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1. STATEM ENT OF TH E PROBLEM

Let D  C R 2 be a dom ain bounded by a piecewise sm ooth contour T w ithout retu rn  points.
We choose a finite subset F  C T th a t contains all corner points of the contour and consider a
continuously differentiable m apping a  : T \ F  —> D.  Suppose th a t the function a  and its derivative 
a! (with respect to  the arc length) are piecewise continuous on T, i.e., have one-sided limits at 
points r  G F; moreover, a ( r  ± 0 )  e  D  U F  and ol'{t  ±  0) /  0 for r  G F.  In addition, the curve 
a ( T \ F )  is not tangent to  T.

T h e B itsa d ze —Sam arsk ii prob lem . Find an analytic function <fi e  C  (D \ F ) in D  satisfying 
the  boundary condition

Re {a(f> +  a°(f> o a)  |r =  / ,  (1)

where the coefficients a and a0 are piecewise continuous on T. Furtherm ore, in the  case of an 
unbounded dom ain D,  we assume th a t the  function (f) is bounded at infinity.

One can also consider the case in which the coefficient a0 and the shift a  are defined on some 
part T' of the curve T and the boundary condition splits accordingly as

R e ( a 0 ) | r \ r '  =  /o,  R e  (a<f) +  a°(f> o a )  |r , =  / i .  ( ! ' )

By continuing a  to  the entire curve T \ F  and by completing the definition of a0 by zero, one can 
always reduce this problem to the form (1). If a0 = 0, then  we obtain the classical R iem ann-H ilbert 
problem.

Obviously, the B itsadze-Sam arskii problem [1] for the Laplace equation [1] can be reduced to 
problem (1). The Bitsadze-Sam arskii problem was comprehensively studied [2-15] for general 
elliptic equations. In the present paper, we consider problem (1) for Douglis analytic functions, 
th a t is, solutions (f) = (0 i, of the first-order canonical system

P L - J P L = °  <2>O X  2 O X  i

with m atrix  J  £ C lxl whose eigenvalues v  £ cr(J) lie in the upper half-plane Imz/ >  0. Therefore, 
the  coefficients a and a0 in (1) are piecewise continuous I x I m atrix  functions. If J  = i, then 
system (2) becomes the Cauchy-Riem ann system and problem (1), (2) corresponds to  the problem 
for analytic vector functions.

The interest in the statem ent of problem (1), (2) is due to  the fact th a t the Bitsadze-Sam arskii 
problem  for elliptic equations and systems with constant (and only leading) coefficients [16, 17] can 
be reduced to  it.

We note the special case of problem (1'), (2) in which T' is a sm ooth arc and the image a ( r ' )  
splits D  into two subdomains. As indicated in [18], in this case, the problem can be reduced to  
the generalized Riem ann-Hilbert problem, to  which general results in [17] can be applied. In this
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connection, we note the papers [19, 20] for the linearized Stokes system, the paper [21] for the Lame
system of 2D elasticity, and the paper [22] for analytic functions.

Let us re tu rn  to  problem (1), (2) in the above-represented general statem ent. Following [17], 
we reduce this problem to  an equivalent system of singular integral equations, to  which we apply 
the general results in [23, 24].

All considerations will be performed in the weighted Holder class C£ (D ; F ), 0 <  n  < 1, where
the weight order A is a family AT, r  G F,  of real numbers. Recall [17] th a t if AT =  /x, r  G F,
then this space coincides with the Holder subspace (D) of functions vanishing at points r  G F.  
In the general case, it consists of functions of the form tp(x) = \x  ~  <p* G Cft, with
the norm \ip\ = [<£>*|№ .

For the weight order A, we assume th a t

AT =  AT/, t  = a  ( r ' ± 0 ) g F ,  \ t > < 0 ,  a  ( r ' ±  0) G D.  (3)

This condition ensures th a t the operator <fi —> <fi o a  occurring in (1) is a bounded operator in 
the spaces (D; F)  —> C^(T; F).

Let us describe the corresponding smoothness conditions for T, a, a, and a°. Let C n'^+0 stand 
for the union of classes C'",M+e over all e >  0. Then for each sm ooth arc r 0 C r  th a t does not contain 
r e f  as interior points, we require th a t r 0 G C'1,M+0, a  G C'1,M+0 ( r 0), and a, a0 G C ^ +0 ( r 0).

2. TH E RED U CTIO N  OF TH E PROBLEM  
TO A SYSTEM OF SINGULAR INTEGRAL EQUATIONS

By [16], all main facts of the theory of analytic functions based on the Cauchy integral can be 
generalized to  the case of Douglis analytic functions. The role of a Cauchy type integral for these 
functions is played by the integral

(I<p)(x) = —  I[dy\ [y -  x ] - lLp{y), x e D ,  (4)
m  J  

r

with m atrix  kernel [y — x]~l , where the  integration contour T is oriented in such a way th a t the 
dom ain D  lies to  the  left.

