to the
induction assumption, this implies that D(f o ¢) € C™~1# and, therefore, f o € C™*. The first part
of assertion (c) is proved in the same way.

Pass to the second part of (¢). From Lemma 2.3.1, it follows that g is a continuously differentiable
map and its derivative treated as a Jacobi matrix is related to Da as follows:

DB = (Dao ). (2.9.3)

Since f is a Lipschitz map and the matrix-function Do and its inverse belong to the class C*(D), it
follows from (2.9.3) that the function D belongs to C*(D;). Further, we use induction and assume
that there exists m € [1,n) such that D3 € C™L#(Dy). Then, by virtue of assertion (c) applied to
B, the function Daco § belongs to C™#(Dy); hence, by virtue of (2.9.3), Df also belongs to C™*#(Dy).
Thus, after a finite number of steps, we obtain that D3 € C"~1#(Dy).

Similarly to (2.2.4), it is convenient to introduce the class

crit0 = | Jemrte, 0<p< 1. (2.9.4)
e>0

For s = 0, it is denoted by C™*9. Obviously, this class is an algebra with respect to multiplication and
all assertions (b) and (c) of the theorem are still valid (apart from the boundedness of the operator in
the last assertion).

In the notation of Theorem 2.4.1, the class C™* of smooth surfaces (or curves) can be introduced
by the following condition: f(a) € C™* in the ball |u| < p with respect to any point a from I'. For
surfaces with boundaries, defined by the parametrization v : G — T, this class is introduced by the
following condition: v € C™*(G).

In the same way, on surfaces I' from C™", n > 1, one can use a parametrization v from C™*(G)
to introduce the class C™#(I') of differentiable functions; this is done by the following condition:
p oy € C™*(@G). This definition is coordinated with the similar class for k-dimensional regions in
the following sense: if I' is contained in a closed subdomain D of R*, then the restriction operator
¢ — ¢|r boundedly maps C™*(D) to C"™*(T"). To prove this, one can use induction with respect to
n and the following differentiation rule for superpositions of functions: D(p o) = [(D)p o v|D~.

Similarly to (2.9.2), inductively define the homogeneous space C"*(D) by the conditions

(), Y(z) = |z|¢/(x) € CG~ (D). (2.9.5)
It is a Banach space with respect to the norm
el = lelen—1m + 9] gn-t- (2.9.6)

Theorem 2.9.2. In the claims of Theorem 2.7.1 and Theorem 2.7.2, the symbol C* can be replaced
by the symbol C™*.
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Proof. According to the inductive definition (2.9.5), assume that the claim of Theorem 2.7.1 is valid
for the space Cj~"*(D). Let ¢l(n) denote norm (2.9.6) and let

|01y = sup ;|
J

with respect to the sequence {¢;} from (2.7.12). Then, according to the specified inductive definition
of norms, we have the relations

ltmy = [@ln-1) + [¥ln=1)> 191ty = 121Gy + 19 |fny- (2.9.7)
It is obvious that the corresponding sequence {1} is related to {¢;} as follows:
¥j(z) = [z|gj(z), =« € D;. (2.9.8)

For any m, the functions |z|*! belong to C"* in the spherical layer {§ < |z| < 6~'}. From the proof
of Theorem 2.9.1, we see that the constant C,, from the estimate

lag|omu < Clalemulplomn,

where a and ¢ belong to C™#(D), is independent of the set D. Assigning a(x)
(2.9.8), we obtain the two-side estimates

|¢|711—1 < C|90,|711—1, |90/|711—1 < O|¢|711—1‘
This, (2.9.7) and the induction assumption imply the validity of the lemma for the space Cj""(D).
Pass to Theorem 2.7.2. It is obvious that the transformation w in (2.7.16) homeomorphically maps
R x Q onto R¥\ 0 and the inverse map is z — (In |z|,z/|z|). Spaces C™* can be naturally introduced
on domains of the unit sphere Q of the space RF. To do this, it is not necessary to use the structure
of Q as a differentiable manifold. For any function ¢ defined in a neighborhood of a point a of the
sphere (), assign

= |2|*! and applying

¢'(a) = <gfl,, gi) (a), (2.9.9)

where @ is the following extension of ¢ to a neighborhood of the point a of the space R*: @(z) =
@(x/|z|). Then, for any open subset G of €, the space C™*(G) still can be obtained by induction. If
G C R x €, then this space has a similar sense.

Arguing as in the proof of Theorem 2.7.2, we see that it suffices to verify that the operator ¢ — ow
is an isomorphism of the Banach spaces

O ([—r, 1] x Q) — CIH(S).

As we note above, the vector-functions w from C®([—r,7] x Q) and a = w™! from C°°(9) satisfy the
Lipschitz condition on [—r,7] x Q and S respectively. Therefore, the specified assertion follows from
Theorem 2.9.1(c). For the manifold [—r,r] x Q, it is proved in the same way; just the differentiation
relations _ _

oo Oz O |z|* — 7

Ox; 0Os|z|2  Ou; |zf3

for the function ¢(z) = ¢¥(In|z|, z/|x|), following from Definition (2.9.9), are to be taken into account.

Let Hy, A € R, denote the class of all functions Q(&) from C°°(RF\0) such that they are homogeneous
functions of power A, i.e., they are such that Q(r¢) = r*Q(€), 7 > 0. It is easy to see that the
differentiation operation @Q — Q' acts from H, to H,_1 and, therefore, the weight operation Q(§) —
|€]Q’(€) is invariant in H,. Since Hy C C’g 1(R¥) due to Theorem 2.7.2, it follows from the inductive
definition that

Ho C COH(RF) (2.9.10)

for any positive integer n.
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A simple example of functions from the class H; is the function Q(&) = |¢|. All its derivatives Q™)
of order m belong to Hi_,,. Therefore, similarly to (2.9.1), instead of the inductive definition of the
norm of the space Cj", given by (2.9.6), one can select the equivalent norm

ol = > [mlaes  dm(x) = |2 ().

m<n

Let a finite set F' be contained in D and oo belong to F' if the open set D is unbounded. If a point
belongs to D, then it is assumed to be an isolated boundary point for the set D\ F. For example, if
the boundary 9D is compact, then co is treated as an isolated boundary point of D (on the Riemann
sphere).

For functions ¢ from C™(D \ F), the space C\""(D,F) can be defined by two equivalent ways.
One way is similar to Sec. 2.8 and is based on the spaces C™#*(D) and Cy*'(D). Another way is the
inductive definition by the conditions

peCy M, Weoy (2.9.11)

One can use the last definition to introduce the norm in this space by induction. Another way to
introduce this norm is to use the relation

el =D 6™ on .

m<n
The introduced space is a Banach space with respect to this norm.

From the inductive definition (2.9.11), it follows that Theorem 2.8.1 also holds for the space C}"*.
Also, this definition implies that if the domain D is bounded, i.e., oo does not belong to F', then the
embedding
C"fH(D, F)CCc™"(D) (2.9.12)

n

of Banach spaces holds and all derivatives go(m), 0 < m < n, of functions ¢ from Cgfn vanish at points
7 from F.
All main properties of this space are provided by the next theorem.

Theorem 2.9.3.

(a) The family of Banach spaces C’:’” monotonously decreases with respect to the parameters p and
Ar, where T # 00, and monotonously increases with respect to Aso. If 1 < v, then A < X, T # oo.
If \; > M., 7 = oo, then the embedding C\;" C C\;' is compact.

If the domain D is uniformly connected, then the embedding C’Q’O(D,F) - C;_I’I(D,F) also

holds.

(b) The product of functions treated as bilinear map (p1,p2) — p1p2 boundedly maps C’fl’“ X C’;\Z’“ to
C;{iAz’ and, therefore, the space Cy'"' (D, F) is a Banach algebra with respect to multiplication.
If an s-vector-function ¢ belongs to Cy*(D, F), a function f belongs to C™Y(G), G C R®, and
(D) C G, then the superposition f o belongs to Cy'*'(D, F). In particular, the condition (2.7.7)
s mecessary and sufficient for the invertibility of elements of this superposition.

Proof. Assertion (b) and the first part of assertion (a) are proved by means of induction with respect
to m, i.e., in the same way as Theorem 2.9.1. Regarding the second part of assertion (a), it suffices to
prove it for n = 1 and use induction with respect to n then. Thus, we assume that the domain D is
uniformly connected and a function ¢ from C!(D) admits the estimates

[p(@)| < Copa(x), ¢/ (2)] < Crpr-i(z) (2.9.13)

with positive constants C;.

From Definition (2.8.4), we see that the function p;_) is continuously differentiable and its gradient
is representable in the form p}_, = ap_, where the vector-function is bounded and its sup-norm |a|g
depends only on \. Consider the function 1) = p;_)¢ with the “derivative” ¢/ = ap_ ¢ + p1_r¢’. By
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virtue of (2.9.10), this function belongs to C1°(D) and has a one-order zero at finite points 7 of F.
More exactly, the inequality

[Wlo + 4]0 < (1 + |alo)Co + Cy

holds. Therefore, Theorem 2.2.2 is applicable to the function . Then 1 satisfies the Lipschitz
condition with constant [¢)]; not exceeding M|y'|o. Then, by virtue of Lemma 2.8.1, the function
p_rp = p—1% belongs to C’g’l(D,F) and, therefore, the function ¢ belongs to C’g’l(D,F) and the
corresponding estimate of its norm holds.

It is obvious that the weight function p) from (2.8.4) belongs to the class C’;H’O(Rk,F ) for any
n (the set D = R* is unbounded in the considered case, which means that co € F). Therefore, by
virtue of the last assertion of Theorem 2.9.3(a), this function belongs to C’;L’l(Rk,F ). In particular,
the operator of the multiplication by py isomorphically maps C}/*(D, F)) onto CY,(D, F).

Similarly to Theorem 2.9.1, one can use induction with respect to n to extend Theorem 2.8.2 to the
case of spaces C\"".

Theorem 2.9.4. Letn > 1 and Da € C’g_l’”(D,F) under the assumptions of Theorem 2.8.2. Then
the operator ¢ — ¢ o a boundedly maps C\*'(Dy, F1) to CY'*(D, F).

If the above is satisfied, s = k, « is a Lipschitz map, and D1 = «(D), then the inverse map f = o~
belongs to the class C™(Dy) and Df € C’g_l’“(Dl,Fl).

1

Lemma 2.8.2 admits the corresponding analog for the considered spaces, i.e., the symbol C* can be
replaced by C™* in this lemma. To prove that, we take into account the fact that, due to Lemma 2.9.1,
the remark to Theorem 2.7.2 concerning the operation ¢(x) — ¢(x*) still holds with respect to C™*.

Applying Lemma 2.8.2 to C;:”’” , one can obtain an embedding of Banach spaces, similar to (2.9.12),
in the case where the domain D is unbounded. Let this domain lie outside a neighborhood of the
point 7 = 0 and D* be the image of D under the map x — z*. Due to the definition from Sec. 2.6,
this map takes the space C"*'(D) to C™#(D*). Therefore,

C (D, 00) € CPH(D). (2.9.14)

From Theorem 2.9.3(a), it follows that the following classes are well defined:

ol =Uas o= (2.9.15)

Here the union and the intersection are taken with respect to weight orders J such that . > 0 for
T # 00 and §, < 0 for 7 = oo. If A = 0, then the symbol A in the notation of these classes is omitted.
In particular, similarly to (2.7.15), the relation

2] (1 + [2])¢ In" |2]Q(x) € CYL (RF;0,00), (2.9.16)

where \g = m+Re(y and Ao = m+Re({p+ (1), holds provided that Q(x) € H,pn, (o € C, and (; € C,
n=12,...
The following properties of these classes are immediately deduced from Definition (2.9.15).

Lemma 2.9.1. The space C’f’“ is located between the classes (2.9.15), i.e.,

Oy C OVt C A (2.9.17)

The multiplication operation (p1,9) — @1 acts from CYM x CYH o to CUE L.

More complicated functions can also be constructed by means of (2.9.16). Let the support of a
C>°-function x,(x) lie inside the domain B,(7) defined by (2.8.1) and x(z) =1 in a neighborhood of
7. Let complex functions ¢, ; belong to the line Re ( = A, homogeneous functions @ ;(§) belong to
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Ho, and p;;(£), 1 < j < m;, be polynomials. Let C’;\L“ (D, F) denote the class of all functions of the
kind
p(x) =Y xr(z) Y |o—7[9Qr (x — T)pri(Infa — 7]) + o (), (2.9.18)
TEF 1<j<ms
where & — 7 is to be replaced by z for 7 = 0o, and ¢y € C;fO(G, F).

It is clear that this class is also located between the classes (2.9.15), i.e., it satisfies the rela-
tions (2.9.17). It is useful for the selection of the asymptotics of functions ¢ from C} o in neigh-
borhoods of singular points 7 in the investigation of singular integral equations (see [61]) and elliptic
boundary-value problems (see [62]).

2.10. Modified Spaces C&f

According to Sec. 2.9, the space C)"" is defined by the conditions oM ¢ C{_,, provided that
0 <m < n. This is the motivation to investigate properties of a function ¢ satisfying only the last
condition, i.e., the condition p(™ € C’ﬁ\‘_n. For example, what conditions guarantee that such a
function belongs to C{*(D, F) (up to a smooth term)?

It is convenient to introduce the following definition. A domain D satisfies the cone condition at its
boundary point 7 if there exist an open connected cone K with vertex at the origin, a neighborhood
V. of the point 7, a positive 9, and a Lipschitz map « of the set D, = D NV, onto

K n{|z| <6}, T # 00,

Kn{|z| >1/6}, 7=o0, (2.10.1)

a(D;) =G, G= {
such that a(7) =0, 7 # 0o, and «a(oc0) = 0.
For example, it follows from the definitions of Secs. 2.3 and 2.6 that any bounded or unbounded
Lipschitz domain satisfies the cone condition at each its point. Another example is any isolated
boundary point of a domain D: the whole space can be treated as the cone K and the selected point
T can be treated as its vertex.

Theorem 2.10.1. Let D be a uniformly connected domain satisfying the cone condition at all points
T from F and let the derivative ¢' of a function ¢ from CY(D) belong to CY_ (D, F), where \; #
0, 7 € F. Then there exists a function @qg from C1(D) such that it is constant in a neighborhood of
any point T from F and ¢ — pg € C’g’l(D, F).

Proof. Let V; be the neighborhood of the point 7 from F', mentioned in the cone condition, and «,
be the corresponding Lipschitz map of the domain D.. Without loss of generality, one can assume
that the closed sets D, 7 € F, are pairwise disjoint (otherwise, ¢ in (2.10.1) can be appropriately
decreased). Let D° be the complement to the union of such sets in D. Let us prove that the function
¢ is bounded in the domain DY:

lp(z)] < C° e DO (2.10.2)

Assume the inverse. Then, since the set D° is bounded, it follows that there exists a sequence of its
points x,,, converging to a point a from 0D N dD° such that

xlir_r}a lo(xn)| = +o0. (2.10.3)

Let B denote the ball of radius r centered at a such that
BiNF=g, By={lz—a|] < (M+1)r}, (2.10.4)

where M is the uniform connectedness constant of the domain D. Let x and y belong to BN D. Then
there exists a rectifiable arc I" from D with endpoints x and y such that its length {(T") does not exceed
M|x—y| < 2Mr. Therefore, for any point z of I', either |z — x| or |z — y| does not exceed I(T") /2 < M.
Hence, |z —a] < (M + 1)r, i.e., T is contained in the ball B;. By virtue of (2.10.4), the derivative ¢’
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is bounded in By N D. Let |¢/(z)| < C; and « € By N D. Then, by virtue of Theorem 2.2.2, we have
the inequality
p(z) = @(y)| < CLUI) < CLM |z -y,
i.e., the function ¢ satisfies the Lipschitz condition on By N D. Then it is bounded, which contradicts
(2.10.3).
By the condition, in the domain D., the derivative of the function ¢ satisfies the estimate

()] < Crlx— 7!, €D, (2.10.5)

where x — 7 is to be replaced by z if 7 = co.
Let us show that there exists a constant ¢, such that p(z) — ¢, € C’ST(DT, 7) or, which is the same,
there exists a positive constant C? such that

(@) — el < Uz — 7],z €Dy, (2.10.6)

where x — 7 is to be replaced by z if 7 = cc.

It suffices to prove this estimate in the case of finite points 7 from F’ since the case 7 = oo is reduced
to the case 7 = 0 by means of the inversion z* = x/|z|?> mapping the domain Dy, onto D%, = Djy.
Indeed, consider the function yg(z) = ¢(z*) in the domain Dy. Due to Lemma 2.6.2, it is described
similarly to (2.10.1) with respect to 7 = 0 and the Lipschitz map ap(x) = [aeo(2*)]*. Tt is obvious that
its derivative ¢ (z) is equal to (z*)'¢’(2*), where the Jacobi matrix (z*)" is a homogeneous function
of power —2 of the independent variable x. Then |(2*)'| < M|z|~2, where the positive constant M is

independent of x. Therefore, for 7 = 0o, the estimate (2.10.5) passes to the estimate
|90 (x)] < MCola| =71, € Dy,

coinciding with (2.10.5) in the case where 7 = 0. Finally, for ¢, we obtain the estimate (2.10.6) with
Ao = —Aso. With respect to ¢(x) = @o(z*), this estimate passes to (2.10.6) with respect to 7 = oo.

Thus, let the estimate (2.10.5) be satisfied with 7 # co. By the definition of the Lipschitz map
a = a; in (2.10.1), we have the two-side inequality (2.3.1). Then

M Yz| < |a(x) — afr)| < M|z|, 2z € D,. (2.10.7)

Therefore, it suffices to verify that the function 1 (x) = pa~!(x)] satisfies a similar to (2.10.6) estimate
in the domain G, i.e., to verify that

() —¢r| < Cla?, zea. (2.10.8)

Fix r from (0,6) and consider the segment I = [z, y]| with endpoints z and y, located in the spherical
layer S, = {r < |z| < §}. Tt is known from Sec. 2.3 that its image I' = a~1(I) under the map a~*
is a rectifiable map of length [(I') not exceeding M|z — y|. By virtue of (2.10.7), this arc lies in
D; N {|z — 7| > r/M}. Therefore, due to Lemma 2.2.2 applied to ¢, we arrive at the estimate

r\A-1
(@) — ()| < max|/ () UD) < O () Mle -y,

Thus, there exists a positive constant Cy depending only on C;, A, and the domain D, such that

[¥(2) = ¢(y)] < Cor’Ha -y (2.10.9)
for any point pair z,y lying in the spherical layer S, together with the segment [z, y].
Consider the sequence x, = 6%z, k = s,s+ 1,..., where the nonnegative integer s is determined by
the condition
6% < |zs| < 6. (2.10.10)
By virtue of (2.10.9), we have the inequality
W(@n) — (@] < Colwrra Mg — wpga| = C18M7 |z (2.10.11)
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with constant C7 = 005’\7_1(1 —6). Hence, if \; > 0, then there exists ¢, such that the sequence
¥ (xy) converges to ¢, as k — +o00. This limit is independent of the choice of the point z. Indeed, let
yr, = 6Fy and, for definiteness, let || < |y|. Then, by virtue of (2.10.9), we obtain the inequality

(k) — P (yk| < Colzn> ok — yu| = Cod* |2 |z — y),

which means that ¢, = ¢y.

Now, let = and y be arbitrary points of the spherical layer S,.. By the condition, the cone K is
connected. Hence, the set S, is also connected. Therefore, there exists a broken line L C S, connecting
the points x and y and such that its tops are zo = z, 21, ..., 2, = y. Since ¢z, , = ¢z, (which is proved
above), it also follows that ¢, = ¢, in the general case.

Assigning ¢; = ¢,, € S, we deduce the following estimate from (2.10.11):

W(z) — | < C1 Y6 < Claf, (2.10.12)
k>0

where C' = Cy /(1 — §*7).

If A < 0, then the following estimate is obtained in the same way:

C
(@) =) <€ Y0 I < L el

s<k<0

By virtue of (2.10.9), function v is bounded in the layer {z € K, 62 < |z| < §}. Then the previous
inequality combined with (2.10.10) yields the estimate |¢(z)| < C|z|* with a positive constant C.
Assigning ¢, = 0 for A; < 0, we can join this estimate and (2.10.12) to obtain (2.10.8).

Now, let a function g from C'(D) be such that it is identically equal to ¢, in the domain D,.
Then, due to (2.10.2) and (2.10.8), the difference ¢ — ¢ belongs to CY(D, F). Then the derivative of
this function and ¢’ belong to C{_, (D, F'). Therefore, due to Theorem 2.9.1(a), the function ¢ — ¢y

belongs to 0271(D, F), which completes the proof of the theorem.

For any real A, denote by P, the finite-dimensional class of polynomials

plx) =Y asz® (2.10.13)

such that their powers are strictly less than X. Here 2% denotes the monomial z{* ... z}* determined
by the multi-index a = (ay,...,ax). For A <0, this class is assigned to be equal to zero. To describe
functions on the Riemann sphere such that they are smooth in a neighborhood of oo, introduce the
class

Py ={p(a"), p€ P_5} (2.10.14)

according to Sec. 2.6. Obviously, any polynomial p(x) from P and the related function p(z*) from
P_» can be represented in the form

pl)= Y Q@lzlff, p)= > Qi)™ (2.10.15)
0<k<A 0<k<A
where
Qr(z) = Z Qo v .

It is obvious that Q) is a homogeneous function of power zero and it belongs to the class Hg introduced
at the end of Sec. 2.9.
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As above, let I be a finite subset of a closed domain D and the notation x,(z) € C*°, 7 € F, mean

the same as it means in definition (2.9.18) of the class C’;\L“ . By C’&;L (D, F) denote the class of all

= Pxr+%0, @o€CY, (2.10.16)

T

functions of the kind

where pr € Py for 7 # oo and p, € P*, for 7 = oco. This class is considered only for weight orders
A related to n as follows:

A<n+1, 7#00, A>-n-1, 7=0c0. (2.10.17)

Obviously, this class is a finite-dimensional extension of C\"* (and it coincides with the last class if
Ar <0 for 7 # 0o and \; > 0 for 7 = 00). In particular, due to Sec. 1.1, the norm of the space C’:’”
induces a norm of this class such that it is a Banach space with respect to it.

Note that Theorem 2.8.1(a) applied to C}"* is also valid for the Banach space C )\f (D, F) since if
p is sufficiently small, then any set B,(7) is contained in one of elements V. The same assertion is
valid for Lemma 2.8.2. Let us provide the following application of the above assertions.

Lemma 2.10.1. In the notation of Sec. 2.6, assume that a function p(x) belongs to the class C*H!
in a neighborhood of a set D U oo on the Riemann sphere. Then ¢ € C&)I(D, F), where A\ = n+1
for T #£ 00 and Ay = —n — 1 for T = o0.

Proof. By virtue of Theorem 2.8.1 applied to C’( x)» One can assume (without loss of generality) that
F consists of the unique point 7 = 0 or 7 = 0o and the domain D is bounded in the former case, while
the domain D is unbounded and lies outside a neighborhood of zero in the latter case. Then the latter
case is reduced to the former one by means of the involution z* = z/|z|2.

Thus, without loss of generality, we can assume that D is a bounded domain, 0 € 9D, and there
exists a domain D such that D D D and ¢ € C"*1(D). We must prove that ¢ € C’(n+1)(D 0). Cover

the compact set D by a finite set of closed balls By, By, ..., By, contained in D such that By is centered
at the point 7 = 0, while other balls do not contain this point. Then, due to Theorem 2.8.1 applied

n,1

to C\"*, it suffices to verify that ¢ € C’(n’ Jrl)(BO, 0). Taking onto account Theorem 2.2.2, one can use
induction with respect to n to verify that ¢ € C™#(By), k > 1. In the ball By, the relation

p(r) =) ;! ng(O) + @o(x), (2.10.18)
la|<n

where a! = a1!...ay!, is valid. Using the Taylor expansion, we verify that the function ¢y admits the
estimate

lpo(@)] < Cla|"™,  z € Bo.

Differentiating the relation (2.10.18), we obtain a similar relation (where n is replaced by n — |3,
|B] < n + 1) for the functions ¢ = 0%¢/02” and ¢y = 0%p/0xP. Therefore, arguing as above, we
obtain that

o8

‘ 8;050 (z)| < Clz|"* =Pl 2 € By,

provided that |3] < n + 1. Hence, the function ¢y belongs to C’ZI% O(BO,O). Then, due to Theo-
rem 2.9.1(a), the function ¢y belongs to ngrll(Bo, 0). By virtue of Theorem 2.8.1 applied to the space
ngrll, this means that ¢g € ngrll(D,O), which completes the proof of lemma (take (2.10.18) into
account).

In terms of the space C’&;L , Theorem 2.10.1 provides the following answer to the question posed at

the beginning of this section.

790



Theorem 2.10.2. Let a domain D be bounded and uniformly connected. Let it satisfy the cone
condition at all points T of F. Let there exist m such that m < n and the derivative o™ of a function
@ from C™(D) belongs to C’&__ﬁﬁl(D, F), A\<n+1. Then ¢ € C&ﬁ‘(D, F) provided that

A #£0,...,m—1, T€F (2.10.19)
Proof. First, we prove the theorem in the case where m = 1. Fix 7 from F and consider the domain
D, from Definition (2.10.1). By the assumption of the theorem, we have the relation

dp
633 7

where the powers of the polynomials p; are strictly less than A\; — 1. Let us prove that there exists a
polynomial p,(x) such that its power is less than A, and

(z) = pj(@) + ¢;(x), ¢ € CY (D, 0), (2.10.20)

Ipr

—p.. 1<i<ek. 2.10.21
oo, P 1STS ( )

If n = 1, then, due to (2.10.17), we have the inequality A\, < 2 and, therefore, the polynomials p;
are constants; then the claimed assertion is obvious. Let n > 2. Then the relation (2.10.20) can be
differentiated; then

dp; _ Op; dpi | Op;

pz’jza - = - +

0 . .
DTa ’ .
z; 0x; 633]- ox; < CAT_2( T) i7J

It is obvious that the power of the polynomial p;; is less than A, —2; then the previous representation is
possible only if p;; = 0. This proves the existence of a polynomial p, possessing the property (2.10.21).
Thus, changing ¢ for the function ¢ — > p,x,, one can assume (without loss of generality) that

T

o e C’f__ll #(D, F). In particular, due to Theorem 2.10.1, this implies the existence of constants c,
such that

po=9p— Y cxr € CD,F).
T

It is clear that the derivatives ¢ and ¢’ belong to the class C’;L__ll "(D, F). Therefore, due to Theo-

rem 2.9.1(a), the function ¢y belongs to C{' (D, F) and gp((]k) € Cf (D, F) provided that 0 < k < n,
Le., o€ CY'(D,F).

Thus, the theorem is proved for m = 1. In the general case, consider a partial derivative ¢ =
0%p/0x® of order |a| = m — 1. Then ¢/ € C&__"%) by condition. From the proved assertion, where A
is replaced by A — m + 1, we take into account the fact that the condition of Theorem 2.10.1 for the
weight order A — m + 1 is satisfied by virtue of (2.10.19) and conclude that the function 1 belongs
to C’&‘_";;ll). Thus, ™1 belongs to C&__”;;ll). Repeating this procedure, we obtain (after a finite
number of steps) that ¢ belongs to C&).

Recall that, according to Sec. 1.1, we assume that 0 < p < 1. However, it is clear that the last
theorem also holds for 4 = 0 provided that the weight classes C’;::Z’ 0 and C’;’O are considered in a
closed domain D.

From the last theorem, it follows that, under its assumptions, the space C&f can be inductively

defined by the conditions that ¢ and ¢’ belong to 08\_—1)' Due to Lemma 2.8.1, the spaces C*(G) and
CZL )(G, F) coincide provided that the set G is bounded. Therefore, if D is a domain satisfying the

conditions of Theorem 2.10.2, then one can inductively verify that the relation

C™H(D) = Cpll (D, F) (2.10.22)
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holds for any n. This fact complements embedding (2.9.12) for the specified domains. In particular,
the space C™#(D) can be defined as follows: only the highest derivatives belong to the class C*, i.e.,
¢ € CH(D). Arguing in the same way, we obtain that if ¢ € C™#(D), then the function

o 1 0%
900($) = QD(I‘) - Z A, Qg = (7—)7

ol 9x@
belongs to the space Cp, (D, 7).

If D is a Lipschitz domain, then all these properties hold for any point 7 from D. Indeed, all
boundary points of D satisfy the cone condition. All interior points 7 are boundary points for the
domain D \ {7}; obviously, they satisfy the cone condition with respect to this domain.

From Definition (2.10.17), it follows that Theorem 2.9.2(a) remains valid for the space C’&;L . As-

suming that D is a bounded domain, consider the following analogs of Theorems 2.9.2(b) and 2.9.3
for this space.

Theorem 2.10.3.

(a) Let the weight order A1 be nonnegative. Then the product of functions treated as the bilinear map
(p1,92) = P12 boundedly maps C&’;) X C’(")\’g) to C&’lﬂr)\z) and the space C’(")\’;‘(D, F) is a Banach
algebra with respect to multiplication provided that A > 0.

(b) Let a vector-function ¢ belong to the class C&ﬁ‘(D,F), A > 0, and an open set G contain the

compact (D). Then the superposition f o « belongs to C’("/\’ﬁ‘(D,F) provided that f € C"THG).
In particular, if ¢ is a scalar function, then the condition (2.7.7) is necessary and sufficient for

its invertibility in the Banach algebra C’&;‘

(¢) Let the conditions of Theorem 2.8.2 be satisfied and the map o belong to the class C’&{L) (D, F),

where A\' = max(\, 1). Then the superposition operator T(a)p = poa: boundedly maps C)3* (Dy, Fy)

(A1)
to C’(")\’;‘(D, F).
Under the additional assumptions that s =k, « is a Lipschitz map, and D1 = a(D), the inverse

map B = a~! belongs to the class C’&’f)(Dl,Fl), where the weight order Aoy, T € F', is denoted
by A.

Proof. (a) By virtue of Lemma 2.10.1, the condition for the power of the polynomial p in Definition
(2.10.16) of the class C’(")\ﬁl can be omitted. Therefore, the claimed assertion immediately follows from
Theorem 2.9.3(b).

(b) By virtue of Theorem 2.8.1 applied to C’&;L , one can assume (without loss of generality) that
F = {0}. Consider a function x from C§°(G) such that it is identically equal to 1 on the compact set
©(D). Replacing f by xf, one can assume (without loss of generality) that f € C"T(R#).

By definition, there exists a vector-polynomial p = (p1,...,ps) such that the difference ¢ — p
belongs to C\"*(D,0). By the condition of the theorem, the function f o p belongs to the class crtt

in a neighborhood of then compact set D. Then

fopeCHD,0)

due to Lemma 2.10.1. Therefore, it remains to verify that
fop—fopeCYH(D,0). (2.10.23)

Let a segment with endpoints z and y be contained in G. Then, applying the Newton—Leibnitz relation
to the function fo(t) = fly +t(z —y)], 0 <t < 1, we obtain that
1

k
1) = 50) = S0~ ). agCenn) = [ 07 e ate - lar
Jj=1 0

j
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Then
1
_ [ 9f

fle@)] = flp(@)] = Y aj(@)lpj(@) - pj(@)],  aj(x) = o, [P(2) + tp(x) — tp()]dt.
j=1 o

Since ¢; — p; € Cy*(D,0), it suffices to verify that the functions a; belong to the space Cj*(D,0).
For this, we use Theorem 2.7.2. In its notation, the function plw(s,u)] + te[w(s,u)] — tplw(s,u)]
belongs to the space C™* with respect to the total variable (s,u,t) on the corresponding set. Due to
Theorem 2.9.1(b), the superposition of its superposition with f possesses the same property. Hence, the
integral with respect to t of the obtained function possesses the same property. Using Theorem 2.7.2
again, we arrive at the validity of (2.10.23).

(c) Let us agree that the notation for the functions x, from (2.10.16) is also used with respect to
the set Fj. Represent ¢ from C’&’f)(Dl,Fl) similarly to (2.10.16) and note that if n > 1, then the

condition a € C&’f) of the theorem implies that o/ € CJ ~L# Therefore, due to Theorem 2.9.3, it
suffices to verify that
> (x-pr)oac CRy (D, F). (2.10.24)
TERM
By virtue of Theorem 2.8.1 applied to C&f , one can assume (without loss of generality) that the set

F consists of the only point 7. Then F; = {7} with 74 = a(7). Since the polynomial p, is equal to
zero for A <0, it follows that A can be assumed to be positive. It is obvious that the function x, o«
belongs to C™*(D) and is identically equal to 1 in a neighborhood of 7. Then it belongs to the class
C&ﬁ‘(D, 7). On the other hand, due to Lemma 2.10.1 and assertion (a) of the theorem, the function
pr © a belongs to the same class, which completes the proof of (2.10.24) and the first assertion of
(c). The second assertion is proved (by induction with respect to n) in the same way as the similar

assertion of Theorem 2.9.1.

Note that Lemma 2.8.2 applied to the space C(")\ﬁl and combined with Theorem 2.10.3 allows one to

include the case of unbounded domains D and D; in the consideration. Indeed, let inversions ¢ and
01 maps D and D; (respectively) to bounded domains. Then we must apply Theorem 2.10.3 to the
map & = 01 o & o d, where the map « is such that « satisfies the condition of Theorem 2.10.3.

To illustrate Theorems 2.10.2-2.10.3, we find conditions providing that the radial parametrization
(2.5.5) belongs to the class C1#[0, p], i.e., the radial arc T' belongs to C1#. Tt is obvious that any line

segment satisfies conditions of Theorem 2.10.2 and the class C1*[0, p] coincides with C(li’jru)([o, p],0).
Therefore, if v € CLH[0, p], then there exist g from Cllf“([o, p],0) and a constant a such that v(r) =
ar + yo(r). Hence, (") belongs to 0(15“([0,/)],0). Then, taking into account Theorem 2.10.3(b),

we conclude that this is also valid for the real function 6(r). Due to Theorem 2.10.2, this fact is
equivalent to the assertion that €’(r) belongs to Cﬁ_l([o, pl,0), which is the claimed necessary and

sufficient condition of the belonging of the radial arc I' to the class C1*.

CHAPTER 3

INTEGRALS WITH HOMOGENEOUS DIFFERENCE KERNELS

3.1. Homogeneous Functions

Investigate the class H) of homogeneous functions introduced at the end of Sec. 2.7. Recall that it
consists of functions Q(¢) belonging to C°°(R* \ 0) and satisfying the homogeneity condition

Q(re) =rQE), r>0, (3.1.1)
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of power A € R. By virtue of the homogeneity, the function @ is entirely determined by its restriction
to the unit sphere ). In the one-dimensional case, the set € consists of the two points &=1. Therefore,
any homogeneous function of power A is a linear combination of the functions Q1(¢) = [¢]} and

Q2(€) = (sgn&)[¢*.
Differentiating the relation (3.1.1) with respect to ;, we see that the partial derivative 0Q/9¢;
belongs to H,_1. In the same way, the multiplication operation Q(¢) — [£[°Q(€) acts from H, to

Havs-
Recall (see Sec. 2.8) that Q®) denotes the ordered collection of all partial derivatives of order s.
Considering it on the sphere €2, introduce the following norm in the class Hy:

Qlimy = Y 1QWo0. (3.1.2)
0<s<m

It is obvious that it satisfies the estimates

where C' is a positive constant depending only on A and 4.
Lemma 3.1.1. If Q € H,, then the inequality
Q(€) — QU < MIQIy (1€ + [~ —al, (3.1.4)

where M is a positive constant depending only on X\, holds for all & and 7.

Proof. By virtue of the homogeneity of (3.1.1), one can assume (without loss of generality) that || = 1.
Then

Q) - Q)| = '@(5) e ( ” )‘ <@hale= "+ 1001 = .

€ —
Inl Inl
Taking into account the fact that |1 — |n|| = |[£] — |n|| < |€ — 7], we conclude that

n

‘5— ‘Slé—nlJr'l—l'ln\S?\f—nl
Gl Gl

and
11— 9 < [Amax(L, [n|* )L = || < AL+ g™ )€ —nl.

Combining these inequalities, we arrive at the estimate

1Q(€) = Q)| < 2[Rl + IR0 (1 + [ )€ —nl. (3.1.5)

It is obvious that the spherical layer S = {1/2 < |¢| < 2} is a uniformly connected domain. Then, by
virtue of Theorem 2.2.2, the following estimate holds:

Q1,5 < Mi|Q]o,s-
On the other hand, the inequality
Q0,5 < Ma| @I,

where Ms is a constant depending only on A, holds due to the homogeneity of (3.1.1). Combining this
with (3.1.5), we obtain (3.1.4).

Due to (3.1.5), the estimate (3.1.4) holds for any homogeneous function of power A, satisfying the
Lipschitz condition on the unit sphere 2. Here, the norm |Q|co.1(q) plays the role of the norm |Q| ).

Consider the case where a function Q(£) = Q(z,&) from H, depends on the point 2 from G C R!
as on a parameter. As above, let Qés) denote the ordered collection of all partial derivatives of order
s with respect to £&. By C*")(G) = C*(™)(G,H.,) denote the space of all functions Q(z, &) such that
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they and their derivatives Qés), s < m, belong to C¥(G) uniformly with respect to £ from Q. This is
a Banach space with respect to the norm
Qlevim = D sup [QY (2, 6)[v(c). (3.1.6)
s<m £eQ

Obviously, for v = 0 and s = 0, this norm coincides with the sup-norm of the function Q(z,¢) on
G x Q.

If G is a domain D, then the space C™*(™) (D) = C™¥(™) (D, H,) is defined similarly: it consists of
functions Q(z, ) such that Qés)(m, €), 0 < s < m, belong to C™ (D) uniformly with respect to £ from
Q). The norm in this space is defined by the relation (3.1.6), where the symbol C" is replaced by C™".

From Definitions (3.1.2) and (3.1.6), it follows that if Q € C*"™)(G), =,y € G, and x # y, then

Olim) < QLo Q) = @8 ~ )

[z —yl”
The following assertion holds.

Lemma 3.1.2. Let Q(u,£) € C*W (G, Hy), A <0, and maps a : K — G and 3 : K — R* be such
that o satisfies the Lipschitz condition, 8 € C¥(K), and there exists a positive § such that |B(x)| > §
provided that x € K. Then the function q(z) = Q[a(z), B(x)] belongs to C¥(K).

. (3.1.7)

Proof. Obviously, the absolute value of the function ¢ does not exceed |Q|qw(0) 6*. Then, taking into
account Lemma 3.1.1, the estimates

Q(u,€) = Q(v,6)] < Qv lu = o], 1Q(u,€) = Q(u,n| < 2ME Qoo € =1l (3.1.8)

hold provided that |£] > 0, |n| > 0, u € G, and v € G. It remains to apply the corresponding estimates
from (3.1.8) to the right-hand side of the inequality

lq(z) — q(y)| < [Qla(x), B(z)] — Qla(y), Bx)]| + Qla(y), B(x)] — Qlaly), By)]|-

Treating £ as a parameter, one can also apply Theorem 2.3.2 (the extension theorem) to the function
Q(z,€). More exactly, let G be a Lipschitz domain and Q denote the unit sphere in R*. Consider the
bounded extension operator P : C¥(G) — C¥(RF from Theorem 2.3.2. For Q(z,&) from C*™(QG),
assign

Q'(z,6) = [PQ(-,)](x), =R, £eq, (3.1.9)
where the operation P acts for a fixed ¢. Further, similarly to (3.1.1), extend the function Q! defined
on {2 such that the extension is homogeneous:

Q' (x,r¢) = Q" (x,9). (3.1.10)

Lemma 3.1.3. The operator P! acting according to the relations (3.1.9)~(3.1.10) is bounded as an
operator from P! : CY™ (G, H,) to C*™(RF, H,).

Proof. For m = 0, the assertion of the lemma immediately follows from the definition of the operator
P'. In the general case, we show that it preserves the property to be infinitely differentiable with
respect to £&. More exactly, the following relations hold:

Q" [862
¢ ¢
Indeed, let e; be the unit vector of the axis £;. Assign € = (£ + se)/|€ + se|, € € Q, where the real s

varies in a neighborhood of the origin. Since P is a linear operator and (3.1.10) holds, the difference
Q' (x,€) — Q' (x,€) can be represented in the form

€+ 5e* QN (x, &) — Q' (x,€) = P[I¢ + 5e[*Q(-,€) — Q- O)](x).

} L 1<j<k (3.1.11)
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Dividing this relation by s and passing to the limit as s — 0, we arrive at the relations (3.1.11).
Justifying the passage to the limit, we argue as in Lemma 1.8.3. Due to Definition (3.1.6) of the space
C¥(™) these relations lead to the validity of the lemma for positive values of m.

For example, the function

Q(z,y,6) = q(z, )¢, g€ C"(G xq),

belongs to the class C*() (G x G, Hy).

In the general case, to represent () in the same way, one must assign ¢(x,y) = Qo(z,y,y — z),
where Qo(z,,&) = |£]7*Q(z,y,€) is a homogeneous function of power zero with respect to £&. The
next theorem finds additional conditions guaranteeing the belonging of this function ¢ to the class C”.

Theorem 3.1.1. Let G be a compact subset of RF and a function Q(z,y, &) from C*W (G x G, Ho) be
identically equal to zero for x =y. Then the function a(z,y) = Q(x,y,y — x) extended as zero to the
manifold x =y belongs to the class C*(G x G) and the corresponding norm estimate |a|cv < C|Q|cw)
holds, where C' is a positive constant depending only on the diameter R of the set G.

Proof. By virtue of (3.1.7), we have the estimate

la(z, 9)| < [Qlovor |z = y” < RY|Qlcveo)-

Thus, only the differences A = a(z1,y) — a(x2,y) and A = a(x,y1) — a(x,y2) are to be estimated. It
suffices to consider only the former one. Assign § = |21 — 2| and separately consider the case where
|x1 —y| < 2§ and the case where |x1 —y| > 2J. In the former case, we have |x3 —y| < 3§ and, therefore,

Al < [Qlevo (|1 = yl” + w2 — y”) < (2V + 3")|Q| v 6" (3.1.12)

In the former case, taking into account the triangle inequalities |y — z1| — 0 < |y — zo| < |y — 21| + 9,
we obtain that

0 <y — x| <2y — x| (3.1.13)
Consider the inequality
‘A| < ‘Q(‘Tlayay - 5171) - Q(xQJyay - 5171)‘ + ‘Q(x27yay - xl) - Q(m2,y,y - .TQ)‘
and apply the estimates (3.1.7) and (3.1.4) to the corresponding Ho-functions

Gie) = QEep O =QEand) 5 QEay8) = Qwn0)
21 = 2| |22 — Yy

at its right-hand side. We obtain that
Al < 1Ql w0 + M|Q|cwwydlag — yl” (Jor — y| ™" + a2 —y[ ).
By virtue of (3.1.13), we have the inequality
Slza =yl (|1 — y[ ™" + |22 —y|71) < 38|wo — gyl < 30,

Substituting this inequality to the previous estimate and combining it with (3.1.12), we complete the
proof of the theorem.

It follows from this theorem that if Q(z,y,&) € C*W(G x G,Hp) and a function ag(z,y) from
CY(G x @) vanishes for x = y, then the product a(z,y) = ao(x,y)Q(z,y,y — x) also belongs to the
class C”(G x G). For example, the functions |z — y|In" |x — y|, n = 1,2..., can be taken as a(z,y):
they belong to the class C¥, 0 < v < 1, on any bounded subset of R* x R¥.

If G is a smooth contour on a complex plane, then Theorem 3.1.1 can be complemented by the
following assertion.
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Lemma 3.1.4. Let a smooth contour T' belong to CYV with the unit tangential vector e(t), t € T, and
a kernel Qo(to,t; &) from C’”(l)(F x I', Ho) be even with respect to the variable §. Then the function
a(to,t) = Qo(to, t;t —to) extended by the value Q(to,to;e(to)) for t = to belongs to C¥(I' x I') and the
estimate |k|cv < C|Qo|cwvoy holds for the corresponding norms.

Proof. Tt suffices to prove the claim of the lemma for any arc T'y from I'. Let v : [0,1] — T’y be a
parametrization of this arc, belonging to the class C1¥[0,1]. Since this parametrization is a Lipschitz
map, it follows that it suffices to prove this lemma for the function b(sg,s) = a[y(so),v(s)] in the
square 0 < s, 59 < 1. By virtue of the homogeneity and evennes of the kernel g, this function can be
represented in the form
v(s) —v(so
bs0:5) = Qobr(so) 2 (s)salsos)l,alsors) = 7 T,

Similarly to the proof of Lemma 2.4.1, we verify that the function ¢ belongs to C”(]0,1] x [0,1]) and
its absolute value is separated from zero. Therefore, it remains to apply Lemma 3.1.2 to the function

Qo[v(s0),7(8); a(s0, 8)]-

Below, we use the space Cg (m)(G, F;H)y); as above, it is introduced with respect to the zero-order
space C¥ (G, F). Another way to introduce it is to act similarly to Sec. 2.8, based on C*(™) (G, H.)

and the space C’g (m)(G, H,); as above, the latter one is introduced with respect to the homogeneous
space Cfj(G) of Sec. 2.7. It is easy to see that both ways are equivalent and yield the same space.

Note that Theorem 2.7.1 is also valid for the homogeneous space Cy (m)(G, Hy). To verify that, we
follow the proof of the specified theorem and obtain the norm inequalities for a fixed value of £&. Then
we take the supremum with respect to & from §2 at the right-hand sides of these inequalities. Finally,
we take the supremum with respect to £ from €2 at their left-hand sides.

3.2. Integrals with Weak Singularities

It is natural to use homogeneous functions as special-type kernels of integrals. We illustrate this by
integrals with weak singularities, considered in Sec. 1.9.
Let G be a compact subset of R* and let a function g(x,%) satisfy the conditions

q(z,y) € C¥(G x G), q(z,x) =0, (3.2.1)
where 0 < v < 1. Consider the integral
x?
Y(z) = / |Z(_ gﬁkw(y)dy, z €G. (3.2.2)
G

Since |q(z,y)| < [q].|z — y|¥, it follows that the kernel q(z,y)|x — y|~* is summable with respect to
y. It is obvious that the function Q(z,y,&) = q(x,y)|¢|~* belongs to the class C*W(G x G, H_})
and is identically equal to zero for x = y. By virtue of Theorem 3.1.1, the inverse is also valid: if
Q(z,y,6) € C"W(G x G, H_}) and

Qz,z,6) =0, ze€G, (3.2.3)
for any ¢ from R¥, then Q(z,y, &) = q(z,y)|¢| 7%, where the function q(z,y) = Q(z,y;y — )|y — |~
satisfies (3.2.1). Thus, under the admitted assumption, the relation

blz) = / Q@ v,y — D)p(y)dy, z€G, (3.2.4)
G

can be represented in the form (3.2.2).
In Sec. 1.9, it is found that any integral operator acting according to the relation (3.2.2) is compact
in the space C(G) of continuous functions. A stronger assertion is also valid.
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Theorem 3.2.1. Let a kernel Q belong to C*) (G x G, H_y,) and satisfy the condition (3.2.3). Then,
for any bounded function ¢, the relation (3.2.4) defines a function ¢ from C*(G), 0 < p < v, and the
norm estimate

[Plen < ClQlevml¢lo (3.2.5)

holds, where C' is a positive constant depending only on the diameter R of the compact set G provided
that p and v are fized.

Proof. As we note above, by virtue of Theorem 3.1.1, we have the estimate

Q(z,y;y — x)| < Coly — z" 7,

whence
[V]o < ClQlcvo |¢lo, (3.2.6)
where
C=0C / 2]V dz.
lz|<R

Thus, it remains to estimate the seminorm [¢)],. Due to (3.1.7) and Lemma 3.1.1, for any function @
from C"(G x G, Hy), the following inequalities hold:

Qo(®)! < [Qlevo |71 — w2l |67, Qo) = Q(a1,:6) — Qla2, y:€),
1Qo(&1) — Qo(&2)] < MIQlcvi 21 — mal’|€1 — ol (61| 7F 7 + &2 7F71).
Then, assigning x; = x and x5 = y and taking into account (3.2.3), we deduce the inequalities
Q9,6 < Qlcvo | —yl”[€] ™,
Q(x,y,61) — Qz,y,&)| < M|Qlov [z — yl' 161 — &I (16T + &™),

Further, we arguing in the same way as in Theorem 3.1.1. Fix two different points x1 and x5 from G,
denote |x1 — x2| by 0, and assign G5 = {y € G, |y — z1]| < 2§}. Then

(1) — Plaz) = / Q1 y— 1) — Qazyy — w2)lo()dy = Ay + Ay, (3.2.9)
G

where A corresponds to the integral with respect to Gy. By virtue of (3.2.7)—(3.2.8), we have the
estimates

(3.2.7)

(3.2.8)

1AL < 19lolQleviy I1(6),  [A2] < |lo] Qv I5(8) + M|plo|Ql v I3 (5), (3.2.10)
where

1(6) = / Iy = er ™ + Iy — eol )y, Io(6) = & / ly — 21 *dyy,
Gs G\G6

1) =5 / ly — 22 (fy — 1] 51+ fy — 2l ).
G\Gs

(3.2.11)

Since the inequality |y —x1| < 2§ implies the inequality |y — z2| < 30, we have the obvious inequalities

L) < / ly — 21"y + / ly — aalFdyy < C16”,
ly—z1|<30 ly—z2|<368

where C is a positive constant depending only on &k and v.
For |y — z1]| > 24, one can use inequalities (3.1.13), which imply

I5(8) + I5(8) < 6" / ly — o1 Fdyy + SM2F+2 / ly — o F L dyy.

20<|y—z1|<R 0<|y—z2]
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This yields the estimate I5(5) + I} (0) < C28”(1+ |1Ind|), where the positive constant Co depends only
on k and v as above. Substituting these estimates into (3.2.10) and taking into account (3.2.9), we
obtain the inequality

[Pl < ClQleve l¢lo- (3.2.12)

Combining it with (3.2.6), we complete the proof of (3.2.5).

Note that if o < k, then the integral (3.2.4) with kernel Q from C*M(G x G,H_,) is covered
by Theorem 3.2.1. Indeed, the function Q1 (z,y,&) = |z — y|*~|€|**Q(x, y, &) belongs to the class
C" (G x G, H_y,) with exponent v, = min(k—c, v) and it is obvious that Q(z,y,y—) = Q1(z,y,y—
x). Therefore, it remains to use the estimate (3.2.5) with pu < vy.

From Theorem 3.2.1, it follows that the operator T'(q) defined by the integral (3.2.2) boundedly
maps CY to C¥. Since the embedding C¥ C CH is compact for u < v, it follows that this is a
compact operator from C° to C*. In particular, it is a compact operator in the space C*(G). Thus, if
A € C, then 1 — \T(q) is a Fredholm operator in this space and any C(G)-solution ¢ of the equation
v+ AT'(q)¢ = f with a right-hand side f from C*(G) also belongs to C*(G).

As in Sec. 1.9, we verify that T'(p)T(q) = T'(p * q), where the functions

o) = o=yt [ PO de apy
’ |z —zlF |y —2[F ’
G
p, and ¢ satisfy the conditions (3.2.3). For the considered bilinear map, Lemma 1.9.2 is still valid in
class (3.2.1). Finally, similarly to Sec. 1.9, we arrive at the following analog of Theorem 1.9.1.

Theorem 3.2.2. There exists at most a denumerable set A from C such that the operator 1 — XT'(q)
is invertible for any X located outside A. Also, [1 — \T(q)]~' =1 —T(ry), where the function r.(z,y)
belongs to C¥ (G x G), satisfies the condition (3.2.1), is analytic with respect to z in the open set C\ A,
and admits poles at points A from A.

Similarly to (3.2.4), consider the integral

(z) = / Q,y,y — 2)o(y)di1y, zET, (3.2.13)
I

on a smooth (k — 1)-dimensional surface I, where the kernel Q(z,y; ) with respect to the variable £
belongs to Hi_g.

Theorem 3.2.3. Let I' from RF be a smooth surface with boundary and a kernel Q from C”(l)(F X
[, Hi k) be such that Q(y,y;€) =0, y € T (¢f. (3.2.3)). Then, for any bounded on T' function ¢,
the relation (3.2.13) defines a function v from CH*(T'), 0 < u < v, such that its norm satisfies the
estimate (3.2.5), where C' is a positive constant depending only on I.

Proof. Let v : G — T be a smooth parametrization of the surface, where G C R*~! is a Lipschitz
domain. Due to Lemma 2.3.3, this parametrization is an M-Lipschitz map, i.e., there exists a constant
M such that M > 1 and

s —t|/M < |7(s) = ()| < M|s —t|. (3.2.14)

Using this parametrization, continue the proof, arguing as in the proof of Theorem 3.2.1.
By virtue of Theorem 3.1.1, we have the inequality |Q(z,y;y — 2)| < Coly — x[*~**+1, which yields
the estimate

9(2)| < leloCo [ I = ol 1. (3.2.15)
T
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The last integral is estimated by a constant depending only on + and the diameter R of the domain

G:
/ @ — g Fdy < MF / s — (P m()ldt, @ =~(s),
T G

where the bounded function |m(s)| is determined by ~ in the same way as is done in Sec. 2.4.

Fix two different points z; = v(s;) from G, j = 1,2, and assign 6 = |s; — s2| and G5 = {t €
G, |t — s1| < 20}. Then the relation (3.2.9) holds, where G and Gy are replaced by v(G) and
~v(Gs), respectively. From inequalities (3.2.7)—(3.2.8), where k is replaced by k — 1, deduce the esti-
mates (3.2.10) with the integrals (3.2.11), where £k is replaced by k — 1, G5 is replaced by v(Gs), and
G\ Gy is replaced by (G \ Gs). For these integrals, we have the estimates

1(9) < / [(8) = A(s0) " m(t)|dt + / [7(8) = A(s2) "~ (1)t
[t—s1|<38 [t—s2|<38

and

I5(0) + I5(8) < 6" [ (t) =y (s)| " m()|dt + 502"+ / V(1) = (s2) " F[m(t)]dt.
26<|t—s1|<R 5<[t—s2|
As above, combining this with (3.2.14), we obtain the estimates
L(6) < C16” and  I4(8) + IJ(6) < Ca6”(1 + |1Ind)),

where the constants C; depend only on « and the diameter R of the domain G. In the considered
case, substituting them in the relations (3.2.9)—(3.2.10), we arrive at the estimate (3.2.12). The said
estimate combined with (3.2.14) completes the proof of the theorem.

Note that Theorem 3.2.3 remains valid for the integrals (3.2.12) considered on smooth closed sur-
faces. To prove that, it suffices to select a finite set of surfaces I'j, 1 < j < m, with boundaries such
that the open surfaces I'; \ OI'; cover I'; then Theorems 2.1.1 and 3.2.3 are applied to T';.

3.3. The Notion of Singular Integrals

Assume that D is an open subset of R¥ (no boundedness of D is required), aq,...,a,_1 are its
points, and f(z) € L(D). To any collection & = (g1, ...,&,) of positive numbers, assign the bounded
set Do ={z €D, |z —aqaj| >¢;,5=1,....,n—1, |z| < 1/e,}. Then, due to Sec. 1.8, there exists a
limit

f(x)de = lim | f(z)da. (3.3.1)
[t f

If the function f is only locally summable on the set D\{aq,...,a,—1}, but the above limit still exists,
then it is called the singular integral (in the principal value sense) at the singular points a; and at the
singular point a,, = oo (the last one is added if there exists a ball such that the domain D contains
its exterior).

It is obvious that singular integrals preserve the basic linearity and additivity properties. Here, the
last property is treated as follows: if D; and Dy are disjoint open sets such that they cover all points
a; and D1 U Dy = D, then the singular integral over D is equal to the sum of the singular integrals
over Dy and Ds.

If 2 = a is a singular point, then the image of the set {|x—a| > ¢}, i.e., the set {y, |a(y) — a(a)| > €},
is not guaranteed to be the complement to a ball. Therefore, one must be careful, performing the
change of variables z = a(y) to a singular integral. Due to the additivity of singular integrals, it
suffices to consider the case where a = 0 and this point is unique. Let us describe the situation where
such a change is possible in the multi-dimensional case.
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Theorem 3.3.1. Let a finite domain D contain the point x = 0 and let o be a diffeomorphism of this
domain onto G such that the Jacobi matriz o' (0) is orthogonal up to a constant factor. Let a function
f(x) be continuous for nonnegative x and let it admit the estimate

|f ()] < Cla| " (3.3.2)

Then the singular integral over the domain D with the singular point x = 0 admits the change of
variables

/ f(@)do = / fla(w)]] det o/ ()] dy
D G

in the following sense: any of these integrals exists if and only if the other one exists and if they exist,
then they coincide.

Proof. If a(x) is a linear transformation, a(z) = AAx, such that A > 0 and A is an orthogonal matrix,
then the claim of the lemma is obvious. Therefore, without loss of generality, one can assume that
a(0) = 0 and &/(0) is the identity matrix. Then |a(y)|/|y] — 1 as y — 0 and the functions

o1(r) = min |a(y)|, o2(r) = max|a(y)| (3.3.3)
lyl=r lyl=r
possess a similar property, i.e.,
lim %) Z 1, (3.3.4)
r—0 r

For brevity, introduce the notation ¢(y) = f[a(y)]| det o/ (y)|. Then

/ f(z)de = 9(y)dy.
|z >e la(y)|>e
Assign G, ; = {y € G, o;(Jy|]) > €}, j = 1,2, and take into account the fact that
Gea S{y G, la(y)] = e} C Geo
by virtue of (3.3.3). Therefore, it suffices to verify that

lim / g9(y)dy = 0.

e—0
Gs,2\Gs,1

It is obvious that the function g(y) admits an estimate similar to (3.3.2). Therefore, the function g(y)
can be replaced by the function |y|~*; then it remains to prove the relation

im [ Y —o,
e—0 r
Ae)
where A(e) = {r | o1(r) < e < o2(r)}. In the notation
0; (e) = min{r | oj(r) = €}, 5;_(6) =max{r | o;(r) = ¢}, (3.3.5)
the inclusion A(e) C [0, (¢),6; (¢)] hods. Hence,
51 ()
/ dr / dr
<
r r
A(e) NG
and it remains to verify that
.07 (e)
lim ~ 7 =1 (3.3.6)
e—0 52 (5
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Omit the index j in the notation for Definition (3.3.5) for o(r*) = e. Then
5% (e) rE

e o(rE)
Takin into account (3.3.4), we deduce that §*(¢)/e — 0 as € — 0, which completes the proof of (3.3.6)
and of the theorem.

Using the inversion z* = x/|x|?, one can also apply Theorem 3.3.1 to cover the case of the infinity
point co. Indeed, let a domain D be a neighborhood of oo and be separated from the point z = 0.
Since this inversion maps the domain {z € D, |x| > 1/} to y € D*, |y| > €}, it follows that the

relation
[ e = [ )] desty"Y1dy
D D+
also holds for singular operators. Elements of the Jacobi matrix (y*)’ are partial derivatives

Ay ly| =2 (a1

WO ), Migt) = 8y 2

It is obvious that the matrix M is symmetric and homogeneous of power 0 and its second power

coincides with the identity matrix. In particular, det(y*)" = |y|~2* and the condition (3.3.2) for the

function f in a neighborhood of oo passes to a similar condition for the function f(y*)det(y*) in a
neighborhood of the origin.

This allows one to reformulate Theorem 3.3.1 with respect to the singular point x = co. We omit
this, but note that if (3.3.2), then the singular integral admits changes of variables with respect to
translations * — x — a and extensions x — Az, A > 0, leaving the point co fixed.

Consider sufficient conditions for the function f, providing the existence of the singular integral. It is
obvious that it suffices to consider the case of one point a = 0 belonging to the domain D = {|z| < 1}.
Assume that the function f(z) can be represented in the form

f@) = Q@) + fo(z), foe€ L(D), (3.3.7)
where the homogeneous function Q(x) belongs to H_p.

By virtue of the homogeneity of the function (), we have the relation
1

€<x/<1 Qa)dz Q/ Q(€)de / .

Therefore, in this case, the existence of the singular integral (3.3.1) is equivalent to the relation

/Q(&)dk_1£ =0 (3.3.8)
Q

and if the singular integral of f exists, then it coincides with the classical integral of fy. In the sequel, if
integrals on sets of different dimensions are considered, then the dimension might be marked explicitly.
For the two-dimensional case, the notion of singular integrals is introduced in [77]; for the general
case (i.e., for k > 2), it is introduced in [42].
If a function ¢ belongs to C§°(D), then, similarly to (3.3.7), the product f¢ can be expanded to
the sum ¢(0)Q(x) + fi(x), where the function fi(x) = ¢(x)fo(z) + [¢(x) — ©(0)]Q(x) is summable.

Hence, the singular integral
o) = [ f@hplads
D

coincides with the integral of the function f;. This immediately implies that the linear functional
u(p) = (f, ) is continuous with respect to the C§°(D)-convergence introduced in Sec. 1.8, i.e., is a
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generalized function. As in the case of regular generalized functions, this functional is identified with
I

If the domain D in (3.3.7) coincides with the space R, then, arguing as above, one can show that
the singular integral of the function @Q(z) with singular points x = 0 and x = oo exists and equals to
zero. Taking into account the remark to Theorem 3.3.1, we conclude that the similar relation

/Q(m —a)dr =0 (3.3.9)

also holds in the case where the singular points are x = a and x = oo.
Obviously, in the one-dimensional case (i.e., for £ = 1), the condition (3.3.8) is to be replaced by

Q(—1) = —Q(1), which means that Q(z) = Q(1)/z.

Below, several examples of the case where the condition (3.3.8) is satisfied are provided.

Lemma 3.3.1. The condition (3.3.8) is satisfied for any odd function Q(&) from Hi_g. If Q is an
even function satisfying (3.3.8), then the similar condition

/ Q(€)dy 1€ =0 (3.3.10)

is satisfied for any hemisphere Qt = {£ € Q, &n > 0}, where n is a unit vector and &n denotes the
scalar product.

The condition (3.3.8) is satisfied for any partial derivative Q = 0Q°/0¢; of any function Q°(€) from
Hi_p, k> 2.

Proof. The first assertion of the lemma is obvious since, by virtue of the oddness, the change £ = —¢’
alternates the sign of the integral (3.3.8). If the function @ is even, then

/Q ) = /Q dk1§+/cz dklé—zfcz )1,

which proves the relation (3.3.10).
Pass to the last assertion of the theorem. Using the Green relation from Sec. 1.8, we obtain that

| Q- /QO mdk - /QO mdk £,

1<|gl<2

where 7 denotes the sphere || = 2. Apply the change £ = 2¢’, ¢’ € Q. Taking into account relations
dp_1& = 2F71¢ and Q°(2¢") = 217*Q0(¢'), we see that the integral with respect to € passes to the
corresponding integral with respect to (2. Therefore, the right-hand side of the previous relation is
equal to zero. It remains to note that its left-hand side is transformed to the form

2

[a@ac] [ran
Q

1

Consider functions @ with the property (3.3.10) in detail.

Lemma 3.3.2. Let there exist a vector n such that a function Q from H_y, satisfy the condition (3.3.10)
with respect to n and P*(n) = {x € R*, +an > 0}. Then, for any x from P~, the singular integral

= /Q(y —x)dy, z€P, (3.3.11)
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with the singular point co exists and is independent of x and

0
/ 82 (y—x)dy=0, zeP . (3.3.12)
p+

Proof. As above, using the condition (3.3.10), we verify that the singular integral of the function @
over the domain P* with the singular points 0 and oo exists and is equal to zero. This is also valid
for the singular integral (3.3.11). The subspace P is invariant with respect to the transformations
r—x—a,an =0, and z — Az, A > 0. Therefore, arguing as above, we deduce the relations

H(x) =H(x —a), H(x)= H(\x),

which hold only in the case where H is a constant function (denote its constant value by H). Fix a
point a from P_. Then, by virtue of Lemma 3.1.1, the function Q(y —x) — Q(y — a) is integrable over
PT and the constant function

/[Q(y 2 - QUy-a)dy, zeP . z#a,
Py

can be differentiated under the integral sign. This yields relation (3.3.12).

Singular integrals can also be considered on a smooth surface I' from R* (if k& = 2, then it is a
surface).

Lemma 3.3.3. Let a smooth (k — 1)-dimensional surface T from R* belong to the class C'* and a
kernel Q(y; &) from C’”(l)(F,’H1—k) be odd with respect to the variable £. Then the singular integral

Y(a) = /Q(yay —a)dy_1y, a€l,
T

treated as the limit of integrals over TN {|ly —a| < e} ase — 0, exists.

Proof. Without loss of generality, one can assume that I" is a smooth surface with boundary and a is its
interior point. Let a positive p satisfy conditions of Theorem 2.4.1 with respect to this point. Due to
this theorem, the intersection of I' with the neighborhood C,(a) is described (in the local coordinates)
by the equation uy = f(a), |a| < p, where f is continuously differentiable in the (k — 1)-dimensional
ball B, = {|s| < p},

f0)=f(0)=0, [flo=<1. (3.3.13)
Recall that the axis uy of the local coordinate system with the origin at the point a is directed along the
normal to I' at this point. One can use any orthogonal matrix U from R*** to pass to this coordinate
system as follows:  —a = U(%,uy). Respectively, the surface I'(a) = I' N C,(a) is described by the
parametrical equation y(s) = a + U(s, f(s)), where s varies in the ball B,.

Let us show that one can change variables in the singular integrals using the relation

/ Qlay — a)dy = / Qls, £(3)]lm(s)lds, (3.3.14)
I'(a)

Is|<p

where Q(£) = Q(a,U¢) and |m(s)| = V/1+[f'(s)|2. Theorem 3.3.1 is not directly applicable for the
justification of this change since the map v(s) = a + Uls, f(s)] acts from R¥~! to R*. However, this
map possesses the property

i [7(8) —al _ 1,

s—0 |s|
which is the only property used to prove the said theorem. For this reason, this theorem is still
applicable for the justification of (3.3.14).
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Pass to the singular integral at the right-hand side of (3.3.14). According to Theorem 2.4.1, the
condition that T’ belongs to C'* implies that f belongs to C'* (Bp). Combining this with (3.3.13)

and Lemma 3.1.1, we easily conclude that the function Q[s, f(s)] — Q(s,0) is summable in the ball
B,. Hence, it remains to use the oddness of the function ) and Lemma 3.3.1.

3.4. (C*-Estimates of Singular Integrals

In a finite subdomain D of R*, consider the singular integral

/Q v,y —x)p(y)dy, =€ D, (3.4.1)

such that its kernel Q(y, &) belongs to H_j, with respect to the variable £ and satisfies the condition

[a@ods=o, zep. (3.42)
Q

Let us start from the case where ¢ = 1.
Lemma 3.4.1. Let a kernel Q(y, &) belong to the class C*™) (D, H_;) and satisfy the condition (3.3.8)

with respect to the variable £. Then, for any closed subdomain Dy of D, the singular integral

= /Q(y,y —x)dy, x € Dy, (3.4.3)

defines a function q(x) from CH*(Dy), 0 < p < v, such that the estimate

lglcn(py) < ClQevay (3.4.4)

of its norm holds, where C is a positive constant depending only on the distance from Dy to OD.

Proof. First, we prove the lemma in the case where the function Q(y,§) does not depend on y.
According to (3.3.9), the function ¢ can be represented in the form

- / Q(y—x)—Q(y—a)dy+/Q<y—a>dy, v € Dy,
D

RF\D

where a is a fixed point of D \ Dy. By virtue of Lemma 3.1.1, the function Q(y — z) — Q(y — a) is
integrable on R¥ \ D and, therefore, the function g(z) in this relation can be differentiated under the
integral sign. Due to Theorem 2.2.2, this yields the estimate

lqlo.po + lal1,0, < C1Q|1)- (3.4.5)
Pass to the general case. For any x1 and x5 from D, the following relation holds:

q(z1) — q(z2) = /[Q(l“hy —x1) — Q(z2,y — x1)|dy + /[Q(l“z’y — 1) — Qz2,y — 22)|dy = Ag + A1.

D D

Applying the estimate (3.4.5) to the functions Qo(§) = Q(z1,y — x1) — Q(z2,y — x1) and Q1(§) =
Q(z2,£), we obtain the inequalities

|Ao| < ClQoly, A1 < ClQ1|)lz1 — 22].

By virtue of (3.1.7), we have the inequality [Qo|1) < |Q[cv |71 — 22", Obviously, this implies that
|Q1](1) < |Qlcow). This immediately yields the estimate (3.4.4).
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Theorem 3.4.1. Let a kernel Q(y, &) from C*MW (D, H_y,) satisfy the condition (3.4.2) and ¢ belong
to C*(D), 0 < u < v. Then, for any closed subset Dy of D, the singular integral (3.4.1) defines a
function ¢(x) from CH(Dy), satisfying the norm estimate

[V]cn(py) < ClQlev lelon, (3.4.6)

where C' is a positive constant depending only the distance between Doy and 0D provided that p and v
are fixed.

If the above is satisfied and another kernel Q(u,y, &) depends on a parameter u from G, belongs to the
space C*W (G x D, H_y,), and satisfies the condition (3.4.2) for any u and y, then the corresponding
function

lu,z) = / QUu,y,y — 2)p(y)dy, = € Do, (3.4.7)

belongs to C*(G x Dy) and a similar (3.4.6) estimate of norms holds.
Proof. Represent the integral (3.4.1) by the sum ¢ (z) + g(x)p(x), where ¢ is defined by (3.4.3), while

g is defined by a classical integral as follows:

- / Qv — 2)lp(y) — p(@)]dy, = € Dy,
D

According to Lemma 3.4.1, it suffices to prove the estimate (3.4.6) only for 1g. Since |p(y) — ¢(x)| <
[¢]u]z — y|*, we have the following estimate for the sup-norm of this function:

[Yolo,00 < ClQlevo [#]p- (3.4.8)
Fir 1 and x9 from Dy, assign § = |x1 — x2|. Then
Yo(z1) — Yo(z2) = q(z1)[P(72) — (21)] + A

and
A= / Qa1y —21) — Qan,y — 2)]lo(y) — pla2)ldy = Ay + Ag,

where A; have the same sense as in the proof of Theorem 3.2.1. For the terms A;, one can repeat the
corresponding arguing of the proof of this theorem. In particular, the following estimates (similar to
(3.2.10)) hold for these terms:

1AL < [0]ulQlv 11(6),  |A2] < [lo]Qlvo I5(8) + Mlelo|Ql v I3 (),
where

I( /\y—mwwy—zl\ Fply — ool M)y, I4(6 /|y—m1\ by,
Ds D\Dj

B =5 [ ly=aally -y = oy,
D\Dj
As in the proof of Theorem 3.2.1, this implies the estimate

[0l < ClQl v [] -

Combining this estimate with (3.4.8), we complete the proof of (3.4.6).
Actually, the second assertion of the theorem follows from the estimate (3.4.6). Indeed, if w is fixed,
then this estimate means that

[ (u, 21) = (u, 22)] < ClQcvw [ plon|zr — ol
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On the other hand, if u; and us are different points of G, then, due to Lemma 2.1.2, the function

Q(y7 f) = |U1 - UQ‘_M[Q(UM Y, f) - Q('LLQ, Y, é)]
belongs to the class C* (). Let ¢)(x) be defined by Q similarly to (3.4.1). Then

Y(x) = |ur — ua| Y (ur, ) — P(uz,z)]
and the first part of Theorem 3.4.1, where v and p are replaced by 7 = v — p and i exceeded by
min(v — u, ) respectively, can be applied to this function. In particular, the corresponding estimate of
its sup-norm, uniform with respect to u; and wus, holds, which completes the proof of the theorem.

Let us describe the case where the function (3.4.7) can be differentiated under the integral sign.

Lemma 3.4.2. Let the assumptions of Theorem 3.4.1 be satisfied, G be a subdomain of R*, and a
kernel Q(u,y, &) be continuously differentiable with respect to the variable u and belong to C*M (G x D)
together with its partial derivatives Q. Then, for any ¢ from C*(D), 0 < u < v, the relation (3.4.7)
can be differentiated under the integral sign:

oY e
o, (u,z) = / B, (u,y,y — x)p(y)dy, € Do.
D

In particular, the function 01 /0u; belongs to C*(G x Dg) and an estimate of norms, similar to (3.4.6),
holds.

Proof. Without loss of generality, G can be assumed to be an interval of the real line. Let &, — 0.
For a fixed u, assign
1

Qn(y7 g) = E;l[Q(u + Eny Y, g) - Q(U, Y, é.)] - Q;(U, Y, é.) = /[Q;(u + tEn) Y, g) - Q;(U, Y, 5)]dt
0
For any fixed £ from (2, the integrand function is bounded in C¥(D). It tends to zero as n — oo
uniformly with respect to £&. The derivatives of this sequence with respect to &; possess the same
property. Therefore, due to Theorem 2.1.1, the sequence @, tends to zero in C’“(l)(D) provided that
@ < v. In particular, due to Theorem 3.4.1, we have the relation

/Qn(y,y —z)p(y)dy — 0 as n — oo.
D

Then the above differentiating is justified. By the condition, the function @ satisfies the relation
[ @ty =0
Q

identically with respect to v and y. This relation can be differentiated with respect to u. Then a
condition similar to (3.4.2) is also satisfied for the kernel @Q,. By virtue of Theorem 3.4.1, this implies
that the derivative ], belongs to C*(Dy).

In the one-dimensional case, Theorem 3.4.1 is proved in [52]. In the multidimensional one, it is
proved in [21]. Usually, the kernel of the singular integral (3.3.1) is represented in the form

Qz,y;§) = QO(E’V?’O,

where the function ()¢ is homogeneous of power zero with respect to the variable £. The last function
is called the characteristic of the singular integral (see [44]).

For the whole domain D, Theorem 3.4.1 is not valid in the one-dimensional case. To prove this,
consider the function (3.4.3). Here the domain D is an interval (a, b) of the real line, while the kernel
Q(x; &) can be represented in the form c(x)/§, where c(z) = Q(x;1) € C¥([a,b] x [a, b].
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Indeed, we have the two-point set {+1} instead of the unit sphere €2 here and the condition (3.4.2)
passes to the relation Q(z;1) + Q(z; —1) = 0. In other words, the function Q(xz;¢) is odd with respect
to ¢ and, therefore, has the Cauchy kernel form Q(z;¢) = Q(z;1)¢~!. Thus, the following relation
holds:

b
_ dy
q(:n)—c(a:)/y_aj, a<x<b.

a
Due to the definition of singular integrals, we have the relation

/ W i /+/ Wt
y—ax =0 y—zx x—a

Hence, for c(a) # 0, the function ¢ has a logarithmic singularity at the point a.

Below (see Theorem 3.5.1), we show that if £ > 1, then there are assumptions regarding the kernel
Q@ and the smoothness of the boundary of the domain D, providing the extension of Theorem 3.4.1 to
the whole domain Dy = D. If D = R¥, then it is easily deduced from Theorem 3.4.1: the integrand of
(3.4.1) is multiplied by x(y — x), where x € C$°(R¥).

Theorem 3.4.2. Let x(z) € C°(R¥) and a kernel Q(y, &) belong to C*W(RF, H_},) and satisfy the
condition (3.4.2). Then the singular operator

(R)@) = [ Xl - 0)Qy - D)oy, = € B,
RFE
is bounded in the space CH(RF), 0 < pu < v.

Proof. Let the support of the function y(z) be contained in a ball |z| < R. Fix a point a from RF.
Then, for |z — a| < R, the integral (Ry)(z) can be represented by the sum

(<= ) = XOIRW. ~ D)oy +xO) [ Qluy— 2)e(w)dy.
ly—al<2R ly—al<2R
From Theorems 3.2.1 and 3.4.1, we obtain the estimate
[Rolconny) < ClRO|ou(B,):
where By and By are the balls {|x — a] < R} and {|z — a| < 2R} respectively, while C' is a positive

constant independent of a. This immediately implies the claim of the theorem.

The obtained result is frequently called the Korn—-Giraud theorem [3].

3.5. Estimates up to the Boundary

Let a subdomain Dy of D abut a smooth part I' of the boundary of the domain D and lie from one
side of this part in terms of Sec. 2.4. Recall that this notion is defined with respect to a selected unit
normal n(y) from C(I") of the surface I'. In the same way, the normal vector n(y) decomposes the
unit sphere  from R” into the hemispheres Q% (y) consisting all ¢ from Q such that £&n(y) > 0.

Theorem 3.5.1. Let the boundary of a finite domain D contain a smooth surface with boundary
I' of the class CY" such that D lies from one side of it and the subdomain Dy of D be such that
o= DoNdD C T\ Ar. Let a kernel Q(y,&) belong to C*? (D, H_y,) and satisfy (3.4.2) and the
following condition:

| ewodg=0, yer. (3.5.1)

Qt(y)
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Then, for any ¢ from C*(D), 0 < p < v, the function ¢ defined by (3.4.1) belongs to the class C*(Dy)
and admits the estimate

[Wlon < ClQlcwve |@lon, (3.5.2)
where C' is a positive constant depending only on the distance between the domain Dy and 0D \ T.

Proof. Due to Theorem 2.3.2, there exists a bounded extension operator P : C*(D) — CH*(R¥). Due
to Lemma 3.1.3, there exists a bounded extension operator P' : C*M(D) — C*((R¥). Consider
these extensions in a finite domain D! containing the domain D and its closure. Assigning ¢! = Py
and Q! = P'Q, we have relations o' (y) = ¢(y) and Q' (y;¢) = Q(y; &) (for any y from D) and the
corresponding estimates

ot on < Clelon, Qv < CHQlove - (3.5.3)
It is obvious that the function ¢ in the domain Dy can be represented by the difference of the two
integrals

0@ = [Quy-0d Wi '@ = [ Quy-o)d e ze D
D1 D\D
such that the former is understood in the classical sense. The conditions of Theorem 3.4.1 are satisfied
for 1/10 and the pair Dy, D!'. Therefore, the following inequality holds:
[0 cnpe) < Cl1Q v [ lem(pr)-

Hence, taking into account (3.5.2), we see that it remains to prove the similar estimate

[ cn(py) < ClQ Y cv @ cnpr\p) (3.5.4)

for the function v!.
It is obvious that the function 1! (z) can be differentiated under the integral sign:

ol

O, (#) = - / Qily,y —x)¢' (y)dy, 1<i<F,

DI\D
where Q;(y, €) = 0Q"'/0¢; € CYW(DY H_j_1).
Let us show that partial derivatives of the function ' admit the estimate
ot
oz, (z)

where M is a positive constant depending only on the distance between the domain Dy and 9D \ T.
Then, taking into account the obvious inequality

Qilevin | < Qv |,
we immediately deduce the estimate (3.5.4) from Theorem 2.4.2.

Similarly to the proof of Theorem 2.4.2, we assign IV = 9D \ T' (for brevity). Then, by condition,
NI’ = 9I'. Hence, the number 2rqg = d(Dy,I”) is positive. Define a compact set K = {a € T,
d(a,T") > ro}. Obviously, it contains I'y. For this compact set, select pg as is done in Theorem 2.4.1.
Assign

< M|Qilevw [t ond" N, T), z € Dy, (3.5.5)

3p = min(rg, po, 1), (3.5.6)
where 71 is the distance between D and D'\ 0D, entirely defined by the choice of D!. From the
definition of K, we see that, in fact, py (and, therefore, p) depend only on the distance 2ry = d(Dg, I").

If x € Dg and d(x,T) > p, then d(z, D') = min[d(z,T"),d(z,T")] > p and, therefore, |Q;(y;y — z)| <
|Qilcvy |p~#~ 1. Hence, no proof for inequality (3.5.5) is required in this case and, therefore, it suffices
to consider the case where d(z,I") < p. Consider a point a from I' such that d(z,I") = |z — a|. Thus,

we have the inequality
|x —a| =d(z,T") < p. (3.5.7)

809



The inequalities d(a,I”) > d(z,I") — |z — a| > 2ro — p > 1o show that a € K. Hence, one can use
Theorem 2.4.1, guaranteeing that the intersection I'(a) = I' N C,(a), where

Cola) = {lul < p, |ur| < 2p}, (3.5.8)

is described (in the local coordinate system) by the equation u, = f(u) in the ball B, = {|u| < p},
where f is a continuously differentiable function such that

f0)=0, f(0)=0, [flo<1, [f]< Mo, (3.5.9)
and My is a constant depending only on I'. In particular, this implies that | f(s)| < |s| and, therefore,
{ly —al < p} € Cpla) € {ly —al <3p}. (3.5.10)

Then, according to (3.5.7), the point = belongs to Cy(a).
For definiteness, let n(a) be the unit vector of the inner (with respect D) normal. Then, taking
into account (3.5.6)—(3.5.7), we have the relations

DNCy(a) = CF(a) = {la] < p, f(a) < ux < 2p}, D'NCy(a) = C, (a) = {|a| < p, —2p < uy, < f(@)}.

P
(3.5.11)
Let us prove that
2|3§’ . y| > |$ - CL| + |y - (1|, Yy e Op ((I), (3512)
P, y & Cpla).

Indeed, let a cone K7 with vertex at the origin consists of all z such that the angle between z and
n(a) is not less /4. Let Ky be the angle {z = tn(a), t > 0}. Since |f'|p < 1, it follows that the
function f(s) admits the estimate |f(s)| < |s| and, therefore, the vector y — a belongs to K; provided
that y € C~(a). By virtue of Lemma 2.1.2, if z; € Kj, j = 1,2, then

|21 — 29| > ro(|21]| + |22]), ro = min[d(K; N Q, K3),d(K, N Q, K1)].

In the considered case, it is easy to see that rg = 1/4/2, which proves the first part of the esti-
mate (3.5.12). Its second part is obvious.
Now, represent 9! /dz; by the sum

1
gi=ﬂ%+wh (3.5.13)
assigning
Yo(z) = / Qi(w.y — )0 (1) — Qilary — 2)o @)y, ¥r(z) = o' (a) / Qilary — )dy.
DU\D DU\D

For the former term, we have the obvious estimate
n(a)| < [Qilcwo il o= [ ly—ally— ol ldy.
D\D
By virtue of (3.5.10) and (3.5.12), we have the inequality

y — altdy ke
IO S 2k+1 / ( | | )k+1 +2k+1p k—1 / \y—a\“dy

e —al +ly—a
ly—a|<3p DI\D
Since
— altd I
/ |y CL| Y . < |$ —CL|M_1/ ‘Z| Zk L
(|z —al + [y —a])F* (1+ [z])*+
ly—al<3p RF

it follows that the estimate (3.5.5) holds for v.
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Consider the function ; in (3.5.13). Let P~(a) denote the half-space {z,(z —a)n(a) < 0}. In-
equality (3.5.12) is still valid if D! is replaced by P~(a); the proof is the same.
By virtue of (3.5.1), Lemma 3.3.2 is applicable to the kernel Q!(a,&). This yields the relation

/ Qi(a,y—x)dy=0, xz€ P (a).
)

P—(a
Therefore,
P1(x) = cpl(a)Il, I, = / — / Qi(a,y —x)dy = I} + 17, (3.5.14)
N\D  P~(a)
where
I = /‘— / Qidy, Ij = /‘ - / Qidy
C=(a) P=(a)NC(a) IN\D\C(a) P~(a)\C(a)

according to (3.5.11).
It is obvious that

dy

"
|Il| < |Qi|CO(0) / + |y _ x|k+1‘

"\D\C(a)  P-(a)\C(a)

Note that |x —y| > |a — y| provided that y € P_(a) and |y —a| > p/2 provided that y € D'\ D\ C(a).
Thus, taking into account (3.5.16), we conclude that

dy

y—alk (3.5.15)

I < C|Qilcowy, C= 2k+1p_k_1 mes(D1 \ D)+ /
ly—al>p

Pass to I]. As we note above, inequality (3.5.12) is preserved under the change of D! by P~ (a).
Therefore, the inequality

dy

3.5.16
(e = al + ly — al)+1° (8.5.16)

117] < 287Qi| coco) /

E(a)

holds, where E(a) denotes the symmetric difference of the sets C_(a) and P_(a) N C(a). By virtue
of (3.5.9), the function f admits the estimate |f(s)] < Mpy|s|*"!. Therefore, in terms of the local
coordinates u from (3.5.8), the set E(a) is contained in {(,u), || < p, |ux| < M|a|**'}. Hence,
the integral in the last estimate does not exceed

oM 1/+1d _ V—Hd
/ ‘8‘ k klsl §2M|IE—CL|V_1 / |Z‘ kzl'
(lz —al +[s])*+ (1 + [z
|s|<p Rk-1
Combining this with (3.5.14)—(3.5.16), we arrive at the validity of the estimate (3.5.5) for the function
11 in (3.5.13), which completes the proof of the theorem.

Holder estimates up to the boundary for singular integrals are considered in [1]; this paper contains
the condition (3.5.10). Regarding the approach applied in the present work, see [64, 66].

Taking into account the remark to Theorem 3.4.1, it is easy to describe conditions providing the
stability of the estimate (3.5.2) with respect to the varying of I" and Dy.

811



Lemma 3.5.1. Let domains D,, C D', n=1,2,..., be such that
inf d(8D,,, 0D\ dD,,) > 0. (3.5.17)

Let smooth surfaces Iy, € 0D, be such that D, lies from one side of Iy, for each n. Assume that
I, admits a parametrization v, from CYV(G), where G C R*¥! is a Lipschitz domain such that
Y — 7 with respect to the norm of the space C(G). Let kernels Q,(y,€) from C*3)(DV) satisfy
the conditions (3.4.2) and (3.5.1) with respect to Dy, and I',, respectively and functions ¢, belong to
CH(DY), 0 < pu < v. Let subdomains DY of D,, be such that DO N dD, C T, \ oI, and

infd(D%,T)) >0, T! =0dD,\T,. (3.5.18)

The the functions v, defined by the singular integrals

() = / Qu(,y — 2)pn(y)dy, z € DY,
Dy,

admit the following estimates uniform with respect to n:

[¥nlonpoy < ClQuleve @nlon. (3.5.19)
Proof. By virtue of (3.5.17), a similar to (3.5.19) estimate for

D1

follows from Theorem 3.4.1. Regarding the functions

(@) = / Qu(y,y — 2)pn(y)dy, « € Dj,
DW\D,,
it suffices to prove a uniform with respect to n estimate
81/}711 1 pn—1 0
(@) < MIQhlewa [elend ™ (@, T), @ € D, (3.5.20)
(2

for their partial derivatives and use Lemma 2.4.1 (its conditions are satisfied by virtue of (3.5.18)).
Let 27 be the lower bound of (3.5.18) and K,, = {a € T, d(a,I",) > ro}. Proving Lemma 2.4.1,
we found that there exists such a pg independent of pairs K,,,I',,. The remaining part of the proof of
Theorem 3.5.1 is applicable to the function ¥} (z) in the domain DY with a fixed n; it leads to the
claimed estimate (3.5.20).

The corresponding result for the whole domain Dy = D follows directly from 3.5.1.

Theorem 3.5.2. Let the boundary of a finite domain D belong to the class C* and a kernel Q(y, &)
belong to C*?) (D, H_y) and satisfy the conditions (3.4.2) and (3.5.1).

Then the singular operator Ry = 1 acting according to the relation (3.4.1) is bounded in C*(D),
O<p<v.

In a natural way, singular integrals arise at the differentiating of functions of the kind

(@) = / Q(v.y - 2)p(y)dy, =€ D, (3.5.21)
D

with kernels Q°(z, 5, £) belonging to H,_j with respect to the variable £. To differentiate this integral,
denote the product Q%(y, &)¢(y) by Q(y, ).
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Lemma 3.5.2. If Q € C*W(D,H,_y), then the function

= /Q(y,y —x)dy, z€D, (3.5.22)

s continuously differentiable and its partial derivatives are defined by the relation

o () = ~0i(0) - / ggw,y—x)dy, oi(x) = / £:Q(, €)de. (3.5.23)
D Q

Note that, by virtue of Lemma 3.3.1, the kernel Q; satisfies the necessary condition given by (3.4.2),
i.e., the singular integral in the relation (3.5.23) is well defined.

Proof. Let x vary in a neighborhood of a fixed point a from D. Multiply Q(t,£) by a suitable cut-off
function x(¢). It suffices to consider the following two cases separately: the case where Q(¢t) =0 in a
neighborhood of this point and the case where Q(¢) = 0 in a neighborhood of the boundary dD. In
the former case, the direct differentiation of (3.5.22) under the integral sign yields the relation (3.5.23)
(we take into account the fact that in the considered case, o;(x) = 0 in a neighborhood of a).

Thus, without loss of generality, one can assume that the kernel Q(y,§) is defined for any y from
the space RF and there exists a compact set K such that it vanishes outside this compact set:

Qy;§) =0, yeRM\K. (3.5.24)

Moreover, it suffices to consider the case where Q(t,&) € Ct#(1) . Indeed, assume that the rela-
tion (3.5.23) is already proved for such functions. Use the approximation operator T introduced in
Sec. 1.8. Consider the sequence of functions Qy(t,§) = (T1/,Q)(t,§), where the operation T is applied
with respect to the variable ¢. Obviously, this function belongs to C§° with respect to the variable
y and satisfies the condition (3.5.24) with respect to the compact set K,, = {y, d(y, K) < 1/n}. By
virtue of Lemma 2.2.1, this sequence converges to () with respect to the norm of the space C’“(l)(D)
provided that p < v.

If the function ¢(z) is defined by the singular integral at the right-hand side of (3.5.23) and ¢,, has
a similar sense with respect to @, then, by virtue of Theorem 3.4.1, the sequence ¢, (x) converges
to ¢(x) in the space CH(G) provided that G is a compact set. Therefore, it remains to use the
relation (3.5.23) for @, pass to the limit as n — oo, and use the theorem on the differentiation under
the integral sign (see Sec. 1.8).

Thus, let a kernel Q(y, &) belong to C1#(1) and satisfy the condition (3.5.24). Then

— /Q(y,y—a;)dy = /Q(:r+y,y)dy

(in this notation, the integration domain is R¥). The function

uniformly converges to ¢ as € — 0. For any fixed ¢, it can be differentiated under the integral sign:

0 (
1/} / oz, (x+y,y)dy (3.5.25)
ly|>e
Since
0 0 0
82 (z+yy) = u; Q(z +y,y)] — ag (x+y,v),
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it follows from the Green relation (see Sec. 1.8) that

oQ _ Yi oQ
/ o (r+y,y)dy = — / Q(r +y,y) 1y| dp—1y — / 9, (x +y,y)dy. (3.5.26)

|z|>€ ly|=¢ ly|>e

By the homogeneity of Q(y, &) with respect to £, the last surface integral is equal to

/ Qo + <6, 6)6ide
Q

and tends to o;(x) as € — 0.

On the other hand, the second term on the right-hand side of the relation (3.5.26) tends to the
corresponding singular integral. Thus, substituting (3.5.26) in (3.5.25) and passing to the limit as
e — 0, we conclude that the function v is continuously differentiable and its partial derivatives are
given by the relation (3.5.23).

Applying Lemma 3.5.2 to the function /° defined by the integral (3.5.21), we obtain the relation

00 )
ai. (z) = —oi(z)e(z) — 82 v,y — 2)p(y)dy, oilx /&QO x,€)d (3.5.27)
D

Combining it with Theorem 3.5.2, we obtain the following result.

Theorem 3.5.3. Let the boundary of a domain D belong to the class C*, the kernel Q° belong to
CYWON(D,Hi 1), and its partial derivatives 0Q/0¢; satisfy the conditions (3.5.1) at boundary points
y of OD.

Then the operator R%¢ = ¢° boundedly maps C*(D) to C**(D), 0 < pu < v.

Note that if a kernel Q°(y, &) is odd with respect to the variable &, then its derivatives Q/9¢; are
even with respect to this variable and, therefore, the condition (3.5.1) is satisfied (we take (3.4.2) into
account).

3.6. Generalized Cauchy-Type Integrals

Let I be a smooth (k—1)-dimensional surface with boundary. Let a kernel Q(y; €) from C*(MW(I', H1_y)
be even with respect to the variable £. Consider the integral

/Q vy — :1: )dk 1Y, g—f F, (361)

generalizing (in a way) the classical integral of the Cauchy type for analytic functions. It turns out to
be especially useful for the investigation of multidimensional first-order elliptic systems (see [5, 51]).

Let  vary in a domain D such that the distance between it and I is positive, i.e., the difference
x — y is bounded from below by a positive constant provided that x € D and y € I'. Then, due to
Lemma 3.1.2, the function ¢(x,y) = Q(y;y — x) belongs to the class C¥(D x I'). Then ¢ € C¥(D).
Moreover, the function (3.6.1) can be differentiated infinitely many times under the integral sign.
Thus, it belongs to the class C*°(D). It and all its derivatives tend to zero as x — oo.

Our main concern refers to boundary properties of the function ¢(z), i.e., its behavior under the
tending of the point x to an interior point yg of the surface I'. As in Sec. 3.3, we start our investigation
from the integral (3.6.1) on a (k — 1)-dimensional plane.

Lemma 3.6.1. Let Q(§) be an odd function from Hi_, n be a unit vector, and L be a (k — 1)-
dimensional plane in R*, k > 2, such that it is parallel to n, goes through the origin, and decomposes
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R* into the half-spaces Py = {n € R*, +nn > 0}. Ifn ¢ L, then the singular integral

h(n) Z/Q(é—n)dk_lf (3.6.2)
L

(with a singular point at infinity) exists and defines an odd function such that it is constant in each
of the half-spaces Py, i.e., h(n) = £¢, n € Py,
oQ

9, (& —=n)dk—1£=0, ne Py, (3.6.3)
L

and
lc| = [h(n)] < M|Q|), (3.6.4)
where M is a positive constant independent of Q.
If the above is satisfied and the function QQ vanishes on L, then the integral

ho(n) = / Q€ = n)ldirie, m £0,
L

exists in the classical sense, does not depend on n, and satisfies an estimate similar to (3.6.4).

Proof. By virtue of the oddness of the kernel @, the condition (3.3.8) is satisfied with respect to the
(k — 2)-dimensional unit sphere in R*~!, and the existence of the integral (3.6.2) is justified similarly
to Sec. 3.3. Indeed, this integral is represented in the form

nn) = [ @te-mac+ [ Q€= - Qe
l€1<1 l€1>1

where the integral at the right-hand side is treated in the classical sense by virtue of Lemma 3.1.1.

If a vector a belongs to L and r # 0, then the changes of variables ¢ = ¢ —a, a € L, and
¢ =r&,£r > 0, in the singular integral (3.6.2) are justified similarly to Sec. 3.3. This leads to the
relations

h(z) = h(x —a), h(xz)= (sgnr)h(rz).

It is obvious that they hold only in the case where the function h is constant in the half-spaces P+
and is odd. Due to Lemma 3.1.1, the integral

[0t = - ate - widiy
L
exists in the classical sense. Therefore, the function h(n)—h(n) can be differentiated under the integral
sign, which yields the relation (3.6.3).
As in Sec. 3.3, we have

h(n) = / QU — m)dy + / QEE — 1) — QO
LN{J¢|<1} Ln{[¢|>1}

taking into account Lemma 3.1.1, this implies the estimate (3.6.4).

Assume that @) vanishes at the plane L. Then the condition (3.3.8) is still satisfied for the function
Qo(&) = |Q(¢)| with respect to the (k — 2)-dimensional unit sphere in R*~! since it is identically
equal to zero on this sphere. Therefore, the last relation also holds for g. According to the remark to
Lemma 3.1.1, the norm |Q|() in the estimate (3.1.4) can be replaced by the norm in the space C%(€2).
Therefore, the previous relation shows that the corresponding integral of the function |Q] exists in the
classical sense and the estimate

lho(n)] < M|Qolco1(q)
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holds. Since the norm of the function |Qo| in the space C%!(Q) is estimated via the norm |Q|), it
follows that the estimate (3.6.4) holds for hg. As above, we prove that the function ho(n) does not
depend on 7.

Take a domain located from one side of T' (in terms of Sec. 2.4) and consider the surface inte-
gral (3.6.1) in this domain.

Theorem 3.6.1. Let a domain D lie from one side of a C*-smooth surface I' with boundary and a
subdomain Dy of D be such that Tg = DoNdD C T\ IT'. Let a kernel Q(y; &) from C*(T',Hi_y,) be
odd with respect to the variable & and a function ¢ belong to CH*(I"), 0 < p < v.

Then the integral (3.6.1) defines a function ¢ from CH(D), satisfying the norm estimate

|9lcn(pe) < ClQev [@lonrys (3.6.5)

where C' is a positive constant depending only on the distance between Dy and OT.

If the above holds and Q(u,y,€) depends on a parameter u from G and belongs to C*) (G x T, H1_;),
then the corresponding function ¢(u,x) belongs to C*(G x Dy) and satisfies the norm estimate similar
0 (3.6.5).

Proof. The same argument as in Theorem 3.5.1 is applied. Relation (3.6.1) can be differentiated under
the integral sign. Therefore,

T

where the kernel Q;(y,£) is equal to 0Q/9¢; and belongs to C’”(l)(F, H_r). As in the proof of Theo-
rem 3.5.1, it suffices to justify the estimate

d¢
8ZL‘Z'

(l‘)‘ = C|Qi|CV(1)|90|C“du_l(x’r)’ reD, (3‘6‘6)

with a constant depending only on the distance 2rg = d(Dgy, 0D \ OI'), for partial derivatives of the
function ¢ and use Theorem 2.4.2.

Consider the set K = {y € ', d(y,0I') > ro}. Obviously, it contains I' N Dy. Let py be defined
with respect to K and T' as in Theorem 2.4.1 and let p = min(rg, pg). It is obvious that it suffices
to prove the estimate (3.6.6) for = from Dy, d(z,I') < p. Then there exists a point a from K such
that d(z,T") = |z — a|. Due to Theorem 2.4.1, in the local coordinate system, the intersection I'(a) =
I'nC,(a), where the neighborhood C)(a) is defined by (3.5.8), is described by the equation u, = f(u)
in the ball B, = {|u| < p} such that f belongs to C1*(B,) and satisfies the conditions (3.5.9), where
My is a constant depending only on I'.

We have the relation

0
by =0+ 6, (367

where

/@yy <w—@mw—mwmw,¢mw=m@/@w@—mw.
T

T

For the first term, we have the estimate

WWNQQMMMM7%=/W—WwﬂWWy
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It is obvious that inequality (3.5.12) is still valid for y from I' N C,(a). Therefore, the following
inequality holds:

ly —al"dy k ok
Iy <2k / +2%p y — altdy. 3.6.8
(jz — al + |y — ] v 368
I'nCy(a) M\Cp(a)
Similarly to the proof of Lemma 3.3.3, the surface I'N C,(a) can be given by the parametric equation
y—a:U[s,f(s)], |8| Sp)

where U is the corresponding orthogonal matrix from R***, Taking into account (3.5.9), we have the
following relations for the specified change of variables:
sl < Iy — al < 2lsl, dy1y = [m(s)lds,  [m(s)] = V/1+|f/(s)]2 < 2. (3.6.9)
Therefore, the first integral at the right-hand side of (3.6.8) does not exceed
ol tn / ( [sl"“ds < o — a2l / |s[*ds

|z — al + |s[)¥ (L4 |spk
[s|<p Rk-1

Taking into account the relation |x — a| = d(z,T"), this leads to the validity of the estimate (3.6.6)

for ¢yg.
Pass to the function ¢; from (3.6.7). By virtue of Lemma 3.6.1, we have the relation

/ Qi(a,y —x)dy = 0,
L(a)

where L(a) denotes the plane L(a) tangential to the surface I' at the point a. Therefore, the function
¢1 can be represented in the form

@ =¢la) | [ [ | Qe =)y = ot + 1)
I'  L(a)
where I} corresponds to the integrals over I'NC),(a) and L(a)NC,(a). Since the segment with endpoints

a and x is orthogonal to the plane L(a), we have the obvious inequality |y — x| > |y — a| for any y
from L(a) \ C,(a). Taking into account (3.5.12), this implies the inequality

B < Qo |20 [ drr [ -] < i, (3.6.10)
M\Cp(a) L(a)\Cp(a)
where C' is a constant depending only on p.
For definiteness, we assume that the unit normal n(a) determining the direction of the axis uy of

the local coordinate system is selected such that the local coordinates of x are 4 = 0 and uy = |z — a|
or, which is the same, z —a = U(0, |z — a|). Therefore,

y_a:U[Srf(S)]a y—IL’:U[S,f(S)—T’], yEFﬂC’p(a),

y—a="Uls,0)], y—x=Uls,—r], y € L(a) N Cy(a), (3.6.11)

where r = |z — a|. In particular, inequality (3.5.12) combined with the estimate |s| < |y —a| in (3.6.9)
means that

2V/Is2 + [f(s) =2 > |s| + 7, [s| <p. (3.6.12)
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In the notation of (3.6.9) and (3.6.11), the term I is expressed as follows:

I= [ 1@l £(5) = nlm(s)] = Qls, ~rlds,
Is|<p
where Q(€) = Q(a, U¢). Using Lemma 3.1.1, (3.6.12), and the obvious inequality 21/|s|2 4 2 > |s|+r,
we arrive at the following estimate of the integrand:
28| £ (s)[[m(s)]
(Is| + )kt

2*|Im(s)| — 1|

Qs £5) = r)lm(s)| = Qls, =r)|< 2M1Q) (] 4 1"

Thus, we obtain the inequality

+2|Q|(0)] (3.6.13)

11| < 26F3M Q1) 2 + 2¥1Q 0y I3,

|£(s)] / VIHIF -1
I, = ds, I3= ds.
’ / (Isf + et 7 (Is] +r)*
s|<p [s|<p
By virtue of (3.5.9), we have the obvious inequalities |f/(s)| < My|s|” and |f(s)| < Mp|s|**! for the
function f. Therefore, the following estimate holds:

vilds |s|Vds
L+ Is < Myr" ™ i /
2 i s Ao / (sl + 1541 T (|s] + D
k—1 Rk—1

where

Taking into account the fact that r = | — a| = d(z,T"), we combine the last estimate with (3.6.10)
and obtain the validity of the estimate (3.6.6) for the function ¢y in (3.6.7). Thus, the estimate (3.6.6)
and, therefore, the first assertion of the theorem are proved.

Its second assertion is proved similarly to Theorem 3.4.1.

For classical integrals of the Cauchy type, Holder estimates obtained via estimates of their deriva-
tives near the boundary are well known (see, e.g., [12]). In [63, 64], this approach is used to investigate
boundary properties of generalized Cauchy-type integrals related to elliptic systems.

An analog of Lemma 3.5.1 on variations of the surface I' also holds for the integrals (3.6.1).

Lemma 3.6.2. Let sequences Dy, Uy, Qn, and p, satisfy the conditions of Theorem 3.6.1 and
inf d(D,,0l'y,) >0
n

Let the surfaces Ty, admit parametrizations 7, from CYV, converging to v in C*(G).
Then the functions

- /Q('xvyvy - x)gpn(y)dy, RS D”’

satisfy the estimate

|Pnlcnp,) < ClQlcvm [onlonr,)
uniform with respect to n.

Proof. Using Lemma 2.4.1 and the scheme of the proof of Theorem 3.6.1, we argue in the same way
as in the proof of Lemma 3.5.1.

Imposing additional assumptions on the kernel (), one can also consider boundary properties of the
integral (3.6.1) for functions ¢ from C(I'). A classical example is the double-layer potential for the
Laplace operator in a domain D. In our notation, it is defined by the kernel

Qe = L)

, yel,
T ¢k
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where n(y) denotes the inner normal. It is well known that the function defined by the integral
with this kernel and the density ¢ € C(I') is continuous up to I' from each side of the surface. The
considered kernel is such that Q(y,&) = 0 for {n(y) = 0. It turns out that this is the key property
also in the general case.

Theorem 3.6.2. Let conditions of Theorem 3.6.1 be satisfied and

Qy,§) =0 forén(y) =0, yel. (3.6.14)
Then, for any ¢ from C(I'), the integral (3.6.1) defines a function ¢ from C(D) such that
19lo < ClQcvw | elos (3.6.15)

where C' is a positive constant depending only on the distance between D and OT.

Proof. We use the estimate

/IQ(y,y —r)dy| < C|Q|cv, €D, (3.6.16)
r

proved in the same way as Theorem 3.6.1.

Let K C T and p be defined in the same way as in the proof of Theorem 3.6.1. Let x € D and
d(z,I') < p. Let d(z,I') = |z — a|, a € K, and z lie inside the neighborhood C,(a).

Since ||Q(y, &) — 1Q(a, &)|| < |Q(y,§) — Q(a,§)|, we have the following estimate for the difference
Az,y) = 1Q(y,y — z)| — |Q(a,y — z)]:

Az, 9)| < [Qlovoly — al”ly — ' ~*.
Then, taking into account (3.5.12), we deduce the inequality
1Az, y)] < 2'7¥Qlovoly — o™ . y e TN Cyla), (3.6.17)

Then, in addition to the first inequality of (3.6.9), we have the inequality

/ Al y)ldy < 2 1Qlowco / s+ H s,
'nCp(a) Is|<p

Thus, it suffice to prove (3.6.16) for Q(a,§).
It is obvious that

|Q(a,y — z)dy| < C1]Q|com, (3.6.18)

M\Cp(a)
where C is a constant depending only on p.
On the other hand, by virtue of the second assertion of Lemma 3.6.1, we have the inequality

/ Qlayy — o)ldy < / 1Qa,y — 2)ldy < C11Qlgoc- (3.6.19)
L(a)NC(a) L(a)

Finally, similarly to the proof of Theorem 3.6.1, we have the relation

/ - Q(a,y — x)|dy = / [1Qls, f(s) — rlllm(s)| — |Q(s, —r)||ds,
I'NC(a)  L(a)NC(a) Is|<p
where Q(¢) = |Q(a, BE)|, [m(s)| = /1 + |f/(5)|?, and r = |z — al.
Taking into account the remark to Lemma 3.1.1, one can estimate the last integral in the same way

as in the proof of Theorem 3.6.1. Combining this with (3.6.18) and (3.6.19), we complete the proof of
the estimate (3.6.16).
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It remains to verify the continuity of the function ¢ in the closed domain D. To do this, select
a sequence of functions ¢, from CH(I'), converging to ¢ with respect to the sup-norm. Due to
Theorem 3.6.1, the functions ¢,, defined by the integral (3.6.1) via ¢, are continuous in D. On the
other hand, by virtue of (3.6.15), the sequence ¢,, uniformly converges to ¢. Hence, the last function
also belongs to C'(D).

In [72, 73], Theorem 3.6.2 was proved for the two-dimensional case.

3.7. Relations for Boundary Values

Due to Theorem 3.6.1, the function ¢(x) defined in a domain D by a Cauchy-type generalized
integral (3.6.1) is continuous in its closure. Hence, its boundary values are defined on D NT'. It
is possible that this domain adjoins I' from both sides. Therefore, two one-sided limit values qﬁi(a),
a € I, are defined. More exactly, by virtue of Theorem 2.4.1, if I is a smooth surface with boundary, a
is its interior point, and p is sufficiently small, then neighborhood (3.5.8) can be decomposed into two
half-neighborhoods C’f(a) that are connected components selected by the condition £[f (@) — ug] > 0.
The signs depend on the choice of the normal n(a) such that the axis ug of the local coordinate
system is directed along it. Respectively, one-sided boundary values of the function ¢ are defined as
the following limits:

o) = lm o). (3.7.1)
mGCi(’a)
The description of these boundary values for the function (3.6.1) is closely related to the singular

integral

¢WU=/Q@&—@M@MFW (3.7.2)
I

from Lemma 3.3.3.

Let L(a) be the tangential plane to I' at a point a. According to 3.6.1, a coefficient o(a) = h(n) is
associated with this plane, where the function h is defined by the kernel Q(&) = Q(a,§) and the scalar
product nn(a) is positive. Its explicit expression is as follows:

o(a) = / Qly — 20)di_1y, (20 — a)n(a) > 0. (3.7.3)
L(a)

This function ¢ has the following continuity character on I'.

Lemma 3.7.1. Let I from C' be a surface with boundary. Let an odd (with respect to &) kernel
Q(y,€) belong to C*WN(I, H1_y). Then, for any compact subset K of T'\ L', the function o defined
by (3.7.3) belongs to CH(K), 0 < p < v, and its norm satisfies the estimate

lolcnxy < ClQlev, (3.7.4)

where C is a positive constant depending only on the distance between K and OT.

Proof. 1t suffices to prove the lemma in any neighborhood I', of a fixed point a from I'. Let one
component of the vector n(a) be different from zero; denote it by ngs(a). Without loss of generality,
we assume that ns(y) # 0 for any y from I',. Let B(y) be an invertible k£ x k-matrix from C¥(T',,)
such that for any yo from Iy, the linear transformation v — x = yo + B(yo)u maps the plane uy = 0
onto L(yp) and, respectively, maps the half-space u; > 0 onto {z, (z — yo)n(y) > 0}.

Let us prove the existence of such a matrix. Indeed, if 1 < i < k, i # s, then by b;(y) denote the
vector such that its sth and ith components coincide with —n;(y) and ns(y) respectively, while other
its components are equal to zero. Obviously, the obtained k — 1 vectors are linearly independent and
orthogonal to n(y). Now, we take the matrix such that its initial £ — 1 columns are formed by the
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vectors b;, 1 # s, while the last one coincides with the vector n. This matrix satisfies all requirements
for the matrix B.

Let e be the vector (0,...,0,1) from R¥. We change the variables as follows: y — yo = B(y0)(s,0),
s € R*1 and 2 — yo = B(yo)e. Under such a change, the area element dj_1y of the plane L(y)
is linked with ds by the relation dy = |m(yo)|ds, where the components of the vector m(yg) are the
cofactors of the last column of the matrix B(yg) (according to Sec. 2.4). In particular, m(y) € C¥(Iy).
Under the change specified, the relation (3.7.3) for a = yy passes to the relation

a(yo) = [m(yo)| j/ Q(yo; s, —1)ds, (3.7.5)
Rk—1

where Qv(yf) = Q[y; B(y)¢]. As in the proof of Lemma 3.6.1, this singular integral (with a singular
point at infinity) can be represented by the sum o1 (yo) + 02(yo) of the classical integrals

o1(yo) = / Q(yo; s, —1)ds, 0a(yo) = /[Q(yo;s,—l)—Q(yo;s,O)]dS-

ls|<1 |s|>1

It is obvious that the function o1 belongs to C¥(I',) and the estimate (3.7.4) with respect to K =T,
is also obvious for this function.

For the integrand of the function oy, perform the change of variables s = r§, where r > 0, £ € €,
and Q denotes the unit sphere in R¥~1. Due to Sec. 1.8, dj_15 = rk_zdrdk_gg under this change and,
therefore, taking into account the oddness and homogeneity of the function @, we obtain the following
expression for os:

oa(y0) = / Ao, r)dr o r) = / (Qyo: € —1/r) — Olyo: £, 0)]d.

r
r|>1 Q
By virtue of Lemma 3.1.2, the function Q(yo;€,t) belongs to the class C¥(I'y x Q x [—1,1]). Hence,

by virtue of Lemma 2.1.1, the difference Q(yo;&,t) — Q(yo0;§,0) can be represented in the form
[t|"~*a(yo,&,t), where the function a(yo,&,t) belongs to CH*(T', x © x [0,1]) and its norm satisfies
the estimate |a|cx < C|Q|av)-

Then the function

o2 (yo) = / / a(yo, €, —1/r)de
|r|>1 Q

also belongs to C*(I';) and a similar to (3.7.4) estimate of its norm with respect to K =TIy, is valid.

Theorem 3.7.1. Under the assumptions of Theorem 3.6.1, boundary values of the function (3.6.1)
at interior points yo of I' are given by the relation

¢* (y0) = £ (y0)e (o) + &" (o), (3.7.6)

where the singular integral ¢*(yo) and the coefficient o(yo) are defined by (3.7.2) and (3.7.3) respec-
tively.

Proof. 1f the normal n(yg) to the surface I' at a point yq is replaced by the opposite one, then, due to
the definition (3.7.1), the boundary values ¢*(y) change places, while the coefficient o (yg) in (3.7.3)
changes its sign due to Lemma 3.6.1. Thus, it suffices to prove the relation (3.7.6) for the upper sign.

Let z from C"(a) tend to a boundary point a from I' along the normal n(a), i.e., x —a = rn(a),
r > 0. As in the proof of Theorem 3.6.1, one can assume that r < p. Since

lim Qy,y — x)p(y)dy = / Qy,y — a)p(y)dy,
)

z—a
T\C(a) \C(a
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it follows that it suffices to prove the relation (3.7.6) for I' N C(a). For the difference A(z,y) =
Q(y,y — x)e(y) — Qa,y — z)p(a), we have the following estimate similar to (3.6.17):

IA(z,y)] < 27F1Qlcuo |¢lonly — al* %,y e TNCy(a).

Since the function g(y) = |y — a|* %! is summable over I' N C(a), it follows from the Lebesgue
majorized convergence theorem (see Sec. 1.8) that
lim Ry, y = 2)p(y) — Qla,y — x)p(a)ldy = 0.
'nC(a)
Thus, it suffices to prove the relation
im [ Qy-ady=o@+ [ Qay-ad (377)
'nc(a) I'nC(a)

Similarly to the proof of Theorem 3.6.1, we use the parametric equation
y—a="Uls, f(s), Is|<p, (3.7.8)
of the surface I' N C(a) to obtain the relation

/ Qay—a)dy= [ Qs £(5) = rllm(s)lds,
I'nCl(a Is]<p
where Q(¢) = Q(a, U¢), |m | = /14 |f'(s)]?, and r = |z —al. If yo = a is fixed, then the orthogonal

matrix U from (3.7.8) can be taken as the matrix B(yp) in (3.7.5). In this case, the coefficient |m(yo)|
is equal to 1 and the relation (3.7.5) takes the form

_ / O(yo, 5, —1)ds. (3.7.9)

As we found in the proof of Lemma 3.3.3, the change of variables y — a = Bis, f(s)] can also be
performed for the singular integral on the right-hand side of the relation (3.7.7):

/ Qa,y —a)dy = / Qls, m(s)|ds. (3.7.10)
r'nC(a [s|<r

Thus, the relation (3.7.7) can be represented in the form

lim / Ols, £(s) — rljm(s)|ds = o(a / s, £(s)]/m(s)|ds,

r—0

Is|<p Is|<p

where C~2(§) € Hi_j. For this kernel, one can use the estimates (3.6.12), where k is to be replaced
by k — 1. In particular, we have the inequality

1Qls, £(s) = rllm(s)] = Q[s, f(s) — r]| < 4¥ ' M|Q|(g)(r + )" F.
Therefore, as above, due to the Lebesgue majorized convergence theorem, it suffices to prove the
relation

Jim / Ols, f(s) — rlds = o(a /Q (3.7.11)

r—0
Is|<p |s|<p
By Definition (3.7.9), we have the relation

) = lim / Q s,—1)d
r—0

s|<p/r
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By virtue of the homogeneity, we have the relation é(s, -1) = rk_lé(rs, —r); hence, the change of
variables t = rs yields the relation

Since

it follows the proof of the relation (3.7.11) is reduced to the justification of the limit passage

lim [ [Qls, £(s) — 7] — Q(s, —r)]ds = / Qls. £(s)] — Q(s. 0)]ds. (3.7.12)

r—0
|s|<p Is|<p
An estimate similar to (3.6.13) can also be obtained for the difference Q[s, f(s) — r] — Q(s, —r): one

must take into account the fact that @(5 ) is a homogeneous kernel of power 1 — k in thiss case. Thus,
we have the inequality

~ ~ - k
Qs £(6) = 11 = Qs, =) < 2201y 717, < €l

Therefore, the validity of the limit relation (3.7.12) follows from the Lebesgue majorized convergence
theorem, which completes the proof of the relation (3.7.6).

Theorem 3.7.1 combined with Lemma 3.6.1 immediately implies the corresponding result for the
singular operator defined by the relation (3.7.2) on a closed smooth surface.

Theorem 3.7.2. LetT be a closed surface from the class CYV. Let a kernel Q(y; &) from CY (T, Hq_y)
be odd with respect to the wvariable £&. Then the singular operator Rp = ¢* defined by the singu-
lar integral (3.7.2) is bounded in the space C*(I'), 0 < p < v, and its norm admits the estimate

|R[ziony < ClQ|cue) -
Proof. Cover I' by open sets V;, 1 < j < m, such that I' NV} is a surface with boundary, while the
set V; \ I' consists of two connected components Vji lying from different sides of I'. Then, by virtue
of Theorem 3.7.1, the singular operators

=9 ‘vjnr

boundedly maps C*(I') to C#(V; NT') and the corresponding estimates of its norm hold. This and
Theorem 2.1.1 imply the boundedness of the operator R in C*(T').

3.8. Line Cauchy-Type Integral

All the above considerations refer to the case of the Euclidean space R¥. Below, we mainly deal
with the case where k = 2. In this case, it is convenient to treat R? as the complex plane C. Therefore,
for points of the plane, we use the complex notation z = x + iy,t = t1 + its, etc. In the plane case,
roles of surfaces are played by curves (in Sec. 2.5, they are considered in detail). Hence, on a smooth
surface with boundary, the generalized Cauchy-type integrals (3.6.1) pass to line integrals

/Q (t;t—2)p(t)dit, =z¢T, (3.8.1)

over a smooth arc I', where the kernel @) belongs to H_1 and is odd with respect to £. The pair of
endpoints of the arc plays the role of the boundary JI'.
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For a point a of I', denote the direction vector by e(a) = e; + iea. Then the normal at this point
is n(a) = ie(a). Consider the tangent line L(a) at this point. The choice of the vector-function e(t)
from C(T") determines the orientation of the curve I'. The half-neighborhoods C*(a) and C~(a) (see
(3.7.1) above) lie from the left and from the right (respectively) of the curve I' with respect to this
orientation. In Definition (3.7.3) of the coefficient o(a), select the normal vector n(a) = ie(a) to satisfy
the relation

O‘(to) = / Q(to;t - Zo)dlt, (3.8.2)
L(to)

where the point z lies from the left of L(ty), i.e., Im[(zo — to9)/e(tp)] > 0. Note that the condi-
tion (3.6.14) is equivalent to the condition

Qlto, e(to)] =0 (3.8.3)

in the considered case.
As it is noted in Sec. 3.7, the notion of generalized Cauchy-type integrals (3.8.1) covers not only

classical Cauchy-type integrals
1 o(t)dt
= r 3.84
o) = 5, [ ST sgT, (384
r

where dt = e(t)d,t = dt + idty denotes the complex differential on a curve; it also covers the classical
double-layer potential

) = 717 / Im[(ﬁf B zi:(t)]go(t)dlt, 2eD, (3.8.5)

u(z
for the Laplace equation. It is obvious that the integrals (3.8.4) and (3.8.5) can be represented
in the form (3.8.1) with respect to the kernels Q(t,&) = e(t)/(wi€) and Q(t,&) = Im[e(t)]/(n|€|?)
respectively.

For the integrals (3.8.4) and (3.8.5), Theorems 3.6.1, 3.6.2, and 3.7.1 are well known. In the classical
monograph [45], boundary properties of the Cauchy-type integrals (3.8.4) are presented in detail with
o = 1/2 in the relation for boundary values. For the first time, this relation is discovered [58]. in [50],
it is discovered again. Nowadays, it is called the Sochocki—Plemelj relation. in [52], this relation is
considered under more general assumptions. Moreover, Theorem 3.8.1 for this integral holds for any
smooth contour (no requirement it to be a Lyapunov contour is imposed). Thus, it is reasonable to
select a class of kernels () possessing a similar property.

Similarly to (3.8.4), assume that the kernel of the integral (3.8.1) explicitly depends on the unit
tangential vector e(t) = e1(t) + iea(t) on the contour I'. More exactly, assume that this integral has
the form

/Q(t;t — z,dt)p(t) = /Q[z,t;t — z,e(t)]p(t)dit, z€ D, (3.8.6)
r r

where Q(t;&,1) = Q1(2, ;) + Q2(z, t;§)n2, §,n € C, and Q; are odd H_-functions with respect to
the variable €. A function @ of such type is called a Cauchy kernel if Q(t;€,€) does not depend on &,
i.e.,

Q€8 =c(t), eC. (3.8.7)

In such a case, the integral (3.8.6) is called a Cauchy-type integral.

Since the integral (3.8.4) can be represented in the form (3.8.6), where miQ(&,n) = n/€, it is obvious
that the condition (3.8.7) is satisfied for it. The integral (3.8.6) depends on the orientation of the curve
I'. If we pass to the opposite orientation, i.e., replace e by —e, then the integral alternates it sign. As
above, the notation Q(t;&,1) € C™"™)(Q) is treated with respect to the functions Q; constituting Q.
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The following lemma illustrates an important property of the Cauchy kernel. Let a Cauchy kernel
Q(&,m) not depend on ¢ and

200 = / Q€. de), (3.8.8)
T

where T is a unit circle oriented counterclockwise. Note that the similar interval I'; along the semicircle
T is equal to og since the transformation & — —& mapping I'y onto the opposite semicircle I'y changes
the orientation of the curve and, therefore, does not change the expression Q(§,d¢) (by virtue of the
oddness of Q(&,n) with respect to &).

Lemma 3.8.1. Let Q(§,n) be a Cauchy kernel and D be a finite domain bounded by a piecewise-
smooth contour I" positively oriented with respect to D (i.e., the domain D is left from the left under
the movement along the contour towards the positive direction). Then

/Q(t —z,dt) =200, z€D, (3.8.9)
r

in terms of (3.8.8) and
/ Qt — o, dt) = o (3.8.10)
r

if to from I is an interior point.
In the same way, if a line L divides the plane C into half-planes Py and is oriented positively with
respect to Py, then

/Q(t — Z,dt) =+o0g, 2z € Py, (3.8.11)
L

where the last singular integral has a singular point at infinity.

Proof. By condition, the function Q(&,£) = Q1(£)&1 + Q2(§)&2 is identically equal to a constant and,

therefore, the following relations hold:

0Q1 | 0Qq .
;=0, i=1,2.

9§; " 0&i te '

On the other hand, Q;(&) is a homogeneous function of power —1, i.e., rQ;(r§) = Q;(€). Differentiating

this identity with respect to r, we arrive at the Euler relation

Qi | 0Qi .
+ +Q;=0, 1=12,
06 08 ?
for homogeneous functions. Combining this with the previous relation, we conclude that
0Q1  0Qq
= . 3.8.12
08 0& ( )

To prove the first assertion of the lemma, fix a point zy from D and assume that a positive ¢ is less than
the distance d(zo,I"). Now, consider the domain D, = D N {|z — 29| > €} bounded by the composite
contour 0D, = I'NI';, where I'; is the corresponding circle. Orient this contour clockwise with respect
to D.. Then I, is oriented clockwise. By virtue of (3.8.11) and the Green relation provided at Sec. 2.5,
we have the relation

/ Q1(z — z0)dz + Q2(2 — 20)dy = / <8§;2 — 8;3;) (z — 20)d2z = 0.
0D,

€

Thus,
/Q(t — Zo,dt) = /Q(t — Zo,dt),
T Te
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where the circle on the right-hand side is oriented counterclockwise. Since this integral passes to the
integral (3.8.8) under the change of variables z — 2y = €&, we arrive at the relation (3.8.9).

To prove the relation (3.8.10), we assume that ¢y is an interior point of the contour. Then, due to
Sec. 2.5, there exists a positive p such that if € < p, then the intersection I' N {|z —to| < €} is a smooth
arc containing t( inside. Let I'c denote the part of the circle |z — ty| = €, lying outside the domain D.
The contour formed by it and the curve I' N {|z — ¢9| > €} envelopes the point ty. By virtue of (3.8.9),
this implies that

[t -t = [ Qte -z, dr). (3.8.13)
T I

If we apply the change t — tg = €, then the integral on the right-hand side passes to an integral of
kind (3.8.8); its integration domain is an arc T. of the circle, such that its radian measure tends to
m as € — 0. More exactly, the tangent to I' at point ¢ty decomposes T into two semicircles and the
arc T, tends to one of these semicircles. Since the left-hand side of the relation (3.8.13) tends to the
corresponding singular integral as ¢ — 0, it follows that the relation (3.8.10) holds.

The proof of the last assertion of the lemma is the same. Without loss of generality, one can assume
that the line L goes through the origin. Let zp € Py and the half-disk Py N {|z — 29| > R} contain
the point zg inside. Applying the relation (3.8.9) to this half-disk and passing to the limit as R — oo,
we obtain the relation (3.8.11).

If the Cauchy kernel has the form Q(¢;&,7n), then Theorems 3.6.1 and 3.7.1 are still valid for any
smooth arc. More exactly, the following assertion holds.

Theorem 3.8.1. Let a domain D not intersect a smooth arc I' and lie from one side of it. Let its
endpoints not belong to D.
Then the function

o(z) = /Q(t;t —z,dt)p(t), ze€D, (3.8.14)
r

determined by a Cauchy kernel Q(t;€,n) from CYW(D,H_1) and a density ¢ from CH(T), 0 < p < v,
belongs to C*(D) and satisfies the norm estimate

|9lcnpy < ClQleve [@lorrys

where C' is a positive constant depending only on the difference between D and the endpoints of the
arc I'. Its boundary values are linked with the corresponding singular integral by the relation (3.7.6),
where

atto) = [ Qltwig.de). (3815)
T

If the Cauchy kernel Q(u,t;€,n) depends on the parameter u from G and belongs to C*MW (G xT',H_1),
then the corresponding function ¢(u,z) belongs to CH(G x D) and satisfies the corresponding norm
estimate.

The assertion of Lemma 3.6.2 about Cauchy-type integrals is valid for any sequence of smooth arcs
converging in the class C1.

Proof. The function ¢ can be differentiated under the integral sign with respect to the variables x;
(a:l + ixg = Z)Z

o
ajj (2) = _/Qj(t;t—z,dt)cp(t), ji=1,2,
T
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where Q;(t;€,n) = 0Q/0¢; € C"O/(T',H_5). As in the case of Theorem 3.6.1, the first assertion is
reduced to the proof of the estimate

0
‘&f (2)| < C1Qjlcv |¢lcnd”(2,T), z€ D. (3.8.16)
j
Similarly to (3.6.7), we have
0
a¢ = ¢0 + ¢17
Lj

where

¢o(2) = /[Qj(t;t — 2, d)p(t) — Qj(ast — z,dt)p(a)],  d1(2) = w(a)/Qa’(a;t — z,dt).
r

The validity of the estimate (3 8.16) for ¢y is proved in the same way as Theorem 3.6.1. To investigate
¢1, complement I" by an arc I such that TUT is a piecewise-smooth contour enveloping the domain
D. Supply this contour with an orientation coinciding with the orientation of the arc I'. Then, by
virtue of Lemma 3.8.1, we have the relation

/meamzwimm,mD.
rur T

Hence, the differentiation of this relation leads to the relation ¢1(z )+(;51( ), z € D, where ¢, is defined
similarly to ¢1 with respect to I. It is possible to select the arc I' such that the distance between it
and the domain D is positive. Hence, the estimate (3.8.18) for the function qbl and, therefore, for the
function ¢, is obvious.

The fact that the coefficient o in the relation (3.7.6) is given by the relation (3.8.15) follows from
the last assertion of Lemma 3.8.1. The last assertion of the theorem is proved in the same way as
Lemma 3.6.2 (we take into account the fact that Lemma 2.4.1 holds for any sequence of smooth arcs
converging in the class C1).

To investigate the differentiability of Cauchy-type integrals, take a smooth orientable arc I' with
endpoints a and b and introduce the operation ¢ = ¢, of the differentiation with respect to the
arc length on I'. Obviously, this operation acts from C1(T') to C(T'). If v : [0,1] — T is an arbitrary
parametrization, then this operation can be defined by the relation ¢’ oy = (pov)'|7/|~!. For example,
for an arbitrary function ¢(t) = ¢, we have the relation ¢’ = e(t). Arguing in the same way, we obtain
the following form of the Newton—Leibnitz relation for the considered case:

[0t =) - ota) (38.17)
r
where the arc is assumed to be oriented from b to a.
If there exists an arc Iy from I' \ OT" such that the domain D abuts it and lies from the left of it,
then the boundary value ¢t of any function ¢ from C!(D) is continuously differentiable on I'y and

oo\ " oo\t
(¥") = <8;01> €1+ <8;02> ez, z =21+ ix2, (3.8.18)

where e is the unit tangential vector belonging to C'(I') and such that its direction is coordinated with
the selected orientation.

Now, consider the case where 1(tg,t) belongs to C}(I' x T'), while dv/dty and dv/dt denote its
partial derivatives with respect to the corresponding variables. Then

ety = 2 0 + 2

- Oto (t.2) + ot

(t,1). (3.8.19)
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Consider the function ¢ defined by the integral (3.8.14).

Lemma 3.8.2. Let a smooth arc I with endpoints a and b be oriented from a to b and be disjoint with
the domain D. Let the Cauchy kernel Q(t;€,n) belong to C*O(I') and a function ¢ belong to C1(I).

Then, for the function ¢(z), defined by the relation (3.8.14), the following differentiation relation
holds:

(g e ) () = Qlasa— zn)ela) = QUsb 21 ()
/ Qt.t = znplidit + [ @t =z e, (3.8.20)

r
where Qo(t;€,m) = (0Q/0t)(t;€,1).
Proof. Differentiating the function (3.8.14) under the integral sign, we obtain the relation

oQ

axj(z) / %( t—zdt)e(t), j=1,2 (3.8.21)

Applying the relations (3.8.12) to the terms Q(; &, dt) = Q1(t,&)e1(t) + Qa(t, £)ea(t), we see that

9 ()= _ 9 . —2)e 0Q; —2)e
oo () - F/ o st = 2)ea(t) + 5 e~ 2halt)] (0

By virtue of (3.8.18), the expression in the square brackets is the derivative of the function Q;(to,t— z)
with respect to t for tg = t. Hence, we have the relation

Q.. _ d
| 8£j(t7t—z,dt)go(t)—r/ {dtQ](to,t—z)}

Applying (3.8.19) to the function (tg,t) = Q;(to;t — 2)p(t), one can represent the expression in the
square brackets as follows:
0Q;

ot

gD(t)dlt.

to=t

AR BRG]

Taking into account (3.8.17), we obtain the relation

e (1= .d0)o(t) = Q,(bsb = olb) = Qs (aia = 2)e)
r
_/%Qt]( t—2)p dlt—/QJ '(t)dit. j=1,2. (3.8.22)

r

Substituting this expression to (3.8.21), we obtain relations passing to (3.8.20) (as a linear combination
of partial derivative).

Note that the lemma is also valid for smooth contours: in this case, there are no integrated terms
on the right-hand side of (3.8.20).

Applying Theorems 3.6.1 and 3.8.1 to the first and second integral (respectively) on the right-hand
side of (3.8.20), we arrive at the corresponding analog of Theorem 3.6.1 for the space C'+.

Theorem 3.8.2. Let the assumptions of Theorem 3.8.1 be satisfied, the arc T' belong to CY¥, the
Cauchy kernel Q(t;€,m) belong to CYYN(T, 1 _1), and the density ¢ belong to CY*(T), 0 < p < 1.

Then the function ¢ defined by the integral (3.8.14) belongs to C1#(D) and its norm satisfies the
estimate

|lcrupy < Cl@loven [#lerur)
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where C' is a positive constant depending only on the distance between D and the endpoints of the
arc I'.
3.9. Line Singular Integrals

On a smooth contour, consider the singular Cauchy integral

to /Q to,dt ( ), to €T, (391)

corresponding to the Cauchy-type integral (3.8.14). The general case of piecewise-smooth curves is
studied in Sec. 3.10 in the framework of weight Holder spaces.

In the considered case, Theorem 3.8.1 leads to the corresponding result in the same way as Theo-
rem 3.7.2 above.

Theorem 3.9.1. Let T' be an orientable smooth contour and Q(t;€,m) € CYW(I,H_1). Then the
singular operator K defined by the relation (3.9.1) is bounded in the space C*(T'), 0 < pu < v, and its
norm satisfies the estimate |K|z < C|Q|cwv)-

If the kernel Q(u,t;€,m) depends on the parameter u from G and belongs to C*®) (G xT',H_1), then
the function ¥ (u, z) belongs to C*(G x D) and satisfies the corresponding norm estimate.

Using Lemma 3.8.2, one can complement the last theorem by a similar result for the space C1#(T).
Theorem 3.9.2. If the assumptions of Theorem 3.9.1 are satisfied and
FeC, Qé&n) e CHOTH), (3.9.2)

then the singular operator K is bounded in the space CL*(T), its norm satisfies the estimate |K |z <
C|Q‘C1,V(2), and

V' (to) /Qo — to, e( dlt-i-/Q — to, e(to)]¢ (t)dut, (3.9.3)

where 1 = K¢ and Qo(t;€,m) = (0Q/0t)(t;€,1).

Proof. Without loss of generality, one can assume that I" is a simple contour bounding a domain D.
Let ¢ be defined by the integral (3.8.14) in this domain. Then, due to Theorem 3.8.2, the function ¢
belongs to C1#(T). Taking into account (3.8.18), we conclude that

+ +
(¢+)/:<§£> +<§x¢;> €9, Z=$1+il’2.

To the partial derivatives on the right-hand side of this relation, one can apply the relation (3.8.20)
with 7 = e(tp) (recall that it contains no integrated terms provided that the contour is smooth). Thus,
the following relation holds:

0 0
crlto) e +ealt) | ()= [ Queitt = gttt + [ Qlentot = zeltol Ot
1 1 4 4
Applying the relation (3.8.2) to the integrals of the last relation, we see that

(¢+)'(to)ZUO(to)SO(to)+0(t0)90'(t0)+/Q0[t; — to, e(to)]p(t)dit
I

/ Qlt.t — to, elto)) (Hdst, (3.9.4)
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where

Uo(to) = / Qo[to, t— 20, e(to)]dlt, O'(to) = / Q[to,t — 20, e(to)]dlt.
L(to) L(to)

Recall that L(tg) is the tangent line to I' at the point ¢y such that its unit direction vector is e(tp) =
e1 + iea, the neighborhood C*(ty) is left from the left of the line, and the point zq lies from the left
of L(to), i.e., Im[(zo — to)/e(to)] > 0.

Both Q¢ and @ are Cauchy kernels. Indeed, differentiation of the relation c(t) = Q(¢;&,£) with
respect to t yields the relation ¢ (t) = Qo(t; &, ). Therefore, due to the last assertion of Lemma 3.8.1,
we arrive ar the relations

w0t =, [@ultg.de), o) =, [Qieic.de)
T T

implying (as above) the relation ¢’ = 0. Hence, the initial two terms on the right-hand side of (3.9.4)
can be represented as (0p)'(tg). Then, differentiating the relation (3.8.3) with the upper sign and
combining the obtained result with (3.9.4), we obtain the relation (3.9.3).

Applying Theorem 3.8.1 to the relation (3.9.3), we arrive at the boundedness of the singular operator
K in CY#(T") with the corresponding estimate of its norm.

It frequently occurs that the Cauchy kernel Q(to,t;&,n) depends on the two variables ¢ty and ¢
varying in I'. The variable ¢ty = u can be treated as an independent parameter. Then, in the case
where Q € C**()(T' x I), the singular integral

TZJ(ZL, to) = /Q(u, t;t — to, dt)go(t), toel, (395)
T

can be differentiated with respect to the parameter w, which is justified in the same way as in
Lemma 3.4.2. Thus, we have the relation

0 0
a,(j: (u, to) = / 822 (u, t;t — to, dt)go(t), toel.
T

In the case where u = t¢, the integral (3.9.5) passes to

1/}(150) = /Q(to,t;t — 1o, dt)go(t), toel. (396)
T

Then, taking into account (3.8.19), we arrive at the following modification of the differentiation relation
given by (3.9.4): in the first integral, the expression Qqlto; t—to, €(to)] is to be replaced by Qo (to, t; t—t0)
with the kernel

Qoltor1:6) = 0t €,e(0)] + 2 o, €. clt)]. (3.9.7)
0
The function .

Q(to, 1:&,m) = (if;?"v (3.9.8)

is a simple example of Cauchy kernels. Obviously, it satisfies the necessary condition given by (3.8.7).
Also, it is clear that the conditions k € C¥(I' x T') and Q € C*(™) are equivalent for any m. For the
considered kernel, we take into account the relation dt = e(t)d;t and see that the singular operator
(3.9.1) takes the form of the classical Cauchy operator

1 / k(to, t)p(t)dt

(Ko)(to) = (g o D€ r. (3.9.9)

T
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In the considered case, the differentiation relation given by (3.9.3) and (3.9.6) takes the form

(KoY (t) = ; / [812 (to. t)e(t) + ; g’z (to,t)e(to)} N sot(t_)ci;t . / k(to,t)f/_(tzoe(to)dlt'

T

Using the modified differentiation operation
Dy =e 1y (3.9.10)

and taking into account the relation dt = e(t)d;t, one can represent the above differentiation relation
in the operator form

DK =Ky + KD, (3.9.11)

where Ky is defined similarly to (3.9.5) with respect to the function kg = (Dy, + Dy)k.
The next lemma shows that any Cauchy kernel can be represented by (3.9.8).

Lemma 3.9.1. Let T be a smooth contour from CYV and a kernel Qq(to, t; €) belong to C*M(I'xT, Ho)
and be even with respect to the variable §. Then the function k(to,t) = Qo(to,t;t — tog) belongs to
CY(I' xI') and the corresponding norms satisfy the estimate |k|cv < C|Qolcw() -

Proof. Tt suffices to prove the lemma for any arc Ty from T'. Let v : [0,1] — T be a C1#[0,1]-
parametrization of this arc. Since this parametrization is a Lipschitz map, it suffices to prove this
lemma for the function ko(so,s) = k[y(so),v(s)] in the square 0 < s,s9 < 1. By virtue of the
homogeneity and evenness of the kernel )y, this function can be represented as follows:
(s) = (s0
falso.9) = Qob(s0) (a0, )] alss) =7 7100,
As in the proof of Lemma 2.4.1, we verify that ¢ belongs to C¥ ([0, 1]x [0, 1]) and its absolute value is sep-
arated from zero. Therefore, it remains to apply Lemma 3.1.2 to the function Qq[v(s0),v(s); q(s0,8)]-

Thus, if a Cauchy kernel Q(to,t;&,n) belongs to CV(l)(F x I',Hp), then Lemma 3.9.1 is applicable
to the function Qo(to,t;&,n) = £Q(to,t;&,m). Hence, the operator K defined by the relation (3.9.1)
can be represent in the form (3.9.9), where the kernel k(to,?) belongs to C*(I" x I).

If wik(to,t) = 1, then the following special notation is used for the operator (3.9.9):

_ 1 [p(t)dt
(Se)(to) = m.r/ p g WETL (3.9.12)

The classical Cauchy-type integral

P(z) = ! /w(t)dt, z¢T, (3.9.13)

27 t—z
T

corresponds to this operator: the Cauchy kernel 27iQ(&,n) = n/€ is similar to (3.9.8) and it defines a
function analytical outside T, i.e., a function analytical in each connected component of the open set
C\T. For the specified kernel, the relation (3.8.8) passes to the relation

95 — 1 d€
2w ) €7
T

Hence, due to the Cauchy relation for analytical functions, we have ¢ = 1/2 and (3.8.3) passes to the
classical Sochocki—Plemelj relation

20% = +¢ + So. (3.9.14)
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If ¢ =1, i.e., the density is constant, then the function

1 dt
to) = toeT 9.1
x(to) m./t_to, 0 €T, (3.9.15)
I

is constant on any connected component I'. More exactly, it is described by the following assertion.

Lemma 3.9.2. Let I' be a smooth orientable contour consisting of components I'y,, 1 < k < n, and
or =1 (ox = —1) if the contour I'y, is oriented counterclockwise (clockwise). Then

/
x(to) = o + 220j7 to € L'y,

J
where the prime means that summing cover all values of j such that the contour I'; envelopes T',.
Proof. First, assume that n = 1. In this case, without loss of generality, one can assume that ¢ = 1.
If ¢(z) is defined by (3.9.13) with ¢ = 1, then, due to the Cauchy relation, ¢(z) = 1 if the point z is
located inside I and ¢(z) = 0 if the point z is located outside the contour. By virtue of (3.9.14), this
implies that x(tg) = 1.

In the general case, we have the relation

to _ak+z7rz/t—t to € I'g,

and it remains to apply the Cauchy relation to the terms on the right-hand side.

In particular, this lemma implies that the function x is constant provided that there exists a domain
such that the contour I' is its boundary and is oriented positively with respect to it.

To consider compositions of singular integrals, we start from the following auxiliary assertion on
permutations of special-kind integrals on smooth contours.
Lemma 3.9.3.
(a) For any function f from C*(I' x T'), the followmg change of the integration order is legal:

/dt f (fo,?) / I (o, t)dto. (3.9.16)

t— to t—tg
(b) If f € CH(Ty x Ty), then

/dt /f fo,)dt / fioi tldto (3.9.17)

Fl 1—‘2
for any point t1 from C.
Proof. (a) Without loss of generality, one can assume that I" is a simple contour oriented counterclock-
wise. If f(t,t) = 0, then the function (¢ —t9) ! f(to,t) has a weak singularity and the relation (3.9.16)

is the assertion of the Fubini theorem from Sec. 1.8. Therefore, it suffices to prove it for the function
f(t,t) = p(t). Then, taking into account Lemma 3.9.2, one can represent this relation as follows:

/w@%m%:—/¢@ﬁ. (3.9.18)
I I

Consider the function ¢(z) defined by the integral (3.9.13); it is analytic outside I'. By virtue of
(3.9.14) and the Cauchy relation applied to ¢ in the domain enveloped by I', we have the relation

/ (Se)(to)dto = / (6% (t0) + ¢~ (to)]dbo = / o~ (to)dto.
T

r r
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Let I be contained inside a counterclockwise oriented circle I'g and D be the domain contained between
these contours. Then, due to the Cauchy theorem applied to the function ¢ in the domain D, we obtain

that
1 t)dt
/¢_(t0)dt0 :/¢(t0)dt0 = o /dtO/ f(_)to'
" To To r

Since the contours I' and I'g do not intersect, it follows that the integration order on the right-hand
side of this relation can be changed. Since

o | 20 [, = [t

due to the Cauchy relation, it follows that the relatlon (3.9.18) holds.

(b) Without loss of generality, one can assume that ¢t; € I'y UT'g. If ¢; € I'y, then, as in case (a),
one can replace f by the function ¢(t) = f(t1,t) depending only on ¢. In this case, the left and the
right-hand sides of (3.9.17) vanish. In the same way, if ¢; € I'y, then f can be replaced by the function
©(to) = f(to,t1) depending only on ty. Then the left- and right-hand sides of (3.9.17) also vanish.

Lemma 3.9.3 allows one to obtain the known Poincaré-Bertrand permutation relation (see [45]) for
two singular integrals on a smooth contour. This relation is given by the following assertion.

Theorem 3.9.3. If f(t1,t0,1) € C’“+0(F x ' x T'), then
dt (t1,t fty,to,t)dt
/ o [Jltot 2 f(t1,t1, 1) /dt/ 1 fo, )t (3.9.19)

to—tl t—to (to —t1) t—to)

for any point t1 from T.

Note that

/ (f(tl,to,t)dto _ gt ttr) — g(ta,t,t) (3.9.20)

to —t1)(t —to) t—1t ’
where the function
f(t1,to,t)dto

tlyt t2 to — to

belongs to C*TO(I" x T x T') due to Theorem 3.9.1.
Proof. Assign fO(ty,to,t) = f(t1,to,t) — f(t1,t,t) and fl(t1,to,t) = f(t1,t,t) — f(t,t,t). Then

f(tisto,t) = fO(tr,to, t) + f1(t1, b0, t) + f (¢, 1, 1). (3.9.21)
first, we prove the validity of the relation (3 9.14) for f7, i.e., the relation

/ dto [ 1t to.1) / Pttt =5y (3.9.22)
to—tl t—to (to — t1)(t — to)’
For brevity, let G =T xT’ ><1“, GY = {(ty,to,t) € G, t =to}, and G = {(t1,t9,t) € G, t = t1}. By the
condition, there exists v exceeding p such that f7/ belongs to C¥(G) and, obviously, vanishes on G7.
If there exists a neighborhood of the set G? such that the function f° vanishes in this neighborhood,
then the function f(tg,t) = fO(t1,t0,t)(t —to)~! belongs to C*(I' x I') and (3.9.21) follows from the
relation (3.9.17) of Lemma 3.9.3. In the same way, if there exists a neighborhood of the set G! such
that f! vanishes in this neighborhood, then the function f(to,t) = f!(t1,t0,t)(t — t1)~! belongs to
CH( xI') and (3.9.22) follows from the relation (3.9.16) of this lemma.

In the general case, due to Theorem 2.2.1, for any fixed p satisfying the inequality p < v1 < v there
exists a sequence of functions f;, from C"1(G), n = 1,2, ..., converging to f’ in the space C**(G) and
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such that each of these functions vanishes in a neighborhood of G7. Then, by virtue of Theorem 3.9.1,
one can pass to the limit as n — oo in the relation (3.9.22) applied to f;. To do this, one must
transform the left-hand side of the last relation (similarly to (3.9.20)) to the form

/ faltto, )dto_ galtr tth) — ghlte, ,t)
(to — t1)(t — to) t—ty

and apply Theorem 3.9.1 to the sequence {g3,}.

Thus, the theorem is proved for the functions f° and f!. Then, according to (3.9.21), one can
assume (without loss of generality) that the function f depends only on the variable t. Denoting this
function by ¢(t), we see that it remains to prove the relation

dt tydt dt
/ 0 /90( A 2o / dt/ 0 . (3.9.23)
to—t1 ) t—ty (to — t1)(t — to)

r T

Without loss of generality, I' can be assumed to be a simple contour. Indeed, let (in the general case)
the point ¢; belong to a connected component I'y of the contour I' and I'y = ' \ I'y. Then, for i # j,
the function f(tg,t) = p(t)(t —to) ™! belongs to CM(T; x I'j) and

dt dt
/ 0 / / dt/ 0 (3.9.24)
to—t1 t—to (to — t1)(t — to)
T,

due to Lemma 3.9.3(b). Since f(to,t) = o(t)(to — t1)~* belongs to C#(I'y x I'1), it also follows from
Lemma 3.9.3(a) that the relation (3.9.24) holds for i = j = 2.

Thus, let I" be a simple contour; without loss of generality, one can assume that it is counterclock-
wise oriented. In this case, due to Lemma 3.9.2, the function ¢ in (3.9.20) is equal to 7 and the
relation (3.9.23) takes the form

S(S¢) = . (3.9.25)

Let ¢(z) be an analytic function defined by the integral (3.9.13) and considered in a finite domain D
inside I'. Then, due to the Cauchy relation, we have the relation

_ ¢ (t)dt
¢<Z)_2m’ t—z "’ z€D.

r
Apply the relation (3.9.14) to the Cauchy-type integral with density ¢*. We obtain that ¢* =
(¢ +S¢™)/2. Substituting expression (3.9.14) with the upper sign in the last relation, we obtain the
relation (¢ + Sp) = (1 + 5)(¢ + Sp)/2. Tt is equivalent to (3.9.25), which completes the proof of the
theorem.

Let K(C#*0) denote the class of all singular operators of kind (3.9.9) with kernel k(tg,t) from
CFO( x T). Let Ko(CHt0) be its subclass selected by the condition k(¢,¢) = 0. Operators of the
last class are defined by integrals with weak singularities and boundedly map C(T") to C*(T") (due to
Theorem 3.2.3). In particular, they are compact in the space C*(I"). If we additionally assume that
k € CHHHO(T x T), then, by virtue of the differentiation the relations (3.9.10)—(3.9.11), these operators
are also compact in CH#(T).

Obviously, if a function a from #*9(I) is treated as a multiplication operator ¢ — ay, then aS—Sa €
Ko(CHF0). The same arguing yields K — aS € Ko(C*T0) with respect to the function a(t) = k(t,t). It
immediately follows from Theorem 3.9.2 that the product of two operators K; and Ko from K(C#10)
can be represented in the form

K\ Ky =a+ Ky, KyeKo(Ct), (3.9.26)
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where a(t) = k1 (¢,t)ka(t,t). According to (3.9.20), the function ko(to,t) defining the operator Ky is
represented as follows:

1 [k
kO(tht):g(tl7t7t1)_g(tlat7t)7 g(t17t7t2): 7_‘_/ 1(
r
Thus, the class K(C#+0) is an algebra and Ko(C#*?) is contained in it and is its two-sided ideal.

If we apply notation (3.9.15) to the case where K1 = Ky = S, then the relation (3.9.26) passes to
the relation

t1,to)ka(to, t)dto
to — to

S?2 =1+ Ky, Ko=xS—5Sx. (3.9.27)

In particular, according to the remark to Lemma 3.9.2, we have the relation S? = 1 in the case where
the contour I' is the boundary of the domain D and is positively oriented with respect to this domain.

It follows from Lemma 3.9.3(a) that the operator K admits an associate operator K’ with respect
to the bilinear form

o) = [ el
r
it has the same type in the sense of the definition from Sec. 1.3, i.e., in the sense of the identity
(Sp,1v) = —(p, S1), and this operator is determined by the function &'(tg,t) = —k(¢, o).

3.10. Weight C*-Estimates of Cauchy-Type Integrals
Consider the generalized Cauchy-type integral

o) = [ Qe - 2ot ¢, (310.1)
r
and the Cauchy-type integral (i.e., its special case)

6(z) = / Qi — 2 dt)p(t), 2¢T, (3.10.2)
r

on a piecewise-smooth curve I' such that the terminology introduced in Sec. 2.5 is preserved with
respect to it. Let F' be a finite set of points containing all boundary points of the curve and the infinity
point co. Let F' apart from the infinity point be contained in I'. Thus, any connected component of
the set I'\ F' is either a simple smooth contour or an open smooth (connected or disconnected) arc.
If the curve I' is unbounded, then it is treated as a piecewise-smooth curve on the Riemann sphere
C = CU oo and it contains the point co. If a linear-fractional transformation maps I' to a bounded
curve, then the latter is piecewise smooth in the classical sense. If oo € D \ T', then the curve I is
bounded and the set D is a neighborhood of co.
Similarly to Sec. 2.5, the curve I' can be represented in the form

P\F=ToUl'1U...UL\, (3.10.3)

where I'g is a smooth contour (in general, it is a composite one), fj are open smooth arcs, and all
these curves are mutually disjoint. .

Recall (see Sec. 2.5) that the open smooth arc I'; is given by a parametrization v; from C'[0, 1]; on
the semi-open intervals (0, 1] and [0, 1), it is a one-to-one map and 7;(s) # 0, 0 < s < 1. By definition,
the notation fj € CY means that v; € C1¥[0,1]. This condition can be weakened. We know from

Sec. 2.10 that Theorem 2.10.2 implies that the classes C1¥[0,1] and C’(ll"jru)([O, 1];0,1) coincide (and

their norms are equivalent) and the following embeddings of Banach spaces take place:

Oty ([0,11;0,1) € G (0,1];0,1) € C15,([0,1);0,1), 0<e<w.
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This is the reason to describe the class C” . of smooth open arcs fj with respect to their parametriza-

(1+0)
tion as follows: we use the condition ~; € C’(ll'jr 5)([0, 1];0,1), where € > 0. It is clear that this class
contains C¥ and is contained in the general class C110 of open Lyapunov arcs.

For any 7 from F, let B;(p) denote the disk {|z — 7| < p} for 7 # oo and the exterior of the disk
{|z| = 1/p} for 7 = co. If p is sufficiently small, then the intersection of I with B,(p), 7 € T, is
decomposed into a finite set of n, smooth arcs with a common endpoint 7, i.e.,

nr
T'NB-(p) = JT-, (3.10.4)
j=1

where smooth arcs I'; ; are pairwise intersected at the point 7. Note that the sum of all numbers n,
coincides with 2m.

Select a small p in (3.10.4) to ensure that all arcs I'; j, 1 < j < n,, are radial arcs with respect to
the endpoint 7. Then they are defined by the radial parametrizations

Z'fﬂ','(r)
Vrj(1) = {re TR e p- (3.10.5)

rleifri() 1 = oo,

As we know from Sec. 2.10, the condition fj € OY 1 < j < m, can be expressed (in terms of functions

f-;) as follows: f;; € C’(l;)’([O, p],0). This is equivalent to the condition f, ;(r) — 6, € C"" ([0, p],0),

where 0, ; = lim f; j(r) as r — 0. By virtue of Theorem 2.10.2, this condition is equivalent to the
1,v

(1+0) means

belonging of the derivative f%j to C,}fl([O, p],0). In the same way, the condition fj eC

that f.; € C(IJ’FVO)([O,p], 0), i.e., there exists a positive ¢ such that f;; € C’(IE’;/([O,p], 0).

Consider the integrals (3.10.1) and (3.10.2) under the assumption that the generalized Cauchy kernel
Q(t;€) (and, respectively, the Cauchy kernel Q(¢;€,7)) belongs to the class Cp (m) (', F') introduced
in Sec. 3.1, while the density ¢ belongs to C{(I', F'), where the weight order satisfies the condition
—1 < A<0,ie, =1 < A <0, 7 € F. This condition guarantees the summability of the function
Q(t;t — 2)p(t) on the curve I regardless its boundedness or unboundedness.

It is clear that the function is infinitely differentiable outside I'. If the curve I' is bounded, then the
following estimates hold in a boundary of oo:

6(2)] < Clzlh, 19/ (2)] < Ol 7%, (3.10.6)

Thus, ¢ belongs to the class CE’II(G, 00), where G = B,(00).

In a neighborhood of the compact set K C I' \ F, its behavior is described by Theorems 3.6.1,
3.7.1, and 3.8.1 for the cases (3.10.1) and (3.10.2) respectively. In particular, the function ¢ admits
one-sided boundary values ¢* from C*(K) satisfying the relation (3.8.3) with coefficient o defined by
the relations (3.8.2) or (3.8.15), respectively. Let us verify that this coefficient belongs to the same
class as the kernel Q). For definiteness, consider the case of the Cauchy kernel.

Lemma 3.10.1. If a Cauchy kernel @Q belongs to Cg(o)(F,F), then the function o defined by the
relation (3.8.15) belongs to the class C§ (L', F).

Proof. 1t suffices to prove the lemma in the case where I' is a bounded curve. Otherwise, it suffices to
use the linear-fractional substitution mapping I' to a bounded curve (see Sec. 2.5). Thus, let I" be a
bounded curve. Then, by virtue of Lemma 2.8.1, the multiplication operator ¢ — p, ¢ maps the space
C§ (L', F') onto the class of functions belonging to C¥(I') and vanishing for 7 € F.

If the kernel Q(¢; &, n) is represented as Q1(t, £)n1 +Q2(t, £)n2, then the obtained fact means that the

functions Q;(t,£) = pu(t)Q;(t,§) of variable t possess the specified property uniformly with respect
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to |¢| = 1. Therefore, a similar property holds for the function
~ 1 [~
5(0) = , [ Qt&.46)
T

Hence, o = p_,,0 belongs to Cy (I, F).

The main concern of this section is to investigate the behavior of ¢ near points 7 from F. This

behavior is described in terms of the space C§ (IA), F') introduced (with respect to weight spaces) in
Sec. 2.8. Here D is the open set C\ T

Theorem 3.10.1.

(a) Let a Cauchy kernel Q(t;&,n) be defined on a piecewise-smooth curve I' and belong to Cg(l)(F, F).
Let ¢ € CY(I',F), =1 < X < 0. Then the function ¢ defined by the Cauchy-type integral (3.10.2)

belongs to the class C;\‘(IA), F), D =C\T, and satisfies the norm estimate
[Pley < ClQl o el

The boundary values ¢p= of this function are linked by the relation (3.7.6) with the corresponding
singular integral ¢* over I. ‘
(b) Let the smooth contour I'g and the open smooth arcs I'; from the expansion (3.10.3) belong to

the classes C and C(liljro) respectively. Let a generalized Cauchy kernel Q belong to C’g@) (T, F).

Then assertion (a) also holds for the integral (3.10.1).

Proof. (a) First, we assume that the function ¢ is identically equal to zero in a neighborhood of
F. Then, it is obvious that there exists a neighborhood of F' such that the function ¢ is infinitely
differentiable in this neighborhood. On the other hand, if a domain Dy from D is bounded by a
piecewise-smooth contour and lies outside a neighborhood of the set F', then, due to Theorem 3.8.1, the
function ¢ belongs to C*(Dy) and satisfies the corresponding estimate of its norm. If co € D\ T, then
this function also satisfies the estimate (3.10.6), which means that it belongs to the class 09’11 (G, 00),
where G = B,(c0). Since A > —1 (by condition), it follows that the said class is contained in
C} _(G,00). Thus, the function ¢ belongs to C’ﬁf(f),F)

It follows from above considerations that it suffices to prove the theorem in the case where the
support of ¢ is contained in one of radial arcs I'; ; from (3.10.3) and the function ¢ is identically equal
to zero in a neighborhood of the second endpoint of this arc (i.e., the endpoint different from 7). It
is obvious that it suffices to consider only the cases where 7 = 0 and 7 = oco. It is convenient to join
both these cases, selecting a radial smooth arc with endpoints 7 = 0 and 7 = oo as I and assuming
that the weight order A of the function ¢ from C{(I';0,00) does not depend on T, i.e., is real. Let
I be another arc of the same type decomposing the domain D = C \ T" into subdomains Dy and Do
bounded (on the Riemann sphere) by a piecewise-smooth contour I' UT”. Due to the definition of the
class C¥ (E,F ), it suffices to prove (by means of decompositions into subdomains) the claim of the
theorem for the domain D;. We redenote it by D again.

According to Sec. 2.5, any radial parametrization of the arc I is given by a function

(r) =re . 0<r < oo, (3.10.7)

where f(r) is a real function continuously differentiable on the interval (0, c0), admitting finite limits
at its endpoints, and such that
lim rf'(r) = lim rf'(r) = 0. (3.10.8)
r—0

r—00
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Due to the definition form Sec. 2.8, the weight multiplication operator ¢g(t) — [t|*¢o(t) isomorphically
maps C} to C{'. Therefore, passing to redefinitions, it suffices to prove the theorem for the function

o(z) = |z|_’\/|t|’\Q(t;t— 2 dt)p(t), zeD, (3.10.9)
r
in the space C4'(D;0,c0).
The homothetic transformation ¢ — 277¢, j = 0,%1,..., maps I' onto the arc 277I" of the same
type. This is a radial arc and, similarly to (3.10.7), it is described by the equation
vi(r) = rei 0 <r < oo, (3.10.10)

where the function f;(r) = f(2/r) satisfies the relation (3.10.8) as well as f. Under this homothetic
transformation, the relation (3.10.9) passes to the relation

p(22) = |2| / [trQ(2It;t — 2, dt)p(27t), z€27D, (3.10.11)
2-iT
Assign ' '
. — J (9]
Siy(t) s0(2’t), te F]_‘ @) N{1/4 < [t] < 4}, (3.10.12)
@i(t) =(2't),  te (277D)\Ty.
Then B
(272) = ¢;(2) + ¢j(2), z€D;=(277D)n{1/2 < |z| <2}, (3.10.13)

where ¢; is determined by means of the integration over I'j.

From Definition (3.10.12), we see that the arc I'; is defined by the parametrization ¢ = retfir,
1/4 <r < 4. By the definition of radial arcs, the function f(r) tends to 6y as r — 0 and tends to 6; as
r — 00. Combining f}(r) = 297 f(27r) and (3.10.8), we conclude that the sequence of functions f;(r)
converges (in the norm of the space C''[1/4,4]) to the constant function 6y, 1/4 <r <4, as r — —o0
and to the constant function 61, 1/4 < r < 4, as » — 4o00. In other words, the sequence of arcs I';
converges (in the class C’l) as j — xoo to the corresponding constant segments.

Let us prove that the functions

6 =™ [ Q@i - s ey, ze D,
279\
satisfy the estimate
\%\CH(DJ-) < C|Q\Cg<1>|90|0, (3.10.14)

where |p|o denotes the sup-norm of the function ¢, and this estimate is uniform with respect to
7=0,%+1,... ‘
Using parametrization (3.10.10) of the arc 277I", we obtain the inequality

/4 oo
5 < P@lggolelo | [+ [ | Phu) =27 pylar. =€ b,
0 4

Since |v;| = 1+ r|fi(r) < M, where M is the sup-norm of the function 1+ r[f(r),

1/4, 0<r<1/4,
r—2, r>4,

[y (1) — 2 > {

and —1 < A < 0, it follows that N
@510 < Col@l oo [¢lo-
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In the same way, differentiating the function QNSJ(z) under the integral sign, we obtain the inequality
|#5lo < C1l@lcom ¢lo-
Combining it with the previous estimate, we see that
|¢j|C’1(Dj) < C|Q|Cg(1)|90|07 k= Ovj:lva (31015)

it is obvious that the sequence of the domains D; in (3.10.13) converges as j — oo and the limit
domain is bounded by arcs of the circles |z| = 1/2 and |z| = 2 and the segments of the corresponding
rays with vertex at the origin, confined between these arcs. It is clear that there exists a positive
constant M from (1,+o00) such that all these domains are M-uniformly connected. Hence, due to
Theorem 2.2.2, the estimate

‘¢|CM(DJ-) < C‘¢|01(Dj)7 j=0,%1,...,

holds and is uniform with respect to j. Combining this with (3.10.15), we obtain that (3.10.14).
Theorem 3.8.1 can be applied to the sequence of functions

0,() = 1o [ 100, t5t — 2.ty (0. =€ D,
Ly

with the Cauchy kernel Q;(¢; €, 1) = Q(27t; £, 7). Obviously, the conditions of Lemma 3.6.2 are satisfied
in this case. Therefore, the function ¢; belongs to C*(D;) and satisfies the estimate

|95lcnp,) < ClQjlcvmn|@jlemr,)

uniform with respect to j.
By virtue of Theorem 2.7.1 applied to the spaces C{'(I';0,00) and Cg(l)(F;O,oo), this yields the
inequality

|b5lcn(ny) < Cl@lgrmleley- (3.10.16)

Taking into account (3.10.14), we see that the sequence ¢(27z) = ¢;(z) + ¢j(z), 2 € Dy, defined
by (3.10.13) also satisfies the above estimate. Hence, it remains to use Theorem 2.7.1 for the space
CH(D;0,00).

(b) This assertion is proved in the same way as assertion (a). As above, it suffices to consider the
case of a radial arc I" with parametrization (3.10.7). Then, by the condition, there exists a positive e

such that the functions f(r) and f(1/r) belong to the class C’(la’;’([O, 2],0). In other words,

)00+ 1r°go(r), pon ) rho(r), 0<r <2,
f(r) = {91 gy (r), rf'(r) = {T‘Ehl(r), >, (3.10.17)

where gy € C§([0,2],0), ho € C§([0,2],0), g1 € C§(]2,00],00), and h; € C§([2,00],00). Assigning

i)y =f@2"),  ffr)=6, 2<r<4,
fo(r)=f@27"r),  f(r)=6, 1/2<r<2
where n = 1,2, ..., and taking into account Theorem 2.7.1, we conclude that the sequence of functions

f.F (f7) converges to a constant function f* (f~) in the norm of the space C*¥[2,4] (C1¥[1/2,2])
as n — oo. Therefore, the conditions of Lemma 3.6.2 are satisfied for the generalized Cauchy-type
integral, and the remaining argument is not changed.

Theorem 3.10.1 can be complemented by a similar result for the space 0)1\7” (ﬁ, F).
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Theorem 3.10.2. Let the smooth contour I'g and the open smooth arcs fj from the expansion (3.10.3)

belong to the classes C1Y and C(liljro) respectively. Let a generalized Cauchy kernel Q(t;&,n) belong to

Co"®N(T,F). Let p € CI*(T,F), =1 < A < 0.
Then the function ¢ defined by the integral (3.10.2) belongs to the class C’)l\’”(D,F) and its morm
satisfies the estimate

Blre < ClQIgrvw ol (3.10.18)

Proof. Taking into account Theorem 3.8.2, one can consider only the case where I is a radial arc with
parametrization (3.10.7) (cf. the proof of Theorem 3.10.1(a)). Then, by the condition of the theorem,
the function f(r) is described by (3.10.17), where go,ho € C§([0,2],0) and ¢1,h1 € C§([2, 0], 00).
Assume that a domain D is bounded by two radial arcs I" and I with common endpoints 7 = 0 and
7 = 0o and a function ¢ belongs to C’;”(I’,F), AER, -1 <A<

Further, we must deduce a weight differentiation relation since Lemma 3.8.2 is not applicable in the
considered case. To do this, we represent the relation (3.8.21) in the form

2990y = - /(z 099t s aneny — [ 99
T

— t:t — z,dt)tp(t), z€D. 3.10.19
e b /36, Jto(t) (310.19)

Take the last integral from the right-hand side of the last relation, change the integration domain for
the arc T C I' with endpoints a = y(g) and b = (¢ !), and apply the relation (3.8.22) to it; this
yields

oQ

o (t;t — z,dt)tp(t) = Q;(b;b — 2)bp(b) — Qj(a;a — z)ap(a)

_ [ 99

o (it = Ot [ Qultit = lep®)ant, =12
Ie

Ie

If 2 is fixed, then the function Q;(t,t — 2)tp(t) on I' is O(1)[t[*** as t — 0 and O(1)|t|* as t — oo.
Therefore, the integrated terms of this relation tend to zero as € — 0. Passing to the limit as € — 0
and substituting the obtained relation to (3.10.19), we obtain that

z;i (=) = / (t—2>g?j (£t = z,dt)p(t) + / 88; (£t = 2)tp(t)drt + / Qj(t:t — 2)[tep(t)] dat.
r T 7

Since t' = e(t), it follows that this relation can be represented in the form

Zggi (2) = F/Q(j)(t;t—z)so(t)dltJrl/Qj(t;t—z)w’(t)dlt, (3.10.20)

where

0 0 0Q;
(e =¢ | 5" e ealt) +1°

It is obvious that the function Q;)(t,€) is even with respect to the variable £ and is homogeneous of
power —1, i.e., is a generalized Cauchy kernel. Since e(t) € CE’JFO)(F; 0,00), it follows that @ ;) belongs

(t,&)ex(t) + (t,€) + Q;(t, Ee(t).

to the class C’g (2)(F; 0,00) with respect to the variable ¢ and satisfies the corresponding estimate

1Quj)lcve < ClQ|cv -

Therefore, combining Theorem 3.10.1(b) applied to the integral on the right-hand side of (3.10.20)
with Theorem 3.10.1(b), we obtain the validity of the estimate (3.10.18).
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3.11. Weight C*-Estimates of Singular Integrals

In a domain D C C bounded by a piecewise-smooth contour I', consider the singular integral

P(z) = /Q(t;t — 2)p(t)dat, z€ D, (3.11.1)
D

such that Q(t,¢) is homogeneous of power —2 with respect to the variable £ and satisfies the condi-
tion (3.4.2) inside the domain D. Let F' be a finite set of points of D containing all boundary points
of the curve. As above, the infinite point oo is assumed to belong to F' if the domain D is unbounded
(if the curve I" is bounded, then the domain D is a neighborhood of this point). Since I" is a contour,
it follows that the number n, = 2 in (3.10.4) is equal to 2 for any 7 from F'NI'. Hence, radial arcs
I';1 and I'; » decompose B,(7) into two domains S-1 and S; 2 called curvilinear sectors with vertex
7 (including the case where 7 = o0). The openings of these sectors are called the internal angles of
the domain D. Note that the internal angle of this domain at the curve cusp is equal to 0 or to 2.

If the disk B,(7) is considered for a finite point 7 of D, then p is selected to be sufficiently small
to ensure that the disk does not intersect I'. The same refers to the infinity point 7 = oo for the
case where D is its neighborhood. For any such domain there exist two rectilinear cuts I'x 1 and I'; 5
decomposing B,(7) into two sectors.

It is assumed that the kernel Q(¢; ) belongs to the class 05(2)(D, F) introduced in Sec. 3.1, while
the density ¢ belongs to CY(D, F), where the weight order satisfies the condition —2 < X\ < 0, i..,
—2 < A; <0, 7 € F. This condition guarantees the summability of the function Q(t;t — z)p(t) in the
domain D outside any neighborhood of F' regardless of the boundedness or unboundedness of D.

Theorem 3.11.1. Let a domain D be bounded by a piecewise-smooth contour I' and have no cusps.
Let the smooth contour I'g and the open smooth arcs I'; of the expansion (3.10.3) belong to the classes

CY and C(lfio) respectively. Let a kernel Q(t;&) belong to Cg@)(D,F), be homogeneous of power
—2 with respect to the wvariable &, satisfy the condition (3.4.2) inside the domain, and satisfy the
condition (3.5.1) at its boundary. Let ¢ € CY(D,F), =2 <X <0.

Then the function ¢ defined by the integral (3.11.1) belongs to the class C§(D,F) and its norm

satisfies the estimate
[Ylon < ClQl v |plcn- (3.11.2)
0

Proof. We use the same scheme of the proof as for Theorem 3.10.1. The only difference is that we
apply Theorem 3.5.1 and Lemma 3.5.1 for two-dimensional singular integrals.

First, we assume that the function ¢ is identically equal to zero in a neighborhood of F. Then it
is obvious that there exists a neighborhood of F' such that the function v is infinitely differentiable
in this neighborhood. If D is a neighborhood of oo, then it admits the following estimates (similar to
(3.10.6)) in D:

[W(2)| < Cl2| 72, [W'(2)] < Cl2| 72
They hold since the kernel Q(¢,&) belongs to H_o with respect to the variable £. These estimates
show that ¢ belongs to the class Cg’Ql(G, 00) in the domain G = B,(c0); by virtue of the inequality
Aoo > —2, this class is contained in C§ (G, 00).

On the other hand, if the domain Dy C D is bounded by a piecewise-smooth contour and lies outside
a neighborhood of the set F', then, by virtue of Theorem 3.4.1, the function ¢ belongs to C*(Dy) and
its norm satisfies the corresponding estimate. Hence, 1 belongs to the class C’“(ﬁ, F) and its norm
satisfies the corresponding estimate.

Thus, it suffices to prove the theorem under the assumption that the support of the function ¢
is contained in one of curvilinear sectors S:; and the function ¢ is identically equal to zero in a
neighborhood of the boundary arc of this sector. As in Sec. 3.10, it suffices to consider the two cases
of the sectors with vertexes 7 = 0 and 7 = co. It is convenient to join both these cases, assigning D
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to be the domain bounded by two radial smooth arcs I'V and I'' with endpoints 7 = 0 and 7 = 0o
and assuming that the weight order A of the function ¢ from Cf'(I';0,00) does not depend on T, i.e.,
real. For the arcs I'*, we have parametrizations (3.10.7) with functions f = f* k = 0, 1, satisfying the
conditions (3.10.8). As in the proof of Theorem 3.10.1(b), an expansion similar to (3.10.17) is valid
for these functions, where gy = g§ and hy = h§ belong to C¥([0,2],0), while gy = g¥ and hy = h}
belong to C§([1/2, 00], 00).

Redenoting, we see that it suffices to prove the estimate (3.11.2) for the function

b(z) = |2 / QU — 2)plt)dst, = € D,
D

with respect to the space Cf. Represent this relation in the form

W(22) = |2 / 1PQ2It t — 2)p(2t)dst, 2 € 279D, (3.11.3)
2=3iD
where j = 0,+£1,... Assuming that
pi(t) = p(2’t), teD;=(@277D)n{1/4<t| <4},
pi(t) = 9(2t), te(277D)\ Dy,
consider the sequence of functions
W(272) = 0j(2) + 95(2), zeD?=(27D)n{1/2 < 2| < 2}, (3.11.4)

where 1; depending on D; is defined by the integral (3.11.3).

Note that the domain D; is surrounded by the two arcs (277T%) N {1/4 < |t| < 4}, k = 0,1,
and the corresponding two arcs of the circles {|t| = 1/4} and {|t| = 4}. Similarly to the proof of
Theorem 3.10.1(b), we verify that the arc sequence F? converges to the corresponding line segments
I} in the class C" as j — 4oo. Since the internal angles of the domain D are different from 0 and
27 (by condition), it follows that the segments I and I} are different; joining them with arcs of the
specified circles, we obtain the piecewise-smooth contour of the limit domain D.

The functions

Bi(z) = |2 [+ [ et e@na se D)
(-ID){ltl<1/4} (2T D)N{jt>4}

satisfy the obvious inequality

@< Qlgolell™ | [+ [ 1= sdn 2e D).

[t|<1/4  |¢t|>4

A similar inequality also holds for partial derivatives of the function Jj. Arguing as in the proof of
Theorem 3.10.1, we arrive at the following estimate similar to (3.10.14) and uniform with respect to j:

|Jj|CH(D]-) < O|Q|Cg(1)|90|o, J=0,%1,.... (3.11.5)

Theorem 3.5.1 and Lemma 3.5.1 are applicable to the function sequence

i) = [ / tPQy(t:t — 2)p(2it)dt, =€ DY,
D;
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with kernel Q;(t; &) = Q(27t;€), which leads to the following estimate uniform with respect to j:
|¢j|CH(D;?) < ClQjlov l¢jlon(p;)- (3.11.6)

Combining this estimate with (3.11.5), we obtain a similar estimate for the function (27z) =
Yi(z) + Yi(z), z € D?, from (3.11.4). As in Sec. 3.10, by virtue of Theorem 2.7.1, this implies
the estimate (3.11.2) of the theorem.

As in Sec. 3.5, apply Theorem 3.11.1 to the following integral with a weak singularity:

/QO (t;t — 2)p(t)dot, ze€ D. (3.11.7)

It is assumed that its kernel Q(¢, &) is a homogeneous function of power —1 and the density ¢ belongs
to Cf\L (D, F), where the weight order satisfies the previous condition —2 < A\ < 0 and the additional
condition A\; < —1 provided that 7 = co. This additional condition guarantees the summability of the
function Q°(t,t — 2)¢(t) in the domain D.

Relation (3.5.27) also remains valid in the case considered. Indeed, for any fixed point a from
D\ F, the function ¢ can be represented by the sum of two terms such that one of them is identically
equal to zero in a sufficiently small neighborhood of this point. The integral defined by this term is
differentiable under the integral sign, while the relation (3.5.27) is applicable to the second term.

Note that the coefficient
- / £Q° (@, €)de
Q

of this relation belongs to the class C¥(D, F) under the assumption that Q¥ € C’g (1)(D, F); this is
proved in the same way as Lemma 3.10.1. Therefore, as in Lemma 3.5, the relation (3.5.27) combined
with Theorem 3.11.1 and Theorem 2.10.2 leads to the following result.

Theorem 3.11.2. Let a domain D and its boundary contour I' = 0D satisfy the conditions of The-
orem 3.11.1 and a kernel Q°(t; &) belong to CV(S)( F), be homogeneous of power —1 with respect to
the variable £, and satisfy the condition (3.5.1) at the boundary points t from T\ F. Let p € CY(D, F),
where the weight order satisﬁes the conditions —2 < Ar < 0 and A # —1 if T # 0o and satisfies the
mequality —2 < Ay < =1 if 7 =

Then the function vy defined by the integral (3.11.7) belongs to the class C’()\H)(D, F) and its norm
satisfies the estimate

W'C(liil) < ClQol v [ley-
Remark to Theorem 3.5.3 also remains valid in the case considered, i.e., if the kernel Q°(y, &) is odd

with respect to the variable £, then the condition (3.5.1) is satisfied for its partial derivatives 0Q/9¢;.
The singular Cauchy integral

t() /Q to,dt ( ), to e, (3.11.8)

on a piecewise-smooth curve I' can be considered in the same way. However, it is easier to use
Theorems 3.10.1-3.10.2 and the boundary-value relation

#(t0) = £olt)plte) + lto), olto) =, [ Qltosé.de), (3119
T

for the corresponding Cauchy-type integral given by (3.10.2). Recall that T denotes the unit circle
oriented counterclockwise. Obviously, if the Cauchy kernel belongs to C’g (1)(F, F), then the coefficient
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o from this relation belongs to the class C§(I', F)). In the same way, the function o belongs to

Cé (T, F) under the assumptions of Theorem 3.10.2.
Therefore, Theorems 3.10.1-3.10.2 lead to the following result.

Theorem 3.11.3. Let a Cauchy kernel Q(t;€,n) be defined on a piecewise-smooth curve I' and be-
long to Cg(l)(F,F). Let ¢ belong to C{(T',F), =1 < X < 0. Then the function ¢ defined by the
integral (3.11.8) belongs to the class C§'(T', F) and its norm satisfies the estimate

Wloy < Ol leley-

If the above holds, the smooth contour I'g and the open smooth arcs fj of the expansion (3.10.3)

belong to the classes CYY and C(llio

to CS’V@) (T', F'), then the same assertion holds for the space C’;\’“(F,F).

For the classical Cauchy kernel Q(§,n) = n/&, this classical result is presented in [45] (the Holder
exponent is not refined there). In [8, 9], a refined case is provided.

) respectively, and the generalized Cauchy kernel Q(t;&,n) belongs

CHAPTER 4
LEBESGUE SPACES

4.1. Spaces L? and L%

Let G be a measurable (with respect to the classical Lebesgue measure) subset of R*. Let LP(G),
1 < p < o0, be the class of all functions ¢(y), y € G, such that their pth power is summable. For
p = 1, it coincides with the class L = L' of all functions summable on G. To any function ¢ from L?,

assign the nonnegative number
1/p

ol = / p(o)Pdz | . (4.1.1)
G

It is obvious that |¢| = 0 if and only if p(z) = 0 a.e. in G. In the sequel, we identify functions that
differ on a zero-measure set.

Let L>(G) be the set of measurable functions bounded outside a zero-measure set. In the sequel,
we use only its subspace C°(G) of continuous and bounded functions, endowed with the sup-norm
(see Sec. 2.2).

To any exponent p exceeding 1, assign any exponent g exceeding 1 as follows: 1/¢ = 1 —1/p; we
say that g is conjugate to p. The product ¢ of a function ¢ from LP and a function ¢ from L9 is
summable on G, and the following Hoélder inequality holds:

ol < |l [t La. (4.1.2)

Using this inequality, one can easily verify that the relation (4.1.1) defines a norm in the space L
(recall that we identify functions that differ on a zero-measure set). Actually, the proof of the fact that
|| is a norm requires only the triangle inequality |p1 + @o| < |@1| + [t01]; in this case, this inequality
is called the Minkowski inequality.

Theorem (Riesz—Fisher). The space LP is complete with respect to norm (4.1.1).

The space LP(G) possesses the following well-known properties presented at standard courses of
analysis. If the Lebesgue norm mesG of a set G is finite, then the function ¢(z) = 1 belongs to
LP(@G) for any p. Taking into account (4.1.2), this implies that the Banach space LP?(G) is embedded
in LP*(G) provided that 1 < p; < po. In other words, if mesG < oo, then the family of Banach

844



spaces LP(G) monotonously decreases (in the embedding sense) with respect to the parameter p from
(1, +00).
From the Hélder inequality, it immediately follows that the bilinear form

(0, 1) = / p(@)p(z)d (4.1.3)

G

is bounded on the direct product LP x LY for any p exceeding 1 and the relation

ol Lr = sup(ep, 1), (4.1.4)

where sup is taken over all functions ¢ from L? such that |¢|r« < 1, holds. The inverse assertion is
also valid: for any linear functional f* from (LP)* there exists ¢ from L? such that f*(¢) = (¢,v) for
any . In other words, the Banach space LP, p > 1, is reflexive (see Sec. 1.2) and its adjoint space can
be identified with L9.

We say that a sequence {¢,} from LP weakly converges if there exists a function ¢ from LP such
that (¢n, ) = (p,1) as n — oo for any ¢ from L9.

Theorem (on weak convergence, Banach). Sequences weakly converging in LP, p > 1, are bounded.
Conwversely, any sequence bounded in LP contains a weakly converging subsequence.

This theorem combines the following two known theorems of functional analysis. By virtue of the
reflexivity of LP, it can be treated as the adjoint space X* for X = L?. Then any weakly converging
sequence ¢, is a sequence of functionals ¢, from X* such that ¢, (x) converges for any x from X. In
particular, any number sequence ¢, () is bounded for any x and, due to the known Banach—Steinhaus
theorem, the sequence ¢, is bounded in X*. The second assertion of the theorem follows from the
general Banach—Alaoglu theorem on the weak *-compactness of the unit ball in X™.

The space LP(D) is homogeneous with respect to the group of translations z — x+a. On the other
hand, the measure dt/|t|* is invariant with respect to extensions  — rz, r > 0, in R¥. Therefore,
similarly to Sec. 2.7, it is convenient to introduce the homogeneous space L (G) as the LP-space with
respect to this measure and define the following norm in it:

1/p

el = | [le@r 5] (115)
G

Similarly to Sec. 2.7, this definition has meaning only in the case where 7 = 0 or oo is a limit point
for G. If the set G is bounded and lies outside a neighborhood of the origin, then the space L§(G)
coincides with LP(G).

Note that the Holder inequality holds for LP-spaces with respect to any measure; in particular, the
inequality

[l < ol el (4.1.6)

holds.

The following assertion is an analog of Theorems 2.7.1-2.7.2 for the space L} (G).

Theorem 4.1.1.

(a) Let 0<d<1and G ={6 < |y| <!, 0’y € G}, j =0,%1,... Then the space LH(G,F) can be
defined by an equivalent norm

1/p

el = | D leillne,y |+ wiw) =0y (4.1.7)

J
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(b) Let a set G C R x Q be the image of G under the map © — (In|z|,z/|z|) inverse to the map
w(s,u) = e*u, u € R*. Then the operator ¢ — 1 ow isomorphically maps the Banach space Lp(é)
to LY(G). In particular, the operator p(z) — ¢(x*) defined by the inversion z* = z/|x|* is an
invertible operator from LE(D) to Lb(D*).

Proof. By virtue of the denumerable additivity of the integral, the relation (4.1.5) can be represented

in the form p
i Y
el =3 [ leup
7 s<lyl<1
For brevity, assign x; = |¢j|r»(q;)- This implies the inequality

212 L) < lplfy <2071 (ah oy +a),

J

which implies the equivalence of norms (4.1.5) and (4.1.7).

As in the case of Theorem 2.7.2, the latter assertion is proved by means of the former one. However,
it can also be proved directly since under the substitution w, the measure dz/|z|* passes to the direct
product dsdu of measures.

Similarly to Sec. 2.8, based on the spaces L? and L}, introduce weight spaces Lg(G , ) corresponding
to the weight order A\ = (Ar,7 € F). Thus, assigning B,(7) = {|ly — 7| < p}, 7 # 00, and B,(1) =
{ly| > p}, 7 = o0, where a positive p is sufficiently small, one can define this space by the finiteness
condition for the integrals

/ Iy - low)P, ¥ reF, / o) Pdy, (4.1.5)
G

ly =
GNBy(T)
where G = G\ U B,2(7) and |x — 7| is replaced by |x| for the case where 7 = oo.

To define these spaces directly, one can use the weight function py(z). Recall that it is given by the
relation

é -
r—T1|°(1+ |x , T # 00,
) =L on@n. psar) =0 TEOFREDT 77 (4.19)
reF (1+|33|) ) T = Q.
In this notation, the space LE(G,F) can be defined as the LP-space with respect to the measure
_i(z)dz. Respectively, the space L% (F, F) can be given by the equivalent norm

1/p

ol = / por@e@ Pop@)dz | = lp_rijelir. (4.1.10)

In particular, we have the relatlon
/ (D,F)=LP(D) (4.1.11)

and the corresponding norms are equivalent. This is the analog of Lemma 2.7.1 for LP-spaces.
In general, the most frequent notation for weight spaces is as follows:

/(T ps) = {p, po € LP(T)}. (4.1.12)
By virtue of (4.1.11), this space coincides with L” 1p— 5(F,F ). Due to various reasons, we prefer

notation L (see the remark at the end of Sec. 4.6).

As in Sec. 2.8, the choice of the weight function (4.1.9) is convenient since it is also acceptable for
the case where F' contains points 7 lying outside G. In this case, L (G, F) coincides with LX (G, Fp),
where Fy = FNG. If the set G is bounded, then, e.g., px(x) =[] |z — 7| can be taken as the weight

T

function.
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Consider relations between weight spaces and the parameters p and A;.

Lemma 4.1.1. The family LX (G, F) monotonously decreases (in the sense of embeddings of Banach
spaces) with respect to each parameter Ay for T # oo and decreases with respect to Aoo. Assume that
p >q. Then LY C LY, provided that Ar > X if T is finite and \r < X if T = c0. If =k < X\ <0, then
the space LX (G, F) is embedded in L*(G).

Proof. According to the definition of weighted spaces LX (G, F'), it suffices to consider the two following
cases of I (Bj,7;), j = 1,2: the case where By = {|z| < 1} and 71 = 0 and the case where By =
{|z| > 1} and 79 = oo. For definiteness, consider the former one. In this case, the first assertion of the
theorem is reduced to the obvious embedding LA (B,0) C L{(B,0), A > 0, while the remaining two
assertions are reduced to the embeddings

IX(B,0) C LY(B,0), A >0, I5(B,0)C LYB), -k <\<0,
easily proved by means of the inequality (4.1.6).

Finally, we consider the one-dimensional case (kK = 1) of functions defined on the real line R.
Consider the classical singular Cauchy integral

W(to) = / P(t)dt

T t—1o
R

treated (as above) as the limit of integrals over the domain |t — tg| > ¢ as ¢ — 0. For functions ¢
from LP(R) and for p > 1, the last integrals have meaning by virtue of the Holder inequality and the
following result takes place.

The operator defined by the specified singular Cauchy integral is called the Hilbert transformation.

Theorem (Riesz). If ¢ € LP(R), p > 1, then the singular Cauchy integral exists for a.e. ty and the
estimate

U] < Clep|Le
holds.

The classical Riesz result can be complemented by LP-estimates of the so-called Hardy—Littlewood
mazimal functions (see, e.g., [74]).

Theorem (Hardy—Littlewood). Let a function ¢ belong to LP(R), p > 1, and have a compact support.
Then the upper bounds

1 t)dt
(Mop) (fo) = sup / o(t)]dt,  (Mig)(to) = sup / e (t) (4.1.13)
>0 2€ e>0 t— 1o
[t—to|<e to—t|>e

are finite for a.e. ty and they define LP-functions such their norms satisfy the estimate
|Mowlre + [Miplre < Clolir,
where C' is a positive constant independent of .
The following auxiliary assertion is also valid.
Lemma 4.1.2. Let f from L'(R) be a nonnegative function admitting the estimate

/ f(s)ds < Cr (4.1.14)

|s|<r
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for any positive r, where C is a positive constant independent of r. Then
S
T / f(z)ds < 3C.
S
[s|>r

If the above is satisfied and
lim / f(s (4.1.15)

r—07r
[s|<r

lim r / f(g)ds:
r—0 S

|s|=r

then

Proof. Assign

Integrating by parts, we see that

/ 1) g _/dg() —gg)+2/oog§§)ds. (4.1.16)

|s|>r T

Therefore, by virtue of (4.1.14), we have the inequality

/f ds < C +2Cr /ds

|s|>r
Further, let the condition (4.1.15) be satisfied. Assigning go(s) = g(s)/s, represent (4.1.16) as follows:
[ee]
s
74/]0(2 s = —go(r Jr2/90
s

|s|>r 1
By condition, go(s) < C and go(s) — 0 as s — 0. Therefore, due to the the Lebesgue majorized
convergence theorem, the right-hand side of (4.1.16) also tends to zero as r — 0.

4.2. Convolution of Functions

For functions f and g defined on R¥, one can introduce the notion of the convolution:

e /f v—y (4.2.1)

If both functions f and g belong to L = L'(R¥), then the integrand treated as a function of two
variables is summable on R* x R¥. It is easily verified by means of the following linear change of
variables: ' = z — ¥y, ¥ = y. From the same considerations, taking into account the Fubini theorem
from Sec. 1.8, we conclude that the integral (4.2.1) exists for a.e. x and defines a summable function

such that
JRE dm—/f )y [ 9wy (122)

R RF
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In (4.2.1), pass to the inequality

(f * 9)(@)] < / (&= )llg(v)ldy.
Rk

In (4.2.2), we replace the functions f and g by their absolute values. We obtain the following norm
estimate:

|f*gle < [fllgle- (4.2.3)

It is easy to see that the bilinear convolution operation is commutative and associative. Therefore,
by virtue of (4.2.3), the space L is a commutative Banach algebra such that the convolution is its
multiplication operation.

Also, the convolution operation is defined if one of the functions (e.g., f) is summable while the
other belongs to various classes.
Theorem 4.2.1.

(a) If o € LP, p > 1, then integral (4.2.1) exists for a.e. x and defines a function from LP satisfying
the estimate

|f* eloe <|flLlelrr (4.2.4)

for its morm.
(b) If o € C*, 0 < p < 1, then integral (4.2.1) exists for all x and defines a function from CH
satisfying the estimate

|f* plen < [flLlelon (4.2.5)
for its morm.

Proof. (a) By virtue of (4.2.3), it suffices to consider the case where p > 1. In the integrand of (4.2.1),
assign g = ¢ and represent this integrand as the product

[F@ =)o) = (1@ = 9)[Ple))|f (@ —y)[V.
By virtue of inequality (4.1.2), this implies the estimate

1/p

(Fro@l < | [15@-wllewld) 17"
Rk

Taking both parts to the power p, we obtain the estimate
(Fro@P < | [1r@-wllewl) i7"
RFK

Integrating and applying the estimate (4.2.3) with g = |p[P from L to the integral on the right-hand
side, we obtain the inequality

If * o2 < [ FlelelBlf 5.

Taking it to the power 1/p, we obtain (4.2.4).
(b) Represent the integral (4.2.1) in the form

(f % 0)(x) = / FW)o(e - y)dy.
RF

If the function ¢ belongs to CY, i.e., is continuous and bounded, then |f(y)p(z — )| < |olo|f(¥)|.
Therefore, due to Theorem 1.8.1 on integrals depending on parameters, the function fx* is continuous

849



and the estimate (4.2.5) holds with u = 0. From the same considerations, if ¢ € C*, 0 < p < 1, then,
in notation of (4.2.3), we have the inequality

|(f = 9)(@") = (f x ) (@) < |flLlplula’ — 2"]".
This inequality combined with the definition of the norm in C* from Sec. 2.1 leads to (4.2.5).

Estimates of Theorem 4.2.1 mean that the convolution operator R(f)p = f * ¢ is bounded in any
Banach space X = LP and X = C* and its norm does not exceed |f|L.
An example of the convolution operator is the operator T, = R(x.) with the averaging kernel

Loy
\y) = , 0<e<l, 4.2.6
X=(y) = X <€> e (4.2.6)
introduced in Sec. 1.8. Recall that x(y) is a nonnegative function from C§°(R¥) such that
x(y) =0 for [y| =1, / x(y)dy = 1. (4.2.7)
ly|<1

Lemmas 1.8.1 and 2.2.1 can be complemented by a similar result for the space LP(RF).

Lemma 4.2.1. If ¢ € LP(R¥), 1 < p < oo, then x. *x ¢ — @ in LP as ¢ — 0. In particular, for any
open subset D of R¥, the class C§°(D) is dense in LP(D).

Proof. Let ¢ € LP. Since the L-norms of all functions x. are equal to 1, it follows from (4.2.4) that the
convolution operators R(x:)® = Xxe * ¢ are bounded in £(LP) uniformly with respect to €. Therefore,
due to Lemma 1.2.1, it suffices to prove the claimed assertion for a subspace dense in LP. Let us take
the class of compactly supported continuous functions as such subspace. If a function ¢ belongs to
this class, then the supports of all x. * ¢ are contained in a ball independent of . Therefore, taking
into account Lemma 2.2.1, we conclude that the sequence y. * ¢ also tends to ¢ with respect to the
LP-norm as ¢ — 0.

To prove the second assertion of the lemma, select a sequence of compacts K1 C Ky ... in D such
that their union is equal to D. It is obvious that the sequence of functions ¢,, coinciding with ¢ on K,
and equal to zero outside K, converges to ¢ in the LP-norm. For any n there exists a positive &, such
that the e,-neighborhood of the compact set K, is contained in D and, therefore, the convolution
Xe * ¢, belongs to C§°(D) provided that € < ¢,,. Taking into account the fact that all norms |x.|z, are
equal to 1, we apply (4.2.4) to the difference x. * ¢, — p = Xe * (P — @) + Xe * @ — ¢ to obtain the
estimate

[Xe * @n —lLr < lon — @l + [xe * ¢ — @lLr.
It remains to note that one can make the right-hand side of this estimate arbitrarily small, selecting
appropriate n and €.

In the space (C§°) = (C°)(R¥) of generalized functions considered on R¥, the notion of the
convolution can also be introduced. Recall that its subspace of compactly supported generalized
functions is denoted by (C'*°)’. Similarly to (4.2.1), the convolution of a function u from (C§°)" with
a function ¢ from C§° is defined by the relation

(pxu)(z) = (ux*p)(z) = ulpz —1)]. (4.2.8)
By virtue of Lemma 1.8.3, the function u * ¢ is infinitely differentiable and
86330‘ (ux @) =ux <g;j> . (4.2.9)
It is easy to see that
(ux) =u’*p", u(@’) = (u*p)0), (4.2.10)

where ¢V (t)

= p(—t) and the operation ¢ — ¢" is extended from C{° to (C§°)" according to the
relation u" () = u(p"

(¢Y).
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Lemma 4.2.2. If ¢ coincides with the averaging kernel defined by (4.2.6), then u* x. — u as € — 0
in the sense of the convergence in the space (C§°)’.

Proof. By Definition (4.2.8), we have the relation

(s x:)o) = [ ulxeta ~ Dl
RF
Let K be the support of a function ¢ from CF°. Select a cut-off function f from C§° such that

f@)u[xe(x —t)] = u[xe(z — t)] for any t and any = from K. Then, due to the second assertion of
Lemma 1.8.3, the previous relation can be represented in the form

(wixe)o) =u | [ xelo— Op(o)is
RFE
It is obvious that the expression in the square brackets is the convolution (x:)Y * ¢ = (xe x ")V, Tt

remains to note that if ¢ € C§°, then the sequence ¢ * x. tends to ¢ as € — 0 in the sense of the
convergence in the class C§°.

The convolution u * ¢ = ¢ * u of a compactly supported generalized function u from (C*°)" and
an arbitrary function ¢ from C® is defined similarly to (4.2.9). This allows one to introduce the
operation uy * (ug * @), where at least two of three factors have compact supports. Using Lemma 4.2.2,
one can easily show that u; and us can be swapped; this allows one to introduce the convolution
u1 * ug = ug *x u1 of two generalized functions such that one of them has a compact support as follows:
(uy * ug) * ¢ = ug * (uz * ). Here, it is taken into account the fact that, by virtue of (4.2.10), the
convolution u * ¢ defines the generalized function u uniquely.

An example of a compactly supported generalized function is the J-function J, concentrated at a
point a from R* and acting as follows: ,(¢) = ¢(a). According to (4.2.8), the convolution with it is
expressed as follows:

(0q * ©)(x) = p(x — a). (4.2.11)
Thus, ¢ — J, * @ is a translation operator. Since the convolution is a commutative operator and, in
particular, u*d, = 0, *u, it follows that the convolution operator ¢ — u*¢ commutes with translation
operators.

Consider the convolution @ * ¢ with a function Q(&) from H_y, satisfying the necessary condition

/Q(mi)dk-lﬁ =0 (4.2.12)
Q

on the unit sphere 2. According to Sec. 3.3, it can be treated as a generalized function, while its
convolution @ *¢ can be treated in the sense of generalized functions (as above) or defined by a singular
integral (as in Sec. 3.3). If p € C* = C*(R¥), then no existence of the singular integral (Q * ¢)(x)
is guaranteed since no integrability of the function Q(z — y)p(y) in the domain {y, |y — x| > €} is
guaranteed. However, the product of x@Q and x € C§° is free from this disadvantage and, according
to Theorem 3.4.2 (the Korn—Giraud theorem), the convolution operator ¢ — (x@) * ¢ is bounded in
CH.

The LP-case is opposite since, if p > 1, then the function Q(z — y) belongs to the class L? with the
conjugate exponent ¢ = p/(p — 1) with respect to the variable y from the domain |y — x| > €. Hence,
due to the Holder inequality, the function Q(z — y)¢(y) is integrable in this domain. According to
the known Calderén—Zygmund theorem, the singular convolution operator ¢ — @ * ¢ is bounded in
LP, p > 1. This profound result requires much more refined tools comparing with the Korn—Giraud
theorem. From the proof of this theorem, provided at [44], one can see that even a stronger assertion
is valid.
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Theorem (Calderén-Zygmund). Let a function Q(x,&) belong to COO(RF, H_;) (in notation of
Sec. 3.1) and satisfy the condition (4.3.7) with respect to £&. Then the following assertions hold for any
function p € LP, 1 < p < .

(a) The singular integral

b(x) = / Q. — y)p(y)dy
Rk

exrists a.e. and defines an LP-function v satisfying the estimate

[|e < Clelre. (4.2.13)
(b) The function
9la) = sup (@), vela) = [ Qoo y)olu)dy, (4.2.14)
= ly|>e

belongs to LP and admits an estimate similar to (4.2.13) and liH(l] |t — e|r = 0.
E—

Actually, the Calderén-Zygmund theorem is valid for much more general assumptions about the
kernel Q(z,&). For example, it suffices to require the function @ to belong to L4(Q2), ¢ = p/(p — 1),
with respect to the variable £ on the unit sphere ). Note that the relation (4.2.14) is an analog of
(4.1.13) and the function v defined by it is called the Hardy-Littlewood mazimal functions.

As we note in Sec. 4.1, in the one-dimensional case (i.e., the case where k = 1), the function
@ coincides with the Cauchy kernel K(t) = —1/(wit) up to a constant factor; the operator of the
convolution with this kernel is called the Hilbert transformation. The corresponding result similar
to the Calderén-Zygmund theorem is obtained by Riesz (by means of methods of complex analysis)
much earlier (see [75] for details). The Riesz theorem can be also extended to the convolution with
the truncated Cauchy problem

, X €CMR), x(0)=1. (4.2.15)
Similarly to Theorem 4.2.1, we also provide it for the C*-case.

Theorem 4.2.2. The singular convolution operator ¢ — s * @ with the function (4.2.15) is bounded
in each space CH(R), 0 < v <1, and LP(R), 1 < p < oo.

Proof. As we note above, the C*-case is covered by Theorem 3.4.2. Since any difference of functions of
kind (4.2.15) belongs to C§°, it follows that one can assume (without loss of generality) that x(¢) =0
for |t| > 1. In this case, if |tg] < 1, then x(tg — t) = 0 for |¢t| > 2. Hence, assigning ¢ = s * ¢, we see
that the following relation holds for any integer i:

2

. I [ x(to—t) ,
to+1) = t+d)dt, |to| <1.
wlto+) = - [N Dot na ool <
-2
It is obvious that the function [x(tg —t) — 1](t — tp) "' is continuous in the square {—2 < to,t < 2}.
Thus, due to the Riesz theorem, we have the estimate
[U(t + )| e—1,1) < Clo(t +9)|1r(—2,2),

where C' is a positive constant independent of ¢. Taking this inequality to the power p and summing
with respect to ¢, we arrive at the validity of the estimate (4.2.13).

For p = 1, Theorem 4.2.2 does not hold. More exactly, if f € L, then the singular integral (s* f)(to)
exists for a.e. tp, but no local summability of the obtained function is guaranteed (see [74]). It is
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obvious that the convolution operation ¢ — s * ¢ is invariant in the class C§°, which is dense in L.
Let LM denote the completion of this class with respect to the norm

ol = lelL + [s * ¢lL. (4.2.16)

We obtain a Banach space embedded in L!; the convolution operator f — s f is bounded in this
Banach space by definition. It is obvious that if f € L(}), then the convolution f s belongs to L!
and is treated in the sense of generalized functions. The question whether it a.e. coincides with the
singular integral mentioned above is left open. However, the relation (f *s)*xp = fx (s*xp), p € X,
holds for X = L”, p > 1, and for X = C*. For f € C§°, this fact is obvious. In the general case,
taking into account Theorem 4.2.2, we prove it by passage to the limit with respect to norm (4.2.16).

From the definition, we see that the space L(}) is a Banach algebra with respect to the convolution
treated as the multiplication and is an ideal in the similar algebra L, i.e., f xg € LM provided that
feL® and g e L

Indeed, if f € L™ and g € L', then, in addition to (4.2.3), we have the similar inequality |(s * f) *
glr <|s* f|rlglr, which provides that f x g € L(1). Due to (4.2.16), this implies the inequality

If*glro < |flrwlglor

It is easy to describe (see [65]) simple sufficient conditions of the belonging to the class L. Let
LYP(R), p > 1, denote the class of all functions g from L? (R) such that the norm

“+00
9l = > lglapisy (4.2.17)

1=—00
is finite (we identify functions that differ on a zero-measure set). It is obvious that L%? is a Banach
space embedded in L' with respect to this norm. It is clear that the class C§° is dense in this space.

Lemma 4.2.3. The space L*?, p > 1, is embedded in LY and contains all functions g from LfOC(R)
such that

/(1 + [t])¥|g(t)|Pdt < 00, > p. (4.2.18)

R
Proof. Similarly to Theorem 4.2.2, we prove that the operator of the convolution with the function s
is bounded in L. Thus, for any ¢ from C§°, an estimate similar to (4.2.13) holds with respect to
the norm in L. Hence,

lplor < lelpir, s *@lp < [sx@|pie < Clolpis,
which leads to the estimate
lelLoy < (1 +C)lelrre.

Taking into account the density of C§° in LY?_ we see that it means the embedding L' C L(V,
To prove the second assertion of the lemma, we note that the obvious inequality

1+1 1+1 1
N
/ g(0)Pdt < 6, / (A + ) gt Pdt, o — LT 120,
/ / (=)™, 1<0,

holds for any integer i. Therefore, norm (4.2.17) does not exceed
1/p

gzo| [asmriore) o= 8P <.
R 7
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4.3. Fourier Transformation
The Fourier transform of a function f from L(RF) is defined by the integral
fo) = [ e iy (431)
RFE

where zy = 1y1 + - + zxyr. The operation f — f itself is called the Fourier transformation. By
virtue of Theorem 1.8.1, the function f is continuous. Also, it is clear that this function is bounded
and its sup-norm admits the estimate

1flo < If]z- (4.3.2)
From Theorem 1.8.1, one can easily deduce the relations
af _ . A 'A o . 8f A
m{ﬂ(%ﬂwh %ﬂ@—P@J(@ (4.3.3)

under the assumption that f and the functions in the square brackets belong to the class L. In the
second relation, it is additionally assumed that f € C1(R*) and f(z) — 0 as |z| — oo. For a summable
function, the notation f € C or f € C! means that it can be changed on a zero-measure set such that
the changed function belongs to the specified class.

In particular, if f € C$°(R¥), then the function ¢ = f is infinitely differentiable and decays at oo
faster than any power of |z|. In other words, the norms

0%
(1—|—|a:|)m8$a , myn=0,1,..., (4.3.4)

0

= max
|90|m,n olan

where | - |p denotes the sup-norm, are finite for this function.

By virtue of (4.3.2) and the density of the class C§° in L, we conclude that if f € L(RF), then
f(z) = 0 as |z| = oo (the Riemann-Lebesgue measure).

There are conditions allowing one to invert the Fourier transformation explicitly.

Theorem (the inversion formula). If the function f is summable, then the original function f from
L is restored by the inverse Fourier transformation:

1 R 1Ty z
F0)= oy R/ fl)ea (4.35)

(this relation is a.e. wvalid).

In particular, this theorem implies that the Fourier transformation is one-to-one on L. Also, it
possesses the following property (see, e.g., [20, 79]).

Theorem (Wiener). If f € L and 1+ f(ac) £ 0 for any x from R¥, then there exists a function g
from L such that (1+ f)~'=1+g.

The Fourier transformation is linked with convolution (4.2.1) by the relation

(f=9)"=1fs fgel (4.3.6)

Indeed, by the definition of the convolution, we have

tear'@ = [ | [ 1= natoat] e vay

Assigning f1(t) = e f(t) and g1 (t) = e "*'g(t), one can represent the right-hand side as the convo-
lution (f1 * g1)(x); then the claimed result follows from (4.2.2).
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Recall that the space L is a Banach algebra, where the multiplication operation is the convolution.
By virtue of (4.3.2) and (4.3.5), the Fourier transformation embeds this algebra into the Banach
algebra of continuous functions vanishing at oo, defined by the pointwise operation and the sup-norm.

In addition to Cgo(Rk ), a wider Schwartz class S is frequently considered; it consists of all functions
@(x) from C* such that they and all their derivatives decay on oo faster than any power of |z| or,
which is equivalent, norms (4.3.4) are finite for them. It is obvious that the relations (4.3.3) also hold
for functions f from S. Then the Fourier transformation is invariant in §. The same is also valid for
the inverse transformation (4.3.5). Taking into account the inversion formula, we conclude that the
Fourier transformation isomorphically maps the class S onto itself.

Sometimes, it is convenient to supply the Fourier transformation (4.3.1) by the norming factor
(2)~%/2. In this case, we denote it by the symbol F. Then the inverse transformation F~! in the
class S is also defined with a similar factor:

1 - 1 ,
FO) = e [ oan 0@ = 0 [t
RF RF
In particular, F~ 1o = (JFJ)p, ¢ € S, where Jo = ¢ denotes the operators of the complex conjugat-
ing of functions. Thus, in operator involution terms (see Sec. 1.3), we have the relation F~! = F.

Let us verify that the operator F' preserves the norm of the space L2, i.e., |Fp|r2 = |¢|12, ¢ € S.

Indeed, in notation of form (4.1.3) (with respect to G = R¥), the second power of the norm of the
function ¢ in L? is equal to (¢, Jp). On the other hand, from Definition (4.3.1), we see that

(o, 0) = (p,9), @vES. (4.3.7)

Therefore, |[F|2, = (Fo, JFp) = (o, FJF) = (¢, Jyp), which implies that the L?-norms of the
functions ¢ and Fy are equal.

The class C§° is dense in the space LQ(R’“). Hence, the class S is dense in this space a fortiori.
Therefore, the operator F' is extended as an isometric isomorphism of the space L? onto itself; this
isomorphism is denoted by F again. Taking into account the first relation of (4.3.3), we conclude that
the Sobolev space W™?(R*) can be described by the equivalent norm

1/2

o] = / (1+ |2 (Fo)?()da

k

In a natural way, the Fourier transformation is extended to the so-called tempered distributions. To
do this, define the convergence in the Schwartz class S as follows: a sequence ¢; converges to ¢ in
S as j — o0 if |p; — @lmn — 0 for any m and n, where the norm is defined by (4.3.4). The class
of linear functionals over S continuous with respect to the introduced convergence is denoted by S'.
It is obvious that the convergence ¢; — ¢ in C§° implies the corresponding convergence in S. It
is easy to show that for any ¢ from S there exists a sequence ¢; from C§° converging to ¢ in S.
Hence, the restriction of u to C§°, where w is an arbitrary functional from S’, belongs to (C§°)" and
the specified restriction is uniquely defined by u. Therefore, elements u of &’ can be identified with
generalized functions from (C§°)'. They are called tempered distributions. This term is related to
measured tempered functions f(x) defined as functions admitting the estimate

|f(2)] < CA+ [z))™, (4.3.8)

where m is a positive integer; they belong to S’ since they are regular generalized functions. Obviously,
all compactly supported generalized functions also belong to the class §’. Thus, (C*) C S’ C (C§°)'.

Also, it is clear from (4.3.3)-(4.3.4) that the convergence ¢, — ¢ in S implies the convergence
¢n — ¢ in S. Therefore, taking into account (4.3.7), one can “extend” the Fourier transformation
from S to 8’ as follows:

a(p) =u(@), »eS.
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Thus, we obtain an invertible transformation of 8" onto itself, also called the Fourier transformation.
It is obvious that the relations (4.3.3) remain valid for f from &'. If f € L C &', then the provided
definition of the Fourier transformation coincides with (4.3.1).

Similarly to (C§°), the class S’ is endowed with the pointwise convergence of its elements. The
space S’ is complete with respect to this convergence and the Fourier transformation continuously
maps &’ to &’. The isometric isomorphism F of the space L?, defined above, coincides (up to the
factor (27r)~*/2) with the restriction of the Fourier transformation acting in the space S’ to its subspace
L?.

Theorem 4.3.1. The Fourier transform of any compactly supported generalized function u from
(C*°) is a regular generalized function, belongs to the class C°, and is determined by the relation

a(z) = ug(e™ ™). (4.3.9)
The relation
(uxv)" =00, wu,ve (C), (4.3.10)
extending (4.3.6) to generalized functions with compact support holds.

Note that if # = (z1,...,7;) € CF, then the right-hand side of the relation (4.3.9) determines an
entire function called the Fourier—Laplace transformation.

Proof. By virtue of Lemma 1.8.3, the function on the right-hand side of (4.3.3) belongs to the class C'*°.
Denote this function by f(z). There exist a positive integer m and a compact subset K of R* such
that
f(@)] < Cle™om i), (4.3.11)

where z is a fixed point and the norm on the right-hand side is taken with respect to the variable t.

Indeed, let a function x from C§° be identically equal to zero in a neighborhood of supp u. It suffices
to show that |u(¢)| < Clplomk), ¢ € C*.

If this estimate does not hold, then for any positive integer m there exists a function ¢,, from
C*°(D) such that

|u(§0m)| =1, ‘@m‘CW(K) < 1/m’

Then x¢m — 0 as m — oo in C§°(D), which contradicts the continuity of the functional v with
respect to this convergence.

From (4.3.11), it follows that the estimate (4.3.8) holds for the function f(x) = u;(e~**), which
means that it slowly grows at co. The function f belongs to S’ since it is a regular generalized function.

On the other hand, if ¢ € C§°, then, taking into account Lemma 1.8.3 and Definition (4.3.14), we
have the relation

ite)=u | [ o] = [ 1o
RF RF
implying that @ = f. From the same considerations, we obtain the relation

(u* ) (y) = /e‘iwtut[gp(a: —t)]dt = uy /e_mgo(x —t)dt
RF RF
Since the expression in the square brackets on the right-hand side coincides with e=%!j(y), we have
the relation
(ux ) =0p, ue (C™®), peC, (4.3.12)
extending (4.3.6) to the case where one of the functions is a generalized function. In the general case,
i.e., if u and v belong to (C*°)’, the specified relation yields the relations

(urvxp)t = (uxv) g, (uxvrp) =ilvxp)" =aop,
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implying the validity of (4.3.10) in the case of two compactly supported generalized functions.

Note that the Fourier transformation of a function @ from H_j, possessing the property (4.2.12)
is defined by a singular integral similarly to (4.3.1). It can be also treated in the sense of generalized
functions. It is known that CAQ is a homogeneous function of power 0. In the one-dimensional case, the
Fourier transform of this kernel is represented as follows:

. 1
K(ty) = t Kit)y=— . 4.3.13
(to) = semto, K(1)=— (43.13)
Indeed, by definition, we have the relation
n
N o 1 . dt —Ztt()
K(p)=~_ lim [ /e p(to)dto.
—n R
Changing the integration order, we obtain the relation
it nliol
1 o 2 t int
~ / ¢ ar= 8" / S gt (4.3.14)
e t U t
—n 0

The following property of the corresponding improper integral is well known:

s

int
lim [ at=", (4.3.15)

s—00 t 2
0

Therefore, passing to the limit as n — oo in the relation (4.3.14), we obtain (4.3.13).

In particular, the relation (4.3.13) shows that K? =1 and, therefore, the convolution K * (K * )
is equal to ¢ if ¢ € C§°. In terms of generalized functions, this fact is expressed by the relation
K « K = §p. The same is valid for the “truncated” Cauchy kernel defined by (4.2.15), which is a
compactly supported generalized function.

Lemma 4.3.1. The function 5(t) tends to £1 ast — oo, its derivative belongs to the class C§°, and
Xo = s*s—0g € C§°; then

(sxs)xp=p+xo*x¢, xo€Cq,
for any locally integrable function ¢ from S’.

Proof. Let Ky(t) = K(t) for |[t| <1 and Ky(t) = 0 for |¢| > 1. Then, similarly to (4.3.13), we verify
that Ko(tg) is determined by the expression on the right-hand side of (4.3.14) with n assigned to be
equal to 1. Thus, Ky(tp) — £1 as tg — +oo. Comparing the functions Ky(t) and s(t) in (4.2.15), we
see that the difference Ky — s belongs to L and, therefore, (4.3.15) implies that

lim $(z) = £1. (4.3.16)

r—+o0o

According to Lemma 1.8.3, the derivative § is computed under the sign of the singular integral and,
therefore, coincides (up to a constant factor) with the Fourier transformation of the function x from
(4.2.15). In particular, § € S. Then, taking into account (4.3.16), we conclude that the function
§%(t) — 1 also belongs to S. Then, applying the relation (4.3.10) to u = v = s, we conclude that
Xo =u*xu— 0y €S. Since the function yg is compactly supported, it follows that it belongs to the
class C§°.

As we note in Sec. 4.2, the space L") is a Banach algebra with respect to the convolution treated
as the multiplication operation, it is embedded into L', and f * g € L(Y) provided that f € LY and
g € L'. The Wiener theorem is also valid for this algebra.

Indeed, let f € LM and 1+ f (t) # 0 for any real t. Then, due to the Wiener theorem, there exists
a function g from L! such that 14§ = (1+ f)_l, i.e., f4+ G+ f§ = 0. Taking into account (4.3.6) and
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the injectivity of the Fourier transformation, this implies that f 4+ g+ f *g = 0. Since the convolution
f % g belongs to L, it follows that ¢ = —f — f % ¢ also belongs to L.

Recall that, according to Sec. 1.7, the symbol C denotes the space of all continuous and bounded
functions z(t), t € R. This space is a Banach algebra with respect to the pointwise operators and the
sup-norm |z|g. The symbol C? denotes the subalgebra of functions « from C' vanishing at infinity. Let
M?O denote the image of L") under the Fourier transformation. By virtue of (4.3.6), the space MY is
a Banach algebra with respect to multiplication, its norm is defined by the relation

lyl=lgl., y=2, (4.3.17)

and it is embedded into CY.
The next lemma shows that M is densely embedded in C°.

Lemma 4.3.2. The class R of rational functions such that their restrictions to the real line belong to
C° is dense in the Banach algebra MP°.

Proof. Consider the relations

00 0
i/ei(c_s)tdt =(-¢", Im¢>0 and i / et qt = —(s—=¢)71 Im¢ <0.

0 —00

According to (4.3.1), they can be represented in the form
fels)=(s =), (4.3.18)
where
et >0 0 t>0
t) = ’ " Im( >0, )= " Im(¢<0.
0 {0’ i 2o ImC =10 oy e

Differentiating the relation (4.3.18), we arrive at the following description of the class of functions
f from L™ such that their Fourier transforms belong to R: on each semiaxis +¢ > 0, the function
f(t) is a finite sum of terms of kind p(t)e’!, where +¢ > 0. It remains to note that, by virtue of
Lemma 4.2.3, the class of functions of this kind is dense in L().

Let M denote the space of all functions x from C such that the multiplication operator y — xy is
bounded in MY; it is endowed with the norm

It is easy to see that the space M is embedded into C' with respect to this norm, i.e., the estimate
|zlo < Colz|m (4.3.20)

holds, where Cj is a positive constant independent of .
Indeed, in notation (4.3.17), we have the relation zg = f Then, by definition, the following
inequality is valid:
[flow < [zlmlglo-
Therefore, for any real a, the following inequality is valid:

[z(a)g(a)] < [flrr < |flpow < lzlalglpo-

Let g(t) = ga(t) be the function coinciding with €’ on the segment [0,1] and equal to zero outside
this segment. Then

i(a) = / et g ()t = 1.
R
Now, it suffices to verify that

Co = sup |ga| ) < o0. (4.3.21)
a
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It is obvious that one can assume (without loss of generality) that s(t) = O provided that |t| > 1.
Hence, the function s * g, vanishes outside the segment [—1,2]. It is obvious that |g.|r1 = |galr2 = 1.
Hence, due to Theorem 4.2.2, the function s * g, belongs to L? and satisfies the estimate

‘8 *ga|L2 S 017

where C} is the L?-norm of the operator of the convolution with s. By virtue of the Hélder inequality,
this implies the inequality |s * gq|;1 < v/3A;. Thus, according to Definition (4.2.16) of the L(1)-norm,
we arrive at the estimate (4.3.21) with the constant Coy = 1 + v/3C1.

From the definition of M and (4.3.20), it follows that the space M is a Banach algebra with respect to
multiplication. Its elements are called LU-multipliers. They can be treated as the Fourier transforms
of generalized functions u from &’ such that the operator of the convolution with them is bounded in
LM Tt is obvious that the functions § and f , where f € L', are L(W-multipliers. Another example of
LM_multipliers are the Fourier transforms of d-functions ga(t) = e % due to (4.2.11), the operator
of the convolution with each such function serves as a translation operator. Since these operators
f(t) = f(t — a) are bounded in L() uniformly with respect to a € R, it follows that the function e
belongs to M and their norms |e’®|y; are uniformly bounded. The general theory of multipliers and
related operators invariant with respect to translations is presented, e.g., in [27, 76].

Let M! denote the closure of the set of finite sums Y cxe!®? in M. By virtue of (4.3.20), almost
periodic functions belong to the space M'. In other words, in notation of Sec. 1.7, the space M*
is a Banach algebra embedded into C!. According to Lemma 4.3.1 and the terminology of Sec. 1.7,
functions of the kind

w(t) = 21 (t) + 8()2a(t) +y(t), z;€ MY, ye M,

are semi-almost periodic.

4.4. Convolution-Type Operators on the Real Line

An integral convolution-type operator with a function f from L(R) is defined by the relation

K(ltt) = [ Ko, 0)f (0~ thott)at. o € R (44.1)
R

We assume that k(tg,t) is a continuous and bound function, i.e., a function from the space C°(R x R).
It is not included in the operator notation, but the operator does depend on it. If k(to,t) = 1, then
the operator passes to the convolution operator R(f)y = f * ¢, i.e., the symbol K is replaced by R
in this case. It is easy to describe conditions for k, providing the boundedness or compactness of the
operator K (f) in the spaces LP(R), 1 < p < oo, CH#(R), 0 < p < 1, and CT#(R).

Theorem 4.4.1.

(a) Let k(to,t) € CFTO(R x R). Then the operator K(f) is bounded in the spaces LP(R) and C*(R)
and its norm admits the estimates

\K(H)leey < |Eleolflr,  [K(f)lceny < |Klenlflr, (4.4.2)

where the norm in C is the sup-norm.
If the above holds and
tglglo k(to,t) =0, n=1,2,..., (4.4.3)
[to—t|<n
then the operator K(f) is compact in these spaces.
(b) Let k € CY*O(R x R). Then the operator K(f) is bounded in the space CY*(R). If this holds

and the condition (4.4.3) is satisfied for the function k and for the function
ok 0k

k=
Jto + ot’

(4.4.4)
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then the operator K(f) is compact in this space.

Proof. The boundedness of the operator K(f) in LP and the estimate (4.4.2) are proved in the same
way as Theorem 4.3.1(a).

Let the condition (4.4.3) be satisfied. Due to Theorem 1.2.3, the set of compact operators is closed
with respect to the operator norm. Therefore, by virtue of the density of the class C§°(R) and L(R)
and the estimates (4.4.2), without loss of generality one can assume that f € C§°. Take a cut-off
function x from C§° on supp f and take into account the fact that the expression k(to,t)f(to —t) is
not changed if we multiply it by x(t9 — t). Therefore, changing k(t,t) for k(to,t)x(to —t) and taking
into account (4.4.3), one can assume (without loss of generality) that k(to,t) — 0 as [t| + |tg] — oo.
Then the function k& can be approximated with respect to the sup-norm by continuous compactly
supported functions. Taking into account Lemma 2.2.1, one can assume (without loss of generality)
that & € Cg°(R x R). Then the compactness of the operator K (f) in the space L is obvious.

Further, we represent the relation (4.4.1) in the form

(K (F)el(to) = / K(to, to — 1) (1)p(to — 1), (4.4.5)
R

This immediately yields the second estimate of (4.4.2).

Let k € CY(R x R), v > p, and the condition (4.4.3) be satisfied. By virtue of Theorem 2.1.2 and
Lemma 2.2.1, the sequence {ky(to,t)} belongs to C§°(R x R) and converges to k(to,t) with respect
to the norm of the space C*. Therefore, as above, taking into account the estimate (4.4.2), one can
assume that f € C§°(R) and k(to,t) € C5°(R x R), which guarantees the compactness of the operator
K in the space C*.

If k € CY#(R x R), then the relation (4.4.5) can be differentiated under the integral sign, which
leads to the relation

[K(f)el =K' (e + K (f)¥, (4.4.6)
where the operator K'! is defined similarly to (4.4.1) with respect to the function (4.4.4). This
immediately yields the boundedness of the operator K in Cb#,

Further, let the condition (4.4.3) be satisfied for both functions k and k'. Then, by virtue of (a),
both operators K(f) and K'(f) are compact in the space C*. Then, taking into account (4.4.6), we
conclude that the operator K (f) is compact in C'hH.

Actually, the belonging of k to C**0 is too strong for estimates (4.4.2). In the LP-case, it suffices to
require the function k(tg,t) to be just bounded. In the C*-case, the said condition can be changed for
the belonging of k to C*. We impose the said condition so that the assumptions of different assertions
can be unified.

Apply Theorem 4.4.1 to the convolution operator R(f)p = f * ¢, assuming that the function a(t)
belongs to C(R),

a(+oo) = , lirin a(t), (4.4.7)

—> 00

and the function b(t) possesses the same property. Then the relations
aR(f) ~ R(f)a, aR(f)bR(g) ~ abR(f *g) (4.4.8)

are valid for all functions f and g from L(R), where ~ means that the left- and right-hand sides are
equal modulo 7 (L?) of compact operators and a and b are treated as multiplication operators.

If we additionally assume that a and b belong to C**9(R), then these relations also hold with
respect to T (CH). In the same way, if @ and b belong to C1#*0(R) and the derivatives a’ and b’ also
possess the property (4.4.7), then the relations (4.4.8) also hold with respect to T (C*).

Indeed, the first relation of (4.4.8) follows from Theorem 4.4.1 since the function k(tg,t) = a(tg) —
a(t) satisfies the condition (4.4.6). The second relation follows from the first one: aR(f)bR(g) ~
aR(f xg)b ~ abR(f % g).
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An analog of Theorem 4.4.1 holds in the case where the function s from (4.2.15) plays the role of
f and (4.4.1) is treated as a singular integral.

Theorem 4.4.2.

(a) Let k(tg,t) € CHTO(R x R). Then the singular operator K(s) is bounded in the spaces LP(R),
p>1, and CH(R), 0 < u < 1. If the above holds, k(t,t) = 0, and the condition (4.4.3) is satisfied,
then the operator K(s) is compact on these spaces.

(b) Let k € CYTO(R x R). Then the operator K(s) is bounded in the space C**(R). If the above
holds, k(t,t) = 0, and the condition (4.4.3) holds for both functions k and k' in (4.4.5), then K(s)
18 a compact operator.

Proof. By Lemma 2.1.1, if € > 0 is sufficiently small, then the function ko(to,t) = [t — to| ¢ [k(to, t) —
k(to,to)] also belongs to the class C*0. Therefore, by Theorem 4.4.1, the operator Ko(f) defined
by ko(to,t) and fo(t) = |t|°s(t) similarly to (4.4.1) is bounded in the spaces LP and C*. If k(to,1)
satisfies the condition (4.4.3), then the function k¢ also satisfies it. Then the operator Ko(fo) is
compact in these spaces. Since K(s)¢ = a(s * ¢) + Ko(fo)p, where a(t) = k(t,t), it remains to use
Theorem 4.2.2. O

Representing the operator K(s) in the form (4.4.5) and using Lemma 3.4.2, we obtain the differen-
tiation relation [K(s)¢] = K'(s)p + K(s)¢' similar to (4.4.6). By virtue of this relation, we arrive at
the validity of (b).

From Theorem 4.4.2, similarly to (4.4.8), one can easily deduce the relations

aR(s) ~ R(s)a, aR(s)bR(g) ~ bR(g)aR(s) ~ abR(s * g), (4.4.9)

where ~ means the same as above, g € L), and the functions a and b belong to C*t°(R) and have
limits (4.4.7) at infinity. If this holds and a and b belong to C**9(R), then these relations also hold
modulo 7 (CH).

For the operator aR(f), the compactness condition given by (4.4.3) is reduced to the condition
a(t) — 0 as t — oo. The next lemma shows that this is also a necessary compactness condition.

Lemma 4.4.1. Let a function x(t) from CFTO(R) admit limits (4.4.7) and at least one of them be
different from zero. Then the compactness of the operator aR(f), f € L', in the space X = LP or C*
implies the relation f = 0.

Proof. For definiteness, assume that a(4+00) # 0. Let a function x from C*°(R) be identically equal
to 1 in a neighborhood of 400 and be identically equal to zero in a neighborhood of —oo. Then
aR(f) ~ a(+o0)xR(f) and one can assume (without loss of generality) that a = x.
First, we show that
fxp=0, pel§. (4.4.10)

Fix ¢ from C§° and assign ¢, (t) = ¢(t—ay), where a,, — +00. The sequence ¢, is uniformly bounded
in X. Then, by the definition of compact operators, there exists a sequence xR(f)yp, converging in
X; denote its limit by . Redenoting ¢, by ¢, we have the relation

‘XR(f)(Pn) - w‘X < Oln, lim Qp = 0. (4411)

Let a sequence fj from C§° converge to f from L'. Then the following inequality holds for this
sequence:

IXR(f = fi)enlx < By, lim G = 0. (4.4.12)

The operator R(f) commutes with the translation operators (1,,¢)(t) = ¢(t —ay,). Hence xR(fi)on =
XR(fr)Tne = XTn(fr * ¢). Since f * ¢ € C§°, it follows that the support of the function T}, (fx * ¢)
lies in a fixed neighborhood of +oo provided that n > n; and n is sufficiently large. One can assume
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that x = 1 in this neighborhood. Then xR(fx)on = Tn(fx * ©), n > ng. Combining this with (4.4.11)
and (4.4.12), we deduce the inequality

Ta(fe x0) —¥|x < an+ Bk, n>ng. (4.4.13)

For any segment I there exists a number n) such that nj > nj and the support of the function
T, (fx * ¢) does not intersect I. Then, taking into account (4.4.13) and the norm definitions in the
spaces X = LP and C*, we deduce the inequality

[lxry < Clom + Br), n>ny,

where C' is a positive constant depending only on I. Pass to the limit as n — co. Then pass to the
limit as £ — oco. We arrive at the relation ¢ = 0.

Assuming that 1) = 0 in (4.4.13) and taking into account the fact that 7, ! are uniformly bounded
in £(X), we obtain the estimate |fx * p|x < C(ay + Bi), n > k. Pass to the limit as n — oco. Then
pass to the limit as kK — oo. We arrive at the validity of (4.4.10).

From (4.4.10), it follows that f*x. = 0, where x, is introduced by (4.2.6). By virtue of Lemma 4.2.1,
passing to the limit as € — 0, we obtain that f = 0.

To conclude, we provide the criterion of the Fredholm property for the following operators of the
Wiener—Hopf type:
N =1+ x(Rf)x, (4.4.14)

where f € L'(R) and x(#) is a smooth function identically equal to 1 (0) in a neighborhood of t = —o0
(t = +00). By virtue of (4.4.8), one of the factors x on the right-hand side of (4.4.14) can be omitted
since it does not affect the Fredholm property and the index N.

The Fredholm property is provided in terms of the Fourier transform of the function f. The vector
case is also covered: the operator N acts in the space of l-vector-functions on the line and f(¢) is an
l x [-matrix-function.

Theorem 4.4.3. The operator N has the Fredholm property in the spaces LP(R) and C*(R) if and
only if

det[1+ f(s)] #0, se€R. (4.4.15)
If this holds, then

. 1 2 oo
ind N = o argdet[1 + f(s)]|~

o0’

(4.4.16)

Proof. Let X denote any of the Banach spaces LP(R) and C*(R). Let A denote the class of all
continuous ! x [-matrix-functions of the kind

z(s)=c+ f(s), seR, (4.4.17)
where f € LY(R) and ¢ € C*!. According to Sec. 1.5, this is a Banach algebra with respect to the
pointwise operations and the “transported” norm |z| = |¢| + |f|z1. Obviously, it is densely embedded

into the Banach algebra C' of all matrix-functions z(s) possessing the limit z(co0) = lim z(s) as s — oo,
endowed with the sup-norm.

In terms of the algebra A, the Wiener theorem from Sec. 4.3 can be reworded as follows: if z(s) € A
and det x(s) # 0, s € RU {co}, then the inverse matrix-function x=1(s) belongs to A. Taking into
account Lemma 4.3.2, we conclude that the embedding A — C satisfies the condition of Theorem 1.4.2.
According to this theorem, the conditions z € Gy(A) and x € Gy(C) are equivalent provided that
x € G(A). On the other hand, we know from Sec. 1.4 that the unit component G(C') can be described
by the condition Ind x = 0, where

1 oo
Indx = o 318 det m(s)|_oo (4.4.18)

is the Cauchy index. Hence, this is also valid for A.
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Using notation (4.4.17), to any function z from A, assign the operator Vo = X + x(Rf)x. In
particular, in this notation, the operator (4.4.14) is equal to ¥(1 4 f). By virtue of (4.4.8), the
relations xR(f) ~ R(f)x ~ xR(f)x hold modulo 7(X) of compact operators. This easily implies
that YaWy ~ ¥(zy) for all x and y from A. In other words, the linear bounded map ¥ : A — L(X)
satisfies the condition of Theorem 1.4.3. From this theorem, it follows that the condition (4.4.15) is
sufficient for the Fredholm property of the operator N = ¥z, z = 1+ f , and the relation Indz = 0
implies the relation ind N = 0.

To verify the relation (4.4.16), take a diagonal matrix-function a from G(A) of the kind

s—1
=di 1,...,1 4.4.1
ofs) = ding (27 11,0001 (4.4.19)
such that Inda = 1. From (4.3.18), it follows that
(s—i)(s+i) " =1-2f1(s), (s+i)(s—i) " =1-2f(s),

0, t>0, et t<0, (4.4.20)
f+@) =1, f-(t) =
e, t>0, 0, t <O.

The integer-values function Ind from (4.4.18) possesses the group property Indzy = Indx + Indy.
Therefore, if z € G(A) and m = Ind z, then ind(za™™) = 0 and, therefore, za™™ € Gy(A). Thus,
taking into account Theorem 1.4.3, we have the relation 0 = ind ¥(za™"™) = ind Yz — mind Ya.
Substituting the value m = Ind x to the last relation, we obtain the relation ind ¥z = (ind ¥a) Ind z.
Hence, the proof of (4.4.16) is reduced to the proof of the relation

ind¥a = —1. (4.4.21)

For any diagonal operator matrix, its index is equal to the sum of indices of its diagonal elements.
Hence, according to (4.4.19), without loss of generality, we can restrict the investigation to the scalar
case, i.e., the case where [ = 1. Then a(s) = (s —4)/(s 4+ %) and, in notation (4.4.20), the operators
Ny = ¥(a™!) are defined by the relation

Ni=1-2x(Rfs)x. (4.4.22)

In the same way, define Ny for a step function Y(t) equal to 1 (0) for ¢ < 0 (t > 0). Since fi(t) =0
for £t > 0, it follows that

X(to) f-(to = )[(1 = x(@)] = [(1 = X(to)] f+(to — )X (¢) =0
on the whole plane. Hence, we have the relation
X(R-f)L=x)=1-X)(R+f)x =0. (4.4.23)

According to (4.4.20), the product (1 — 2f+)(1 — 2f_) is equal to 1, whence fy + f_ =2f, = f_ and,
therefore,

N_N; =1—4%(Rf)(Rf1)X + 4X(RfX(RF1)X-
By virtue of (4.4.23), this implies the relation

N_N, =1. (4.4.24)

In the space X = LP, the difference between the operators Ny and Ny is compact. It follows
from (4.4.24) that Im N_ = X. On the other hand, the kernel ker N_ is described explicitly. If
© —2X(Rf-)xe = 0, then ¢(ty) = 0 for ¢ty > 0, while

o(to) _Q/f to —t)p )dt—2/ el~op(t)dt

—00
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for ty < 0 due to (4.4.20). Hence, the function y(t) = e'p(t) satisfies the differential equation y' = 2y
on the semiaxis (—00,0), whence there exists a constant ¢ such that p(t) = ce! for ¢ < 0. Thus, the
kernel ker N_ is one-dimensional and ind N_ = 1. Thus, the relation (4.4.21) is proved for X = L?.

In the case where X = CH(R), the above argument is to be changed since the operation of the
multiplying by the function ¥ yields the product outside X in this case. Let X denote the extension of
X obtained as follows: we add functions constant on the semiaxes +t > 0; note that dim X = dim X+1.
From (4.4.20), it is clear that the convolution (Rf+)Y = f+ * X belongs to C%!(R). Therefore, the
operators Rfy boundedly map X to X and, therefore, the operator Ny treated as an operator in X
has the same index as the operator N4 treated as an operator in X. On the other hand, the operator
N4 belongs to £(X) and the difference between it and N from £(X) is compact. Since ind Ny = F1
(as above), the validity of the relation (4.4.21) also for the space X = C* follows.

To complete the proof of the theorem, it remains to verify that the condition (4.4.15) is necessary
for the Fredholm property of the operator (4.4.14). Assume the converse: there exists  from A such
that N = Uz is a Fredholm operator, but there exists a real sg such that det z(sg) = 0.

Let R be the subalgebra of rational functions in C; according to 4.3.2, it is dense in A. Thus,
there exists a sequence of real numbers z,, converging to z in A. Since the operator ¥ : A — L(X)
is continuous, it follows that ¥x,, — ¥z in £(X) and, by virtue of Theorem 1.3.1, the operators ¥z,
possess the Fredholm property provided that n is sufficiently large. Since x,(sg) — 0 as n — oo, it
follows that there exists a sequence of eigenvalues A, of the matrix z,(so) from C'*! converging to
zero. Therefore, changing z,(s) for x,(s) — A,, one can assume (without loss of generality) that the
original function z(s) belongs to R.

For simplicity, assume that sg is the only k-multiple zero of the function det z(s). By the condition,
there exists a nonzero vector & from C! such that z(sg)¢é = 0. Let the matrix p from C>*! be the
projector of C! on the one-dimensional subspace spanned by the vector &. Then z(so)p = 0 and,
therefore, the function z1(s) = z(s)[r~(s)p + 1 — p|, where r(s) = (s — s0)/(s + i), is analytic in a
neighborhood of the point sq. However, det z1(s) = r~!(s) det z(s) and, therefore, the multiplicity of
the zero of the function x is equal to k—1. Repeating this procedure, we represent the matrix-function
x(s) by the product

2(s) = 2o(s)r()pr + 1= pal- - (e + 1= pil, r(s) =",
where the factor ¢ is invertible in A, while p; from C™! are one-dimensional projectors.

Replace sg by spti/n, n =1,2..., in this expansion and denote the obtained value by x?f Then x?f
are invertible in A and x; — 2 in A as n — oo. From Definition (4.4.18) and the argument principle
for analytic functions, it follows that

Indz} # Indx), . (4.4.25)

By virtue of the continuity of ¥, the sequence of the operators W= tends to Uz in £(X). Hence, due
to Theorem 1.3.1, for sufficiently large n, they are Fredholm operators and their indices coincide
with ind Wz. On the other hand, due to the index relation proved above, we have the relation
ind Uaf = —Indz . Thus, we arrive at a contradiction with (4.4.25), which completes the proof
of the theorem.

A detailed presentation of the theory of Wiener—Hopf operators can be found, e.g., in [23].

4.5. Multiplicative Convolutions on the Semiaxis

Consider the homogeneous spaces C§'(R.), C’é #(R4), and LE(R4) on the semiaxis Ry = (0, 00) of
the real line and the corresponding weight spaces X (Ry;0,00), where X denotes any of the symbols
CH, OV and LP, with the weight order A = (A,,7 = 0,00). Thus,

Xa(Ry;0,00) = paXo(Ry),  pa(t) = t2(1 4 )=, (4.5.1)
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For Ao = Ao, i.€., for X\ € R, this space is denoted by X, = X)(R,) and (4.5.1) passes to Xy = t*X.
Due to Lemma 2.8.1, the space C/(Ry) can be defined by the equivalent norm

[plen = supt™p(t)] + [¢]p- (4.5.2)
>0
According to (4.1.10), the norm of the space L can be defined by the relation
o0 1/p
ol = /t‘“‘llso(t)\pdt : (4.5.3)
0

Using the next lemma, one can describe the general space given by (4.5.1) in terms of the spaces X},
AeR.

Lemma 4.5.1. Let X denote C*, LP, or C1*. Then
Xy, N Xy, =X+ (Ry;0,00), Xy, + X, = Xy -(R4;0,00), (4.5.4)
where
N {max()\l,)\g), =0, - = {min()\l,)\g), =0,
min(A, A2), 7T =00, T max(A1, A2), T =00,
and the following embeddings of Banach spaces hold:
Xy NXy, CTXHCXy, +Xy,, A <A< (4.5.5)

Proof. For definiteness, we prove the claim of the lemma for the case where X = LP. For the given
weight order A = (Ao, Aso), the space L% (R4;0,00) can be described by means of the restrictions of
its elements ¢ to the intervals J = (0,1) and J* = (1,00) as follows:
90|J0 € LZ)?\O(']an)a 90|J1 € Lgm(JlaOO)'

The norm equal to the sum of the norms of the functions | » in the specified spaces is equivalent
to the norm of ¢ in L (Ry;0,00). The family {L},(J° 0)} is a monotonously decreasing function
of the variable Ao with respect to the embedding of Banach spaces. The family {Lgm(J o)} is a
monotonously increasing function of the variable A\, with respect to the embedding of Banach spaces.

Taking into account Lemma 1.1.2 on the definition of the norm in the space X, +X),, we immediately
deduce both assertions of the lemma.

By virtue of Theorem 2.7.2, Theorem 2.9.2, and Theorem 4.1.1, the weight exponential transforma-
tion E) acting according to the relation

(Exp)(—Int) = t*p(t), t>0, (4.5.6)

isomorphically maps the Banach space X,(R4) to the Banach space X (R).
For functions defined on the semiaxis, the multiplicative convolution is defined by the integral

t t’

(foe)(to) = /f <t°> gp(t)dt to > 0. (4.5.7)
0

This convolution passes to the additive one under substitution (4.5.6), i.e.,

E\(fog) = (Exf)* (Exg). (4.5.8)
In particular, for the multiplicative convolution, the estimate (4.2.4) takes the form
[fowlxy < Iflolelx,, X =LF,C" (4.5.9)
On the semiaxis, the analog of the singular function defined by (4.2.15) is as follows:
1 x(t .
s(t)= .4 (_)t, x € Cp°(Ry), x(1)=1. (4.5.10)
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Indeed, if we endow (temporarily) the functions s and x in (4.2.15) with the symbol R and apply the
substitution t~*s(t) = sg(Int), then the functions y and yg are related as follows:

Y
x(t)zt ( 1)XR(t)§

Int
hence, x satisfies the conditions (4.5.10).
Thus, taking to account (4.5.8), we see that Theorem 4.2.2 applied to the multiplicative convolution
with the function (4.5.10) remains valid also for the spaces C§ and L% (p > 1).

The substitution (4.5.6) maps L(!) (R) onto the corresponding space Lg\l) (R4 ) and the space Li’p (Ry)

has a similar meaning. It is obvious that Li’p = t’\Lé’p and the space L(l)’p can be described (similarly
to (4.2.17)) by the condition

+oo
lelpre = .Z 2@ ey, 1 =11/2,1].
1=—00

Respectively, Lemma 4.2.3 can also be reworded for the case considered, i.e., the space Li’p ,p>1,is
embedded into Lg\l) and contains all functions g from L} (R) such that

o

/(1 + [Int|)% P f (1) Pdt < 00, > p. (4.5.11)

0
Further, consider the multiplicative variant of the convolution-type integral operators

dt

0 >0 (4.5.12)

K(D)elto) = 7k<to,t>f (%) et
0

defined by an L}-function f, and the corresponding singular operator K(s). As above, for these
operators, Theorems 4.4.1 and 4.4.2 and Lemma 4.4.1 can be reworded as follows.

Theorem 4.5.1.

(a) Let a function k(sq,s) = k(e™,e*) belong to C*(R x R), where 0 < v < 1 and A € R. Then the
operators K(f), f € L}, and K (s) are bounded in the spaces LY, 1 < p < 0o, and C}, 0 < p < v,
and their norms admit the estimates

K (f)leey < lklenlfloy K (S)leix,) < lklov for X = LP or X = C*. (4.5.13)
If the condition

lim  k(to,t) = lim  k(to,t)=0, n=1,2,..., (4.5.14)
t—0, t—o0,
1/n<to/t<n 1/n<to/t<n

is satisfied, then the operator K(f) is compact in these spaces. If the said condition is satisfied
and k(t,t) =0, then K(s) possesses the same property.

(b) If k(sg,s) = k(e®,e%) € C1V(R x R), then the operators K(f) and K(s) are bounded in the space
CL#. If the corresponding conditions of (a) are satisfied for the functions k(t,t) and

ok

ok
El(tg,t) =t t
(07) 0 0+ atv

ot

then these operators are compact.
(c) Let k(to,t) = a(to)a(t), where a € C§(Ry), v > p, the limits

=i t = li t
a(0) = lima(t), a(cc) = lim a(t)
exist, and at least one of these limits is different from zero. Then the compactness of the operator

K(f), fe L%\, in the space LZ;\ or Cﬁf implies that f = 0.
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Similarly to (4.5.11), the condition k(so, s) = k(e e®) € C¥(R xR) of this theorem can be expressed
in the form

sup |k(2_it072_jt)‘c”([><l) <oo, I= [1/272]
ij=0,£1,...

(no exponential substitution is used). According to Lemma 2.7.1, this condition is satisfied for any

function k(tp,t) from C§ (R4 x R4). In particular, as in the case of Lemma 2.7.1, we verify that the

last class contains any bounded function k(tg,t) from C*(R; x R, ) such that

(to + 1) ok ok
O ot ot

For any function f from L, (R.), its Mellin transform is defined as follows:

+ (to —l—t)

‘gC, to > 0,t > 0.

(MF)(C) = /t—C—lf(t)dt, Re( = A (4.5.15)
0
Comparing this relation with (4.3.1) and (4.5.6), we see that
(Prf)"(ito) = (MF)(A + ito). (4.5.16)

In the same way, in the considered case, the the inversion formula from Sec. 4.3 takes the form

A+i00
0=, [ Emp©d o (45.17)
A—ioco

where the function M f is assumed to be summable and the relation itself is assumed to be a.e. valid.

Relation (4.5.16) shows that the transformation M embeds the convolution algebra Lg\l)(RJr) into
the algebra of continuous on the line Re { = A functions vanishing at infinity. In Sec. 1.7, this algebra
is denoted by C°[\]. The algebra C[)] of continuous bounded functions has a similar meaning. Using
the transformation x(¢) — Z(t) = (A +it), one can “transport” the Banach algebras M? and M from
the real line to the line Re( = A such that their norms are preserved under this transport. These

algebras are denoted by MO[\] and M [A] respectively. Also, the relation (4.5.16) shows that M°[})] is
the image of Lg\l)(RJr) under the transformation M with the transported norm and the norm in M [)]
is defined by the relation

|z| = sup \my|Mow, (4.5.18)
where sup is taken over all y from the unit ball of M°[)\]. It is obvious that an estimate similar to
(4.3.20) is preserved for this norm. As in the case of the real line, elements of the Banach algebra
MT\] are called Lg\l)—multz’pliem.

For the Mellin transformation, the analog of the relation e~ f(s) = [f(t — a)]"(s) is the relation

S (MF)(C) = MIF(1)](C) (4.5.19)

meaning that the function 6¢ is a multiplier. The closure of the set of finite linear combinations of such
functions with respect to norm (4.5.18) is the subalgebra M'[\] C M|[\] of almost periodic functions.
For any f from C§°(R.), the relation (4.5.15) defines an entire function on the complex plane (.

Using Lemma 4.5.1, one can easily verify that the class C§°(R;) is dense in the space Lg\ll) N Lg\l) =
Lg\lﬁ (R4;0,00). Therefore, if A\; < Ag, then the Mellin transformation embeds the convolution algebra

Lg\lﬁ into the Banach algebra C°[\1, A] of functions continuous in the band [A1, Ao] = {A1 < Re( < Ao},
analytic inside this band, and vanishing at infinity. This algebra and the similar algebra C[\1, \2] are

introduced in Sec. 1.7. As in the case of the line, M°[\1, \o] denotes the image of L&Q under the
Mellin transformation and M A1, A2] € C[\1, \2] denotes the Banach algebra of multipliers with the
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norm similar to (4.5.18). The subalgebra M*[A;, o] € M[\1, A2] of almost periodic functions has a
similar meaning.

For example, the integral (4.5.15) is singular for the function (4.5.10), and the Mellin transform
(Ms)(¢) of the function (4.5.10) belongs to M[A1, A2]. Similarly to Lemma 1.8.3, it is justified that
the function (Ms)(¢) is analytic on the whole plane and its derivative coincides with the Mellin
transform of the function f(¢) = (—1Int)s(¢) belonging to C3°(Ry). According to Lemma 4.3.1, it
belongs to C[A1, A2] and tends to £1 as Im ¢ — 400 uniformly in the band [A;, A\2]. Theorem 4.2.2 for
the multiplicative convolution, combined with Lemma 4.5.1, means that the function Ms belongs to
M1, Aa).

Find the Mellin transform for several basic examples of functions f from L}(R.). Assign

n=st-1 o pw=1 L >0

w1+ wt

where the complex number w does not belong to R \ R;. Taking into account (4.5.10), we conclude
that the functions fi are infinitely differentiable on Ry and

o

/(1 + [In )AL fi(b)|9dt < 00, k=0,1,

0
provided that a > 0, ¢ > 0, and —1 < A < 0. Hence, due to criterion (4.5.11), these functions belong
to L§\71 and, therefore, M f; € MO\, \o] and M fo € M[A1, Ag] for —1 < Ay < Xo. The explicit
representation is as follows (see [14]):

1 1 1
M(ml_t>(g):icotwg, —1<Re(<0,
(4.5.20)
Mt Yo=" ut ~1<Re(<0
i 1+ wt ~ isinw¢’ ’
where the branch of the power function w¢ is fixed by the condition | argw| < 7.
In the same way, we take into account relations
1
1 /(1nt)"t<0—<—1dt = 1 Re( > Re(
! (¢ = Gyt v
° (4.5.21)
! /(1nt)”t<0—<—1dt = ! Re( < Re(p
n! (€ = o)’ ’

1

where n = 0,1,..., to verify that the function x(¢) = (¢ — (o)™™' belongs to M°[\1, \a] provided
that the band [A1, A2] does not contain the point {y. Thus, any rational function vanishing at infinity
and such that its poles are located outside the said band belongs to M°[\1, \z]. Relations (4.5.21)
show that, for any two points (; and (y satisfying the condition Re (1 < A1 < A2 < Re (s, the class
of functions z(() of the kind z(¢) = p({)(¢ — (1) 7™ (¢ — {2)™"2, where n; are arbitrary nonnegative
integers and the power of the polynomial p(¢) is less than n; + ns, is dense in the Banach algebra
MO\, Mg
To conclude, we provide the following property of the Banach algebra M%[\q, Ag].

Lemma 4.5.2. Let the restriction of a function x(¢) from C[A1, \2] to the boundary lines of the band
belong to MO[\;], 7 =0,1. Then x € M°[\y, Aa].

Proof. By the condition, there exist f; from Li;l, j =1,2, such that

z(C) = Mf;)(C), Re¢=A;. (4.5.22)
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According to Lemma 4.5.1, it suffices to prove that f; = fs. Let us prove this for the case where
[j € Ly, i.e., for more general case.

First, we assume that z € C%[\;, Ao] and the functions z(() are integrable on the lines Re( = A;.
Then, for f = f; and A = \;, the inversion formula (4.5.17) is valid:

)\j-i-ioo
fj(t)zzjm- / tz(Q)d¢, >0, (4.5.23)
Aj—i0c0

By the Cauchy theorem applied to the rectangle P, = {A< Re{ < Ao, |Im (| < n}, we have the relation
/ tex(¢)d¢ = 0.
0Py

Since the integrals with respect to the horizontal segments tend to zero as n — oo, it follows that
both integrals at the right-hand side of (4.5.23) are equal (after the passing to the limit).

In the general case, we use the construction of the convolution with the averaging kernel in the
multiplicative variant. Namely, we take a nonnegative function x from C§°(Ry) such that

/X(t)cff .y
0

It is obvious that the function . (t) = e~ x(t!/¢) possesses a similar property and its Mellin transform
(Mxe)(C) is equal to (My)(e€). Taking into account (4.5.22), we arrive at the relation

(MX)(eQ)z(C) = [M(xe * f1)I(C), Rel=A;.

Since the function at the left-hand side of this inequality belongs to C°[A{, \2] and is integrable on
the lines Re ( = ), it follows from the assertions proved above that

Xe * [1 = Xe * f2. (4.5.24)

On the other hand, if f € Ly(R;), then the convolution x. * f tends to f as € — 0 with respect to
the norm of the space Ly. Indeed, if f € C§°(R4), then the following relation holds:

) (xe # 1) (00) = 07 () - s e - 07 (1) - ] a0

Since there exists a segment [0,1/d] such that the function y vanishes outside it, it follows that the
left-hand side of the last relation uniformly tends to zero. Therefore, it remains to verify that the
convolution operators R(x.) are uniformly bounded in Ly. By virtue of (4.5.9), we have the estimate

IR(x)lery) < Ixel, = / A e (t)dt = / t= Ay (t)dt,
0 0

which verifies that the claimed fact takes place indeed.

Thus, for both values j = 1,2, the sequence of functions x. * f; from (4.5.24) converges to f; as
e — 0 with respect to the norm of the space Ly;. According to Sec. 4.1, they contain subsequences
a.e. converging to f;, which yields the relation f; = fo completing the proof of the lemma.
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4.6. [LP-Estimates of Integrals with Weak Singularities

Assuming that G is a measurable set of R*, 0 < o < k, and a(z,y) is a bounded piecewise-continuous
function, consider the following integral with a weak singularity:

Y(x) = / |Z(f’yy|)a e(y)dy. (4.6.1)
G

For ¢ from C'(G) or from C*(G), this integral is considered in Sec. 1.9 and Sec. 3.2 respectively.

Theorem 4.6.1. Let G be a bounded set and ¢ € LP(G). Then the integral (4.6.1) defines a function
Y from LP(G) such that

[¥[re < lalol@lre, lalo = supa(z,y)l, (4.6.2)
x?y

where C' is a positive constant depending only on o and the diameter R of the set G.
If this holds and the function a is continuous, then K@ = is a compact operator in LP.

_ e[ 2| < R,
J(@) = {0, |z| > R.

Proof. Consider the function

Obviously, it belongs to L'(RF) and

()] < lalo](f * ¢)(2)],
i.e., the estimate (4.6.2) follows from (4.2.4).
To prove that the operator K defined by (4.6.1) is compact under the assumption that a € C%(G x
G), consider the sequence {f,} from C§°(R¥) converging to f with respect to the norm of L. Tt is
obvious that the operator K, acting according to the relation

(Kn)(a) = [ ale,)fulee = v)o(w)idy
G
is compact in LP(G) and the difference (K — K,)¢p satisfies the following estimate similar to (4.6.2):

(K — Ky)elre < Clalolf — falpt|elre-

Therefore, the sequence {K,} tends to K with respect to the operator norm, which means that the
operator K is also compact.

In [57] (see also [31]), the boundedness of the operators (4.6.1) in the space LP is investigated (for
various values of p) in detail.

Consider the integral (4.6.1) with a weak singularity in the weight space L% (G, F); the boundedness
requirement for the measurable set G is taken off now, but the function a(x,y) is still assumed to be
continuous and bounded on G x GG. Recall that if the set GG is unbounded, then the point co is to be
an element of F'. According to Lemma 4.1.1, a sufficient condition of the summability of the function
ly — x|~ %¢(y) with respect to y in a small neighborhood of points 7 from F'is as follows: A, > —k for
T # 00 and Ao — a < —k for 7 = 0.

Theorem 4.6.2. Let

p € IX(G,F), —k<A < {0’ T# o, (4.6.3)
a—k, T=o00,
and the weight order v satisfy the conditions
Ur =Apy, TH OO, Voo >k —a+ Aso. (4.6.4)
Then the function v defined by (4.6.1) belongs to the class LY(G, F) and the estimate
Y]z < Clalolel e (4.6.5)
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holds.

Proof. We use Theorem 4.6.1, which is also valid for bounded piecewise-continuous functions a(z,y).
Since the functions ¢(y) and a(x, y) can be extended by zero to R¥, it follows (without loss of generality)
that G = RF and @ = 1. Then

[ »e(y)dy
¥ () —R[ -yl (4.6.6)

In this case, co belongs to F'.
Let x- be a continuous function identically equal to 1 in a neighborhood of 7 and let its support be
contained in B,(7) in notation (4.1.8). Then the function ¢ = ¢ — > x, is identically equal to in a

neighborhood of F'. Therefore, if 1Z is defined via @ similarly to (4.6.6), then, due to Theorem 4.6.1, the
function J belongs to LP outside any neighborhood of the set F' and the corresponding norm estimate
holds. This function is continuous in a neighborhood of the finite points 7. Hence, taking into account
(4.6.3), we conclude that it belongs to LY (B, 7). In a neighborhood of co, we have Y(z) = O(1)|z| .
Hence, due to the inequality —a — Voo = —(Aso + k) < 0 following from (4.6.3)—(4.6.4), the integral
dx

(—a—veo)p
|z ot

|z/>1

is finite. Thus, ¢ € LE_(B;,T) for 7 = .

Thus, according to (4.1.8), the function 1) belongs to the space L’)’\(Rk, F) and its norm satisfies the
estimate (4.6.5). Therefore, our task is reduced to the consideration of the function x,¢. Redenoting
it by ¢, one can assume that ¢ = 0 outside B; and the function i can be considered in B;.

It is obvious that it suffices to consider the following two cases separately: the case where 7 = 0
and the case where 7 = co. In the first case, A = Ay according to (4.6.3) and, therefore, the condition
—k < X < 0 is satisfied. Redenoting |z|~*¢(z) by ¢(x) and doing the same with 1), we reduce our task
to the proof of the following assertion.

If p € L}(B,0), then the integral

d
() z/lxl‘Aly|A|§(f)x|‘?fl, x € B, (4.6.7)
B

belongs to L(B,0) in the domain B = {|y| < 1} and the estimate

$lzp < Clelyg (4.6.8)

holds.
To prove this assertion, we argue as in Secs.3.10-3.11. Assigning ¢ = 0 outside B, consider the
sequence of functions

) ) A 91
w(QZx) :Q(k_a)z‘{ﬂ_)‘ / |y| 90( y)dy’ iZO,—l,...,
o ly—al®
ly|<2—7

in the spherical layer S = {1/2 < |z| < 2}. Represent each such function as follows:

V(2') = 207V 2 (2) + di(e) + ¢ (2), (4.6.9)
where ¥, 1;, and 1} are defined by the integrating over the domains |y| < 1/4, 1/4 < |y| < 4, and
ly| > 4 respectively.

By virtue of Theorem 4.6.1, we have the estimate
w@Ple<c [ lpeopd,

1/2<]e|<2 1/2<]e|<2
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where C is a positive constant independent of ¢. According to Theorem 4.1.1, this implies the inequality
YilLo(s) < Clele. (4.6.10)

Since |y — x| > 1/4 for |y| < 1/4 and |x| > 1/2, we have the following obvious inequality for the
function 1?(x):

@l <ar [ et
ly|<1/4
Combining it with the H'older inequality (4.1.6), we obtain the estimate
mae [0 (x)| < Clpl . (46.11)

Since l[y—z| > |y|—2 > |y|/2 for x € S and |y| > 4, we have (in the same way) the following inequality
for the function v} (z):

pil<z [ ey ‘dfk.
4<]y|<2—8 Y
This yields the inequality
1/q
pwisc| [t o,
d<]y|<2—¢ Y

where ¢ = p/(p — 1) is the conjugate exponent. Since

2 i
/ |y|()\+k—a) | |k _ mesQ /,r()\—i-k o)g— Lar
4<]y[<2~" 4

and the integral at the right-hand side of this relation does not exceed (27! h=a)a 4 JO+k=a)q) o
have the following estimate for t;:

max [} ()| < €27 g (4.6.12)

Combining inequalities (4.6.10)—(4.6.12), we obtain the following estimate for sum (4.6.9):
[(2a) a5y < C@F + 27N glp, i<,

Since no term in the brackets exceeds 1, it follows from Theorem 4.1.1 that the estimate (4.6.8) holds.
Consider the second case, i.e., assume that 7 = co. Again, denote |z| " ¢(2) and |z| 1) (x) by p(z)
and ¢ (x) respectively. We obtain the following (similar to (4.6.7)) integral in the domain B = {|y| >

1}
—opx P dy
:/|:1:| V|y|)\|y—m|a’ x € B.
B

According to (4.6.4), 6 = v — (k — a4+ A) > 0 in the considered case. Hence, we have the following
sequence in the spherical layer S:

: siy - lyre2iy)dy
1/}(22.'13) :2 6Z‘m| v / ‘y_x‘a } 120717"'
ly|>2—7

As above, we decompose this expression into three terms as follows:

D(2) = 27|27V [0 () + () + ol (@), (4.6.13)
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where 9, 1;, and v} are defined by the integrating with respect to the domains |y| < 1/4, 1/4 <
ly| <4, and |y| > 4 respectively.
The terms 1; and v still satisfy the estimates (4.6.10)—(4.6.11). The third one satisfies the estimate

1/q

i< | [t g,
ly|=4
where ¢ = p/(p — 1) is the conjugate exponent. By the condition (4.6.3), the exponent A + k — « is
negative for 7 = oo. Hence, the integral is well defined in the considered case. This yields the estimate
[$(2°2) | 1o(s) < CQR™plpp, @2 0.
Combining it with Theorem 4.1.1, we prove (4.6.8) for the second case.

It follows from Theorem 4.6.2 that if G is a bounded set, then the integral operator defined by
(4.6.1) is bounded in the space L (G, F) provided that

—k<A<0. (4.6.14)

This is proved in [22]. Another proof if this result is provided in [44], where the result itself is presented
in terms of the weight space defined by (4.1.12). Namely, the operator (4.6.1) is bounded in the space
LP(G, ps) if

—k<6<k, 1:1—1.

p q q p

Taking into account (4.1.11) and passing to our notation, we reduce this condition to form (4.6.14),
which is simpler (it does not include the summability order p). This explains the convenience of the
use of weight spaces of the form L’)’\.

4.7. [LP-Estimates of Singular Integrals

Using Theorem 4.6.1 and the Calderén—Zygmund theorem from Sec. 4.2, one can easily extend
results of Secs. 3.4, 3.5, and 3.11 to the LP-case.

Theorem 4.7.1. Let a kernel Q(y, &) from C*O(G,H_}.), where G is a measurable bounded set of
R¥ satisfy the condition (4.2.12) with respect to the variable €. Let ¢ € LP(G), p > 1.
Then the singular integral

(x) = / Qv — D)oly)dy, z€G, (4.7.1)
G

exists for a.e. x and defines a function ¢ from LP(G) such that

Y| r < ClQ|cwo || Le-

Y(z) = /Q(x,y—w)so(y)der/a(x’y)gp(y)dy,
G G

ly — x|F=v

Proof. The relation

where a(z,y) = |z —y|* ¥ [Q(y,y — =) — Q(x,y — )], is valid. By the definition of the class C*(*) from
Sec. 3.1, we have the estimate

1Q(y, &) — Qz,9)| < Qv €] F|w — y]”.

Therefore, the claim of the theorem immediately follows from Theorem 4.6.1 and the Calderén—Zyg-
mund theorem from Sec. 4.2.

Now, let G be an arbitrary measurable set and F' be a finite subset of its limit points containing
the point oo if GG is unbounded.
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Theorem 4.7.2. Let a kernel Q(y,&) belong to CV(O)(G, F;H_i) and satisfy the condition (4.2.12)
with respect to the variable £. Let ¢ € LX (G, F), where p > 1 and —k < X < 0.

Then the singular integral given by (4.5.1) exists for a.e. x and defines a function v from L (G, F)
such that

Yl < ClQloro lely (4.7.2)

Proof. Extending the function ¢ to R¥ by zero, one can assume (without loss of generality) that G = R*
(and, therefore, oo € F'). Further considerations follow the scheme of the proof of Theorems 3.11.1
and 4.6.2.

First, we assume that the function ¢ is identically equal to zero in a neighborhood of F'. Then there
exists a neighborhood of F' such that v is continuously differentiable in this neighborhood. Then

b € I (By(r),7) (4.7.3)

for finite points 7 of F', where B,(7) = {|z — 7| < p} and p is sufficiently small. The estimate
[4(2)| < C|2|7F is valid in a neighborhood of co. This means that if 7 = oo, then (4.7.3) holds in the
domain B,(c0) = {|y| > 1/p} since, by the condition, Ao + k& > 0 and, therefore, the integral

|y|—p()\oo+k) dy
ly[¥
ly|>1/p
is finite. On the other hand, if the set GGy is bounded and there exists a neighborhood of the set F
such that Gg lies outside this neighborhood, then, due to Theorem 4.6.1, the function v belongs to
LP(Gy) and the corresponding estimate of its norm holds.

Thus, if a function ¢ is identically equal to zero in a neighborhood of F', then ¥ belongs to the class
Lg(Rk, F) and the corresponding estimate of its norm holds. Hence, it suffices to prove the theorem
under the assumption that there exists a domain B,(7) containing the support of the function ¢. As
in Sec. 3.10, it suffices to consider the two cases 7 = 0 and 7 = oo. It is convenient to combine these
cases, considering ¢ in L‘f\(Rk , F) with respect to F' = {0,00} and A from R.

Redenoting., we see that it suffices to prove the estimate (4.7.2) for the function

vle) =1l [ 5P Qs ~ D))y (47.4)
k
in the norm of the space L. Represent this relation in the form
v2a) = 1o [P @y~ 2)e(2)dy (4.7.5)
k
and assign 4
ei(y) =¢(2'y), yeS={1/4<|y[<4},

ily) =v(2'y),  yeS={1/2<|y <2}

Since the relation

/f = 3 / = S 2 [ sy

T=70emi) fa<y|<a(2-9) J=meo 1/4<|y|<4

holds for any summable function, it follows that the relation (4.7.4) in the spherical layer S° can be
represented in the form

A Z Vij(@),  ig(a) =27 FFNI /Iy\ Q2 7y, 277y — x)pij(y)dy.

Jj=—00 S
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In particular, the following inequality holds:

+oo
il pogsoy < D [ijleegs), i=0,%1,... (4.7.6)

j=—o0

By virtue of Theorem 4.7.1, we have the estimate

|tiol Lo (s0) < Cleilo(s), (4.7.7)

where C is a positive constant independent of ¢ = 0, +1, ...
On the other hand, for |j| > 1, the absolute values of the functions v;; are estimated as follows:

3 A —ten; [ ei—i(W)ldy
Vi ()] < 877Q o) 2 19y — afF”

Since the inequalities |27y — x| > 1/4 (provided that j > 1) and |277y — | > |277y|/2 > 277 /8 hold
for any = from S° and any y from S, it follows that

2~ (k+NF > 1,
05@)| < Coj [ loiso)ldy. o= {W (173)
s ’ -
Assigning o; = 1 for j = 0 and taking into account (4.7.7), we arrive at the inequality
[VijLe(s0y < Cojlpi—jlir(s)
uniform with respect i. Substituting it in (4.7.6), we obtain the estimate
il o s0) < ClQleow Y ojlpi—jlias) (4.7.9)

J

with a new constant C.
Consider the Banach space [P of two-sided sequences £ = (&;, i = 0,+1,...) summable with the pth
power and endowed with the corresponding norm

€] = (;w’) l/p-

For such sequences, one can introduce the convolution 1 = o * £ as follows:
mi=Y 0i &= 0k
J J

This convolution satisfies the inequality |n| < |o|;1|£|e similar to (4.2.3). Since the sequence o defined
by (4.7.8) is summable, it follows from (4.7.9) and Theorem 4.1.1 that the estimate (4.7.2) holds in
LB for the integral (4.7.4).

As in Secs. 3.5 and 3.11, the presented results are complemented by the differentiation relation for
the integral

() = / vy — 2)p(y)dy, =€ G, (4.7.10)
G

with kernels Q°(y, &) from C*(O)(G,H,_1). To do this, we must introduce generalized derivatives and
Sobolev spaces.
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Let f be locally summable in D. Then, according to Sec. 1.8, it can be treated as a regular
generalized function f acting in the class C§°(D) as follows: f(y) = (f, ). For any multi-index «, its
derivative f(® can be defined as the generalized function acting as follows:

Fe) = (0el (1.57) . pe o)

If a generalized function f(a) is regular, i.e., coincides with a function g summable in the domain D,
then g is called the generalized derivative 0% f /0x® of the function f.

Define the Sobolev space W™P(D) as the set of functions ¢ from LP(D) such that all their partial
derivatives up to the order n (inclusively) exist and belong to LP(D). In this case, similarly to Sec. 2.9,
one can introduce an ordered (in any way) collection

aOl
(m) _ ¥ —
© < Hper’ |l m>

and endow the space W™P(D) with the norm

ol = > 1™ |1;

m<n

it is a Banach space with respect to this norm. To unify the notation, we assign L? = WP, It is easy
to see that, similarly to Sec. 2.3, this space can be inductively introduced by the condition that ¢ and
¢’ belong to W™~ 1P where the gradient vector ¢’ consists of the generalized derivatives. In this case,
the relation
lolwn = l@lwn-1u + |9 lwrn-1

defines an equivalent norm. Also, it is clear that if a function g from C'*°(D) is bounded together with
all its derivatives such that their orders do not exceed n (i.e., belong to C™%(D) in the notation of
Sec. 2.9), then the multiplication operator ¢ — g is bounded in the space WP (D).

Let us describe the relations between spaces WP (D), where D is a Lipschitz domain, for various
n and p.

Theorem (the embedding Sobolev theorem). Let D be a finite Lipschitz domain. Then the class
C>®(D) is dense in W™P(D), 1 < p < oo, and the estimates

lplonpy < Clelwnr, n>p+k/p, (4.7.11)
and
lelzepy < Clelwie, n>1, (4.7.12)

where 0 < pu < 1 and C is a positive constant independent of @, hold for any ¢ from C*°(D).

Let us discuss the above estimates. Let ¢ € W™P(D) and n > pu+ k/p. Select a sequence of
functions ¢; from C'(D) converging to ¢ in W™P(D). Then, due to the estimate (4.7.11) applied to
the difference ¢; — ¢, the sequence ¢; is fundamental in C*(D) and, therefore, there exists a function
¢ from C*(D) such that it converges to ¢ with respect to the C*-norm. Since ¢; — ¢ with respect to
the LP-norm, it follows that ¢ = ¢ a.e. in D. Thus, it is possible to change the values of the function
© on a zero-measure set such that the changed function satisfies the Holder condition with exponent
p and the estimate (4.7.11) holds. The embedding W™P C C* is understood in the above sense.

Applying the same argument as for (4.7.12), we obtain that the sequence of restrictions of ¢; to
I' = 0D converges in LP(T') to a function ¢ from LP(T"), depending only ¢ and called the trace (or
boundary value) of the function ¢ on I'. The embedding W™P(D) C LP(T") is understood in the above
sense.

Let W,P(D) denote the class of functions belonging to W™P(Dy) for any finite domain Dy such

loc
that it and its closure are contained in D. To unify the notation, we assign LP = WP and, similarly
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to 2.9, introduce the homogeneous Sobolev space W;""(D), using induction with respect to n with
the following conditions:
-1,
o(x), |zl (z) € Wi~ H(D). (4.7.13)
This is a Banach space with respect to the corresponding norm. In the explicit form, the space
WyP(D) consists of all functions ¢ from W,*(D \ 0) such that

o) 0%
2 5 e
If at least one of the points 0 and oo is a limit point of the set D, then the above definition introduces
a new space. Otherwise, this space coincides with W™P(D).
For the space W;"", the corresponding analog of Theorem 4.1.1, where the symbol L? is to be
replaced by W™P, holds. The proof is similar to the proof of Theorem 2.9.2.
As in Sec. 2.9, for functions ¢ from W;"P(D \ F), the space W,"”(D, F') can be defined in two

equivalent way. The first one is similar to Sec. 2.8 and is based on the spaces W™P(D) and W’ (D).
Another way is the inductive definition by the conditions

peWyTP W e Wy, (4.7.14)

Based on this definition, one can inductively introduce the norm in this space. Another way to
introduce the norm is to use the relation

el =D 6™ on .

m<n

eLf, |al<n.

It is clear that the introduced space is a Banach space with respect to the introduced norm. Both
approaches are equivalent and lead to the same result.

Using the analog of Theorem 4.1.1 for the space W;"", one can easily extend the embedding Sobolev
theorem to the space Wf P For simplicity, we restrict our consideration by the two-dimensional case.
Let a finite domain D on the Riemann sphere be bounded by a piecewise-smooth contour and let
a finite set I’ contain all its corner points. It is assumed that this is a Lipschitz domain, which is
equivalent to the absence of cusps on the curve I'.

Theorem 4.7.3. Let D be a Lipschitz domain with a piecewise-smooth boundary in C. Then the
following embeddings of Banach spaces take place:

CY{(D,F) SW(D,F), n>pu+k/p, L}(OD,F)C W "(D,F). (4.7.15)
They are understood in the same sense as in the Sobolev theorem above.

Proof. The scheme of the proof is the same as for Theorems 3.10.1 and 3.11.1. If o € W™P and its
support is compact in D, then the claim follows from the embedding Sobolev theorem. Therefore, it
suffices to proof the claim of the theorem under the assumption that the support of the function ¢
is contained in the domain B,(7) and is identically equal to zero in a neighborhood of a boundary
circular arc of this domain. As in Secs. 3.10 and 3.11, it suffices to consider only the cases where the
sector vertex is the point 7 = 0 and the point 7 = co. It is convenient to combine both cases, taking
the domain D bounded by two radial smooth arcs I'’ and I'! with endpoints 7 = 0 and 7 = oo and
assuming that the weight order A of the function ¢ from WA" P(T;0,00) does not depend on T, i.e., is
a real number.

In notation of Theorem 4.1.1(a), consider the sequence of domains D; in the spherical layer S =
{8 < |z| < '} For sufficiently large |j|, they are bounded by circular arcs L™ from {|z| = 6*1} and
the arcs F? and F?. It is obvious that the arc F? tends to segments Li of a line as j — +oo in the
metric of C'. Hence, due to the Sobolev theorem, the following embeddings of Banach spaces uniform
with respect to j take place:

CH(D;) C W™P(D;), n > u+k/p, ILP(OD;) C WhHP(Dy).
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Due to Theorem 4.1.1 formulated for W', this implies embeddings (4.7.15).

A detailed presentation of the theory of Sobolev spaces (including weigh ones) can be found in [35,
41, 47].

Pass to the integral (4.7.10). First, we assume that G is a bounded domain. Let a bounded domain
D with a C'¥-boundary contain G and a kernel Q° belong to C”’(l)(D, Hi_). Extending the density
¢ from LP(G), p > 1, by zero, one can assume (without loss of generality) that ¢ € LP(D). Then ¢°
belongs to the Sobolev space WLp (D) and

W @)= ol / oty o) = [e@@oe @119
o; = i ¢ (y,y p\y)ay, i = i ) . -

Indeed, let 0 < u < v and a sequence {¢,} from C*(D) converge to ¢ in the norm of the space LP.
If ¥ is defined by ¢,, similarly to (4.7.10), then, due to Theorem 3.5.3, the function ¥¥ belongs to
CH#(D) and its partial derivatives are computed according to a relation similar to (4.7.16). Then, due
to Theorem 4.7.1, we conclude that the sequence {9 /0x;} converges in the LP-norm to the function
zp? defined by the right-hand side of (4.7.16) and the claimed assertion immediately follows from the
definition of generalized derivatives.

Thus, under the admitted assumptions, the integral operator defined by (4.7.10) boundedly maps
LP(G) to WP(D).

Now, let G be an arbitrary measurable set and

0, 7 # oo,

1, 7=o0.

e IR(G,F), —k<A < {_ (4.7.17)

Extending ¢ by zero, one can assume (without loss of generality) that G = R*. Let Q° € C’g © (R*, F).

Then 1° is represented by (4.1.4) with o = k — 1. Then, by virtue of (4.7.17), the condition (4.6.3) of
Theorem 4.6.2 is satisfied. Therefore, due to this Theorem, the function 1° belongs to the space

)\7'7 T 7é 00,

(4.7.18)
Ar+1, 7=o00.

L2(R* F), v, = {
Decomposing the density ¢ into the sum of two functions such that one of them is identically equal
to zero in a neighborhood of a fixed point a not belonging to F', we verify (similarly to Lemma 3.5.2)
that the function ¢° belongs to the class W, ’p(Rk \ F) (i.e., to the space WP(Dy) for any bounded
subdomain Dy such that it and its closure lies in R* \ ') and the relation (4.7.16) holds.

Thus, the function ° belongs to space (4.7.18) and its generalized derivatives 9¢y"/dz; belong to
the space L;‘;\(}R'f ,F). As in the C*-case considered in Sec. 2.10, a problem of a refined description of
the class of functions ¢° possessing this property arises, but we do not consider this problem in the
present work.

4.8. Singular Cauchy Integrals with LP-Density

Let I be an orientable curve on C. Consider the generalized singular Cauchy integral

to /Q to,dt ( ), toel. (4.8.1)

In Sec. 3.11, these integrals are studied under the assumption that the density ¢ belongs to the class
C*" on a smooth curve or the class C* with weight on a piecewise-smooth curve.

In the current section, we consider the case where I' is a smooth-Lyapunov curve and the density ¢
belongs to the space LZ;\(F, F) defined with respect to the linear measure d;t similarly to Sec. 4.1. It
is clear that Theorem 4.1.1 is still valid for the space L{(T', 7), where I is the radial arc with endpoint
T=0o0r 7=o00.
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First, we assume that I" is a bounded Lyapunov arc and ¢ € LP(I"). The Riesz theorem and Hardy—
Littlewood theorem from Sec. 4.1 are easily extended to this case by means of the arc parametrization.
Let a smooth arc I' belong to C'*, 0 < v < 1, and [ be its length. Consider the natural parametrization
7 :[0,1] — T belonging to the class C1*[0,1] by condition and the related function

1

q(s0,8) = 7(82 : Z(So) = /7’[7“3 + (1 —=r)soldr from C(]0,1] x [0,1]) (4.8.2)
‘ 0

such that its value for s = sq is equal to 4/(s). This function is different from zero everywhere. Hence,

there exists m from (0, 1] such that the two-sided estimate
mls — so| < |y(s) = v(s0)] < s — 5ol (4.8.3)
holds.

Theorem 4.8.1. LetT' € O, 0 < v < 1, and Q(t;€,m) € C*W(T). Then, for any ¢ from LP(T),
p > 1, the singular integral defined by (4.8.1) exists a.e. on I' and defines a function ¢ from LP(T)
such that
[¥]e < ClQlevmlelLr, (4.8.4)
where C' is a positive constant depending only on the C”-norm of the function q and the constants l
and m from (4.8.2) and (4.8.3).
The same estimate also holds for the mazimal functions

1 £)|dit
(M) (to) = sup / o(®)ldit,  (Mye)(to) = sup r / [p(t)at
r>0 T r>0 |t—t0|
[t=tol<r [t—to|>r

(4.8.5)
()t =sw| [ @it~ todelt)|, tocT.

Proof. Consider the substitution ¢ = v(s) mapping any ¢ from LP(I") to the function @(s) = ¢[y(s)],
0 < s <, such that
lele@y = 1@l Lr[0,- (4.8.6)
It is convenient to extend the function ¢ to the whole line, preserving its notation.
Obviously, in the one-dimensional case, the condition of Theorem 3.3.1 for the singular integral
given by (4.8.1) is satisfied for this substitution. Hence, as in the case of Lemma 2.3.3, we have the
relation

7(s0)] /Q —v(50), 7 (8)]e[y(s)]ds, 0 < sg<L.
Since Q(t;&,7) is a homogeneous function of power —1 and it is odd with respect to &, it follows that
k(sg, s
@ (s)7(5) = 7s0). 7 6 = " kso9) = QB @saso, A G (48

By virtue of Lemma 3.1.2, the function k(sg, s) belongs to C¥([0,!] % [0,1]) and there exists an absolute
constant Cy such that

klov < Col Qv |glon (4.8.8)
Thus,
L p l k;
Y[y(so)] = k(So,so)/so(s) § +9(s / (s0, 8 so’so)go(s)ds. (4.8.9)
§— S0 s — 8o
0 0
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It is obvious that (s) is the integral with a weak singularity, considered in Sec. 4.6. Therefore, taking
into account (4.8.6) and (4.8.8), we conclude that the first assertion is a corollary of the Riesz theorem
from Sec. 4.1 and of Theorem 4.6.1.

Further, similarly to (4.8.9), we have the inequality

- o
| ettt = to.dev)] < ke / Ps)ds| / 1B(s)lds
0

s — S0 |s — so|t¥
t—to|>r v(s)=v(s0)|2r
By virtue of (4.8.3), the inequality |yo(s) — Yo(so) > r implies the inequality |s — so| > r. Therefore,
arguing as above, we deduce the estimate (4.8.4) for the function ¢ = Mjp from the Riesz theorem.
Pass to the estimate of the function Myp. By virtue of (4.8.3), the inequality |v(s) — v(so)] < r
implies the inequality m|s — so| < r, i.e.,

(Mow)[v(s0)] = i / |5(s)|ds < i / 13(s)|ds
Iv(s)I<r m|s—so|<r

(we recall that the function ¢ is extended to the whole line by zero). Therefore, the estimate (4.8.4)
for ¢ = My follows from the corresponding assertion of the Hardy—Littlewood theorem.
In the same way, we have the inequality

(Myp)(s0)] < / Plolds T2 / [P(s)lds (4.8.10)

m s —s0> ~ m |s — 50>
[v(s)|>r m|s—so|>r

According to Lemma 4.1.2, we have the inequality

r / P _ 5 01 / 13(s)|ds,

m s —sol> =~ o7
m|s—so|>r |s—so|<r

i.e.,

(Mop)[y(s0)] < % sup ! / |3(s)]ds.
my>oT

[s—so|<r

Therefore, the estimate (4.8.3) for ¢ = M{¢ also follows from the Hardy-Littlewood theorem.

Complement Theorem 4.8.1 by the following assertion implied by the Lebesgue points theorem from
Sec. 1.8 and by Lemma 4.1.2.

Lemma 4.8.1. Let a function ¢ be summable on a smooth arc I'. Then

1 L lp(t) — ()| , ,
tim | / (o(t) — plto)dst = lim r / )= (4.8.11)

[t—to|<r [t—to|>r
for almost all points ty of T'.

Proof. The first limit is equal to zero due to the Lebesgue points theorem from Sec. 1.8. Consider the
second limit. Similarly to (4.8.10), we have the (double) inequality

lo(t) = e(to)] r [6(s) — @(so)lds _ v |2(s) = @(s0)|ds
dit < < )
|t —tol m? s — sol? m? s — sol?
lt—to|2r [v(s)=(s0)|2r m|s—so|>r
where the inequality m|s — sg| > r in the last integral is considered on the segment [0,]. Extending
the function f(s) = |p(s) — @(so)| by zero and using the second part of Lemma 4.1.2, we obtain that
the second limit of (4.8.11) is also equal to zero.
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Now, consider a piecewise-smooth curve I' on the extended plane C. As in Sec. 3.10, we assume
that a finite set F' contains all its boundary points (including oo if the curve is unbounded). Then T’
can be represented in the form

\F=ToUT1U...UTl,, (4.8.12)

where Iy is a smooth contour (in general, it might be a composite contour), fj are open smooth
arcs, and all these curves are pairwise disjoint. As above, for any 7 from F', B;(p) denotes the disk
{|]z = 7| < p} if 7 # oo and the exterior of the disk {|z| > 1/p} if 7 = co. If p is sufficiently small,
then the intersection I'y = I'N B;(p) is decomposed into n, smooth arcs I'; ; with a common endpoint
7. We select p sufficiently small to ensure that all arcs I'; ;, 1 < j < n,, are radial with respect to the
endpoint 7.

First, we note that the following estimate holds:

3 /\gp(t)|d1t + / @I it < Cliglyr, —1<A<0, (4.8.13)
T#OOFT Foo

Indeed, if 7 is a finite point of F', then, by virtue of the Holder inequality, we have

L/p 1/q
/ l(t)|dit < / lp(t)[P|t — 7| 7P Ldyt / It — 7|1 ’
I'r T, I

where 1/¢ = 1—1/p. It remains to note that the inequality A, > —1 implies the inequality g\ +¢/p >
—1 and, therefore, the integrals on the right-hand side of this inequality are finite. If 7 = oo, then
t|=1 = [¢t|"A—1/P|t|}—1/9 and, in the same way,

1/p 1/q

/|90(t)||t|_1dlt§ /|90(t)|p|t|_p)‘7_ld1t /|t|q)‘T+Q/Pd1t ’
- . .

in this case, the inequality A\; < 0 implies the inequality g\, — 1 < —1.
The estimate (4.8.13) shows that the integrand of (4.8.1) is summable on I' outside any neighborhood
of the point tg and, therefore, the singular integral is well defined.

Theorem 4.8.2. Let a piecewise-Lyapunov curve I' not contain cusps and a generalized Cauchy kernel
Q(t;&,m) belong to Cg(l)(I‘,F). Let p € IX(T, F), where p > 1 and —1 < X\ < 0. Then the function 1
defined by the integral (4.8.1) belongs to the class LX (T, F) and the estimate

[Wley < ClQlrmleley (4.8.14)

of its morm holds.

Proof. We use the same scheme as for the proof of Theorem 4.7.2. It is possible to select v sufficiently
small to ensure that the smooth contour I'y and the open smooth arcs I'; of the expansion (4.8.12)

belong to the classes C1" and C(llio) respectively.

If  vanishes in a neighborhood of F, then, by Theorem 4.8.1, the function 1 belongs to LP(I'y) on
any arc I'g from I\ F. It is obvious that the function 1 (tg) is bounded in a neighborhood of finite
points 7 and behaves as O(1)|to|™! as tg — oo. Taking into account the fact that —1 < XA < 0, we
verify, similarly to the deduction of (4.8.13), that this function belongs to L’)’\T (T';,7) for any 7 from
F.

The above considerations show that it suffices to consider only the case where there exists 7 from F'
such that the function ¢ is equal to zero outside I';, the singular integral 1 is considered on I';, and
7 =0 or 7 = co. Both these cases can be combined for a curve I' composed by radial arcs I'!,..., I
with common endpoints 7 = 0 and 7 = oo such that they are not cusps for this curve.
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Redenoting and assigning A; = A, we see that it suffices to prove the estimate (4.8.14) for the
function

W(to) = [to] ™ / QL t — to, dt)p(t), to €T, (4.8.15)
r
with respect to the space L5(T"). Represent this relation in the form
W(2it0) = |t / 1PQitt — to, d)p(211), o€ 27T, i=0,41,..., (4.8.16)
2-il

and assign (for brevity)
wi(t) = p(2't), tel;= 27 T)Nn{1/4<|t| <4},

. 0o (4.8.17)
Gilt) = (2'0),  teT?=(@7T)N{1/2 < |t <2}.

Recall that T' consists of radial arcs I'*, 1 < k < n, with the common endpoints 7 = 0 and 7 = co.
Respectively, any curve I'; consists of n radial arcs Ff. Proving Theorem 3.10.1(b), we found that
the arc I'¥ tends to the corresponding segment I¥ as i — o0 in the metric C¥. This segment is
the intersection of the ring {1/4 < |t| < 4} and the ray such that its vertex is the origin and it is
parallel to the tangent to T'* at the point 7 = 0 (if i — +00) or at the point 7 = oo (if i — —o0). In
particular, the three parameters such that the constant C in the estimate of Theorem 4.8.1 for the
curves Ff depends on them are uniformly bounded with respect to i = 0,41, ... Since, by condition,
7 is not a cusp, it follows that the segments I*, 1 < k < n, are pairwise different and the segments
I _’ﬁ, 1 < k < n, are pairwise different.
If a function f is summable on I', then

400 oo
4 | ft)dit = f(t)dit = 277 f(t)dyt.
F/ =y =y / 1

TN {2-i-2< |t <2-9+2} =T airn{1/4<|t|<4}

Applying this fact to the curve 27T and the integral (4.8.16), in notation of (4.8.17), we obtain the
relation

+00
p(2'tg) = Y bijlto),  hijlto) = 27U / Q2279 — to, dt )i (1),
j=—00 iy
whence

+oo
4Wz’|Lp(rg) < Z |1/}ij‘LP(Fi,j)' (4.8.18)

j=—o00

As we note above, it follows from Theorem 4.8.1 that

[Yiol e oy < ClQlcow lilLe(ry), (4.8.19)

where C' is a positive constant independent of 4. For the functions 1;;, 7 # 0, we have the following
estimate similar to (4.7.8):

2-(HNT >,
sup iy (t0)] < Cor3|Ql ot / Ot o=42 (4.8.20)
t()EF(Z-) o 2 ) J S —1.

i—j

To obtain it, estimating the integrals over radial arcs contained in 277T", we take into account the
fact that the absolute values of the derivatives of the radial parametrization of these arcs are bounded
uniformly with respect to j.
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Indeed, let a radial arc I'* contained in T be given by the radial parametrization v(s) = seif (s),
0 < s < 00, where f is continuously differentiable for 0 < s < oo and has the following limits:

. o . o . / T / o
;1_1)1(1) f(s) = co, 811)120 f(s) =c, ll_)l% sfi(s) = 811)120 sf'(s) = 0. (4.8.21)

Then the curve 27/T* has a radial parametrization v;(s) = se*/1(5) where the function f;(s) = f(2's)
also possess the properties (4.8.21) and

! < !
[vi(s)l < qmax | (s)],

which proves the claimed assertion.
Assigning o; = 1 for j = 0, we deduce the following estimate from (4.8.19)—(4.8.20):

[%ijl ooy < ClQlcow l@ijlirr, ), 13l = 1.
Similarly to the proof of Theorem 4.7.2, we combine the last estimate with (4.8.18) and obtain that
the estimate (4.8.14) with A = 0 is valid for the integral (4.8.15).

For the classical case of Cauchy-type integrals (where Q(§,7) = n/€), Theorem 4.8.2 is proved
in [30] for the first time.

4.9. Cauchy-Type Generalized Integrals with LP-Density

Let I" be an orientable piecewise-Lyapunov curve on the complex plane. Consider the Cauchy-type
generalized integral

o(z) = /Q(t;t —z,dt)p(t), te¢T, (4.9.1)
r

where the density ¢ belongs to LY (I, F'), and the corresponding singular integral defined by (4.8.1).
In Chap. 3, this integral is studied in the case where ¢ belongs to the class C* with weight. Recall
that, under the corresponding assumptions about the kernel @, the function ¢(z) has one-sided limits
¢* (to) at internal points ¢y of the curve I, linked with the value ¢*(tg) of the integral (4.8.1) at these
points by the relation

#(t0) = £olt)plte) + lto), olto) =, [ Qltosé.de), (492)
T

where the unit circle T is oriented counterclockwise. Investigate the behavior of the function ¢ near
the curve I' under the assumption that the density ¢ is only summable. For classical Cauchy-type
integrals with kernel Q(&,n) = n/&, this is investigated in [53] in detail. The case of general Cauchy
kernels is studied in [70, 71].

First, we consider the case where I' is a bounded Lyapunov arc. It is convenient to assign to any
point ¢y of I' and any 6 from [0, 7] the centrally symmetric cone Kpy(to) such that its vertex is to, its
angle of opening is equal to 0, and it is defined by the inequality

|arg[(z — z0)n(to)]| < 0, (4.9.3)

where n(ty) = ie(ty) denotes the unit normal to I" at point ¢y. It is obvious that the line containing
to and parallel to the vector n(tg) is the bisectrix of this cone. It is decomposed into the two cones
K (to) and K, (to) located from the left and from the right (respectively) of the orientable arc I'.

Lemma 4.9.1. For any 6 from [0, x] there exist positive p and m such that
|z —t| > m(|z —to| + |t — to]) (4.9.4)
for any t and tg from T and any z from Kylto;n(to)] such that |z — tg] < p.
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Proof. Fix e from (0,7 — 6) and consider the cone K.[to, e(ty)] of opening ¢, defined in the same way
with respect to the unit tangential vector e(tp). Obviously, the tangent at the point to of I' is its
bisectrix. As in the case of Lemma 2.5.1, it is easy to verify that there exists a positive p such that

I'n{lz —to| < 2p} C Kclto, e(to)] (4.9.5)

for any point ¢y of I'. According to Lemma 2.1.2, there exists a positive ry depending only on 6 and
e such that inequality (4.9.4) with r = r¢ is satisfied for any z from Kpy[to;n(to)] and any ¢ from
K_[to, e(tp)]. Then, taking into account (4.9.5), we conclude that the said inequality holds for for any
t and to from I' such that |t — ¢9| < 2p and any z from Kjy[to;n(t9)] such that |z —to| < p. On the
other hand, if ¢ and ¢y belong to ', |t — to| > 2p, and |z — tg| < p, then we have the obvious inequality

p
+R

where R denotes the diameter of the arc I'. Thus, we arrive at the estimate (4.9.4), where m is the
least of the numbers ro and p/(ro + R).

|z —t|>p> (|2 = tol + [t — tol),
To

Note that if a sequence of smooth arcs I',, converges to I' in the class C!, then it is possible to select
the numbers p and § in this lemma such that they do not depend on n, but the lemma holds for any
arc I'),.

Indeed, let T';, — T in the class C'. Then there exists a number p satisfying the condition (4.9.5)
with respect to I';, such that it does not depend on n; this is proved similarly to Lemma 4.9.1.

Consider the behavior of the Cauchy-type integral ¢(z) near a smooth orientable arc I'. For any 6
from (0, 7), define p = p(#,I") according to Lemma 4.9.1. Then it is possible to introduce the sectors

S;t(to,l“) = Két(to) N{z—to| < p,T)}, toel, (4.9.6)
such that the sector ST lies from the left of T.

Theorem 4.9.1. Let a Cauchy-type integral be expressed by (4.9.1) such that T is a CYV-are, the
Cauchy kernel Q belongs to C*M(T), and ¢ belongs to LP(I), p > 1. Let 0 < § < w. Then the
functions

(Mg @)(to) = sup _[¢(2)]
z€Sy(to,I")

belong to LP(T), | My ¢|r» < Clo|re, and for almost all to from T there exist one-sided limits ¢* (tg) =
lim ¢(2) as z — to and z € Sy (to,T), satisfying the relation (4.9.2).

The said one-sided limits are called the corner limit values.

Proof. Let z € S;t(to,F) and r = |z — tg| be fixed. Represent the integral (4.9.1) by the sum ¢(z) =
or(z,t0) + V- (to), where

U (to) = / QUt:t — to, dt)p(2),

[t—to|>r

¢r(2,t0) = / Q(t;t — to, dt)p(t) + / [Q(t;t — 2z, dt) — Q(t; — to, dt)]o(t).

[t—to|<r [t—to|>r

(4.9.7)

According to Lemma 3.1.1, the first term satisfies the inequality

1 1 1
L < )dyt Hldit |
ol <lQleonr | [ 2 e [] s o

[t—to|<r [t—to|>T
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Taking into account (4.9.4), this leads to the estimate

1 2r lp(t)|d1t
orento)l < QI | [ el 2y [ PORE (193)

|t—t0|§7‘ |t—t0|27‘
Hence, in notations (4.8.5), we have the inequality

(M) (to) < Cl(Mow)(to) + (Mge)(to) + (M) (to)]

and the first claim of the theorem is a corollary of Theorem 4.8.1.
It is obvious that the second claim holds in the case where the density is constant. Therefore, it
suffices to prove that

lim /Q(t;t — 2, dt)[p(t) — p(to)] = /Q(t;t — to, db)[p(t) — ¢(to)] (4.9.9)
T r

z—to

provided that z is located inside the sector Sy(to,T").
To do this, we represent the function under the limit sign as the sum of the terms v, (ty) and

r(2,to) defined similarly to (4.9.7) with respect to the density o(t) — o(to). Then, according to the
definition of singular integrals, to prove the relation (4.9.9), it suffices to verify that

}1_)11% ¢r(z,t0) =0 (4.9.10)

provided that z is located inside the sector Ky(tg). In the considered case, similarly to (4.9.8), we
have the estimate

_ X ) o
6 (2, t0)] < 1Qleoy | / () = p(to)ldrt + / |¢(t)|t_if|3)| it .

|t—t0|§7‘ ‘t—to‘ZT

combining it with Lemma 4.8.1, we prove (4.9.10).

Pass to the general case, i.e., assume that I' is a piecewise-Lyapunov curve and the function ¢
belongs to LX (T, F), =1 < A < 0. Then the behavior of the Cauchy-type integral ¢(z) is described by
Theorem 4.8.1 near any arc I'g of I' \ F'. Consider the behavior of this integral in a neighborhood of
the points 7 of F. More exactly, consider it in the domain B,(7).

Recall that B,(7) = {|z — 7| < p} provided that 7 # oo and B,(7) = {|z| > 1/p} provided that
T = 00. By virtue of the choice of p, the circles |z — 7| =5, 0 < s < p (the circles |z| = 1/s for 7 = 00)
nontangentially intersect the radial arcs I'; , 1 < k < n,, composing the curve I'y = I'NB,(7). Assign
Jr = (0, p] for 7 # 0o and J; = [1/p,0) for 7 = oo and introduce the following maximal function on
Jr:

(M79)(s) = sup [é(z)], (4.9.11)

|z—7|=s

where |z — 7| is replaced by |z| if T = 0.

Theorem 4.9.2. Let a piecewise-Lyapunov curve I' not contain cusps, a generalized Cauchy problem

Q(t;€,n) belong to Coy(l)(F,F), and the density ¢ from the integral (4.9.1) belong to L (T, F'), where
p>1and -1 < A <0.
Then the function Mr¢ from (4.9.11) belongs to L§T(JT,7') and its norm satisfies the estimate

Mrdly < Clelp. (4.9.12)
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Proof. It suffices to prove the theorem in the cases where 7 = 0 or 7 = 0o. As in the proof of
Theorem 4.8.2, both cases can be combined in the framework of a curve I' composed from radial arcs
I't,...,T™ with common endpoints 7 = 0 and 7 = oo such that they are not cusps of this curve (by
assumption).

Redenoting and assigning A- = A, we see that it suffices to prove the theorem for the function

6(2) = |z|_’\/|t|’\Q(t;t (), 24T, (4.9.13)
r

in the space Lfj. More exactly, similarly to (4.9.11), this function is mapped to the maximal function

(M@)(s) = sup |¢(2)], 0<s< o0, (4.9.14)

z|=s

and the estimate (4.9.12) with A = 0 is to be proved for it.
As in the proof of Theorem 4.8.2, from (4.9.13), pass to the relation

$(22) = |2[ / Q2 — z,dt)p(2't), [z] =5, 1/2<s<2,
2—i["
and, for brevity, assign I'; = (27°T') N {1/4 < [t| < 4} and @;(t) = p(2°t), t € T;. Then, as in Sec. 4.8,
the previous relation can be represented as follows:

+o0
49(272) = > ij(2),  ijlz) =2 UV / EPQ2594; 277t — 2, dt) i (1).

j=—00 Ty
Then .
AM@)(2's) < > (My)(s), 1/2<s<2, (4.9.15)
j=—00

with respect to the maximal functions

(M¢i;)(s) = sup 93 (2)], 1/2<s<2.
zZ|=S8
As we note above, if 1/2 < s < 2, then the circle |z| = s intersects the radial arcs Ff, 1<k <n,
nontangentially. If ¢ — 400, then the arc I’f tends to the segment I} in the metric C1*. Therefore,
as in the proof of Lemma 4.9.1, we verify the validity of inequality (4.9.4), where z varies on the circle
|z| = s, 1/2 < s < 2, t belongs to I';, and ¢ belongs to I';, |tg| = s. Taking into account the remark
to the said lemma, one can find a positive constant m in this inequality such that it does not depend
on ¢ = 0,%£1,... Therefore, one can use an analog of Theorem 4.9.1 to conclude that the maximal
function M ¢;o belongs to LP[1/2,2] and satisfies the estimate

M ¢io|rr < Cleilr,

uniformly with respect to . For the functions ¢;;, j # 0, the following estimate similar to (4.8.20) is
obtained:

9—(14+A)j j>1
sup |¢ii(z SCO"/QD‘_'t dt, o;j=< . 77
1/2§\z\§2‘ 52 ’ [oi=5(0) ’ 27, Jj=<-L

Fi—j
As in Sec. 4.8, these estimates combined with (4.9.15) imply the estimate (4.9.12) for the maximal
function(4.9.14) in the space L.

Based on the properties of Cauchy-type integrals proved in Theorems 4.9.1-4.9.2, define Hardy—
Littlewood classes HP. Let a domain D be bounded by a piecewise-smooth curve I' and a finite subset
F of T contain all its boundary points. Then I' \ F' is an open smooth curve. Let H” (D, F) denote

loc
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the class of functions ¢ from C(D) such that, in a neighborhood of each arc I'y of I'\ F, they behave as
the Cauchy-type integral from the first assertion of Theorem 4.9.1. Consider this definition in detail.

As we note in Sec. 2.5, there exists pg (called the standard radius of the arc I'g) such that the curve
I' decomposes the disk B(tg, po) = {|z —to| < po} into two connected components B (ty, py) provided
that tg € T'g. If the arc 'y is orientable, then the signs are selected such that BT (tg, po) lies from the
left of T'g and pg can be selected sufficiently small to ensure that any of the components B*(tg, po)
intersecting D is contained in D. Then the domain D lies from the left or from the right of I'y if
Bt (to, po) (B (to, po) respectively) is contained in D, but lies from both sides of D otherwise (i.e., if
[y is a cut for D).

Let the number p = p(6,Iy) (see Definition (4.9.6) for sectors) for the arc I'g not exceed the specified
standard radius pg. Assign S(tp,I'0) = ST (tg,T) if the domain D lies from one side of I'y (with the
corresponding choice of the sign) and assign S(tg,Tg) = S™(to,To) U S~ (to, ) if Ty is a cut for D.
Then it is obvious that S(tg,I'g) C D and the following maximal function can be introduced for any
¢ from C(D):

(Mp@)(to) = sup  |p(2)|, to € Th. (4.9.16)
z€Sp(to,I0)
Then the definition of the class H] (I',F), p > 1, consists of the following requirement: for any arc
Iy from I'\ F and any 6 from (0,7), the introduced function My¢ belongs to LP(Ty).

It is obvious that, multiplying elements of the class H? by bounded continuous functions, we do
not leave the class. In the same way, it follows from the Holder inequality that the product ¢y of
functions ¢ from HP? and 1 from H? belongs to the class H' provided that p and ¢ are conjugate
exponents. The next theorem combines several substantial properties of this class.

Let ¢ belong to HP(D, F'), an arc I'g be a subset of I' \ F', and 7 be an internal point of this arc.

Theorem 4.9.3.

(a) Let T be an endpoint of a smooth arc I'y. Let T'y without T be contained in D. Then the restriction
of the function ¢ to this arc belongs to LP(T'1).
(b) Let L, be the intersection of the circle {|z — 7| = r} with D and
(M-¢)(r) = sup |p(z)], 0<r<e.
ZELT
Then the function M,¢ belongs to LP[0,¢] provided that e is positive and sufficiently small.
(c) Let a sequence of smooth arcs T',, from D, n = 1,2,..., converge to Ty in the metric of C*, i.e.,
there exist their smooth parametrizations v, : [0,1] — L, such that the sequence {v,} converges
to a smooth parametrization ~yo of the arc Tg in the space C'[0,1]. Then

sup |@| e (r,) < oo (4.9.17)

Proof. (a) The point 7 decomposes I' into two arcs Fac. Without loss of generality, one can assume
that I'y and Foi are radial arcs with respect to this point and the distance between it and the second
endpoint of any of these arcs is equal to . Then it suffices to prove that the function ¢[y;(r)] belongs
to LP[0,e] with respect to the radial parametrization 7, of the arc I'y. Since the absolute value of
this function does not exceed M, ¢ (in notation (4.9.16)), it follows that the considered assertion is a
corollary of (b).

(b) Let I'y satisfy conditions (a) and be orthogonal to I'g at the point 7. For definiteness, we assume
that it lies from the left of I'y. In particular, one can assume that Sy from (4.9.15) is the sector S; .
As in (a), without loss of generality, one can assume that I'; and I’S—L are radial arcs with respect to
the point 7 and the distance between it and the second endpoint of any of these arcs is equal to . As
above, the radial parametrizations of these arcs are denoted by 7; and 76:. If I'y is a cut for D, then
L, is assigned to be the circular arc intersecting I';. Then the point 71 (r) decomposes L, into two
arcs L with endpoints 71 (r) and 7 (r) provided that 0 < r < e. It is easy to see that there exists 0
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from (0, ) such that the arc L is contained in the sector S (to,'g) with vertex to = i (r) provided
that 0 < r < &. Therefore, the inequality

sup [¢(2)] < (Mpo) g (1)

zGLf
holds. Hence, by the definition of the class H?, the functions from the left-hand side of this inequality
belong to LP[0,e]. Then this is also valid for the function (4.9.17).

(c) As in (b), without loss of generality, one can assume that the arcs I'), lie from the left of I'g. It
suffices to prove that there exist 6 from (0,7), a sufficiently large ng, and parametrizations -, such
that

Yn(s) € Sy [v(s),To], 0<s<1. (4.9.18)
Then, according to (4.9.15), the absolute values of the functions ¢ o v, are majorized by the function
My o v belonging to LP[0,1].

It suffices to verify the condition locally. Therefore, one can assume that I'g is given by the graph
of a function y = f(z), a < x < b, in the Cartesian coordinate system z = x + iy, where f is a
real function from C'[a,b] and, respectively, I',, are given by equations y = f,(x), where f,, > f and
fn — f in C'a,b]. In such a case, the validity of the condition (4.9.18) is obvious.

In the definition of the class Hl’;c(D,F), the case where F' = @ is not excluded. In this case,
the curve I' contains no boundary points, i.e., it is a smooth contour, and it is natural to denote
the HardyLittlewood class by HP(D). Then assertion (c) of Theorem 4.9.3 can be formulated with
respect to a sequence of smooth contours I',, from D converging to the boundary contour I' in the
metric C!. In the same way, it follows from Theorem 4.9.3(a) that if Dy is a subdomain of D bounded
by a smooth contour, then the restriction of any function ¢ from HP(D) to this subdomain belongs to
HP(Dy). In particular, it follows from these properties that all H?(D)-functions analytic in D belong
to the Hardy—Smirnov class EP(D) (see, e.g., [25]) generalizing the classical Hardy classes HP in the
unit disk (see [26]). In the case of harmonic functions, the similar class is frequently denoted by e?(D)
(see [25]).

Now, introduce the weight Hardy—Littlewood class Hf (D, F) with an arbitrary weight order \ as
follows: it consists of all functions ¢ from H] (D, F) such that, in a neighborhood of singular points
7 from F, they behave as the Cauchy-type integrals in Theorem 4.9.2. In other words, in notation
(4.9.11), for any 7 from F, the function M, ¢ belongs to L5 (Ir, 7). According to Theorem 4.9.2, for
—1 < A <0 and p > 1, the Cauchy-type integral with density ¢ from Li(F, F) belongs to the class
HP(D, F) provided that I" is a piecewise-Lyapunov curve without cusps. It is clear from the proof of
this theorem that it suffices to require the positivity of internal angles of the domain D at all points
7 of F. In particular, the case where this angle is equal to 27 at a point 7 of F' (and this 7 is a cusp
of I'), is not excluded.

From Theorem 4.9.3(b) combined with the property (4.1.11) of LP-spaces, the next assertion im-
mediately follows; it is an analog of the specified property for HP-spaces.

Lemma 4.9.2. Let I'y be a piecewise-smooth curve contained (except for several its endpoints) in the
domain D. Let Dy be a connected component of D\ T'1. Let Fy be a finite subset of 0Dy, containing
FU(I'NTy), and let the weight order A\* on Fy be defined by the relation

A\ Ars T EF,
T \-1/p, TEF\F

Then the restriction of any ¢ from HY(D,F) to Dy belongs to Hfl(Dl, 0Dy).
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