Here and throughout the following, we use the notation [x\ = x \  ■ 1 +  x 2J,  x  G M2, and 
[dy] = (dyi ) • 1 +  (dy2) J,  where 1 is the identity m atrix. The similar notation [x\v =  X \ + X \ v  G C is 
used in the scalar case v  G C. By [17], I  is a bounded operator in the spaces C ^(T ;F)  —> C£ (D ; F ), 
—1 <  A <  0, and we have the Sokhotskii-Plemelj formula

{I^p)+{x) = l p ( x )  +  (K<p)(x), « r ,  (5)

where (K<p)(x) corresponds to  the singular integral (4) for x  G T \ F .
If the dom ain D  is unbounded (in this case, we write o o g D ) ,  then the function (I<p)(x) vanishes 

a t infinity, and in a neighborhood of infinity it can be expanded in the absolutely and uniformly 
convergent series

°o „
(I<p)(x) = J^ [a :]_fc_1cfc, cfc = -----: /  [y]k[dy\Lp{y).

L—' 7Tl I
k = 0 “

A similar expansion (in powers of [x]~k, k > 0) is valid for each Douglis analytic function <fi(x) 
bounded at infinity. Therefore, the class (D ; F ) for such functions can be defined with respect 
to  a bounded dom ain D n  {\x\ < R},  where R  is sufficiently large.

The reduction of problem (1), (2) to  a system of singular integral equations is based on the 
following analog of the Vekua-Muskhelishvili theorem  [17].

T h eorem  1. Let J  be a triangular matrix, and let — 1/2 <  A <  0. Then each Douglis analytic 
funct ion (f) G (D ; F ) can be represented in the form

<l> = i<p + £, (6)
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where p  £ C £(r ;  F ) is a real vector funct ion and i£ £ R l (respectively, £ £ C l) i f  o  £  D  (respec
tively, o  £ D). I f  0  =  0 in this representation, then £ =  0 and the funct ion p  is constant on 
the connected components of  the contour r  and, for  o  £  D, vanishes on its “exterior” component 
surrounding the other components.

By r ' , j  = 1, . .  . , s D, we denote all connected components of r ,  w ith r 1 for o  £  D  being treated  
as the exterior contour. Then the function p  occurring in the representation (6) can be uniquely 
determ ined by the condition

j  P (y )dsy =  °  (7)
r j

where j  = 2,. . . , s D for o  £  D  and j  =  1 , . . . , s D for o £  D.
The requirem ent th a t J  is a triangular m atrix  is not very restrictive in the theorem. Indeed, let 

B  be an invertible m atrix  such th a t J0 =  B -1J B  is a triangular m atrix  (for example, has a Jordan 
form). Then the linear substitu tion 0  =  B 0 0 reduces system (2) to  the case of the m atrix  J 0. 
In this connection, throughout the following, we assume th a t J  is a triangular m atrix.

F irst, we perform  the reduction of the problem in the weight class C£, —1/2 < A < 0. Then, 
by (5) and (6), problem (1) is equivalent to  the system

Re {a(p  +  K p )  +  a0(Ip)  o a  +  (a +  a 0) £} =  f  (8)

for a real l vector function p  £ C£ (r ;  F ) and a constant l vector £. Under the additional condi
tion (7), this system is equivalent to  problem  (1), (2).

We rewrite the  left-hand side of system (8) in the form N p  +  Re (a +  a0) £ w ith an R-linear 
operator N . It has the form N p  =  Re M p ,  where M  is a linear operator over C. The operator
M p  = M p  has the same property; here the bar stands for complex conjugation. In the case of real 
functions p  =  p,  we have 2 N p  =  M p  +  M p .  Therefore,

2N  =  a(1 +  K ) +  a (1 +  K ) +  a0K 0 + a0K 0, (9)

where, for brevity, we have set K 0p  =  (K p ) o a.  In the explicit form, the operators K  and K 0 are 
given by the relations

{K p)  (x) = [dy] [y -  x] 1p{y),
ni  J 

r

( K °p )  (x) = [  [dy] [y -  a(x)} 1p(y) ,  « r .
ni  J 

r

So far, we have assumed th a t —1/2 <  A <  0 in accordance w ith Theorem  1. This condition can 
readily be eliminated w ith the use of a weight substitution. We introduce the J -analytic weight 
m atrix  function

£(x) =  n [ x  — t ]St , (10)
t  EF

where, in addition to  (8), the weight order 5 is subjected to  the condition —1/2 <  A — 5 < 0. Here 
the factors are treated  as the values [x — t ]6ut \ of functions of matrices, where [x — t ]6ut stands 
for a branch of the power-law function continuous with respect to  x  £ D  and Im u > 0. In the case 
of a m ultiply connected dom ain D , this definition should be modified; namely, the m atrix  [x — t] 
should be replaced by [x — t ][x — t*]-1 w ith a given point t% £  D.

Let Qr be a sm ooth positive weight function of the same order 5 on r \ F . Then

a* =  a ^ g - 1) , a* =  a0(g o a ) ^ - 1 (11)

are piecewise continuous m atrix  functions on r  and belong to  the same class as a and a0. Let N* 
be the singular operator obtained by the replacement of a and a0 by these coefficients; we consider 
it in the class C£- £ .
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By applying Theorem  1 to  q 1<fi £ C^_s, we obtain the representation g 1cf) = I  (g 1(p) +  £.
By using this representation, by analogy with (7), (8), one can reduce problem (1), (2) in the class
Cx to  the equivalent system

(Qrl N *Qr) +  £>rRe (a* + a ° )  £ =  / ,  J  (Qr V) dsy = 0, (12)

where j  ranges over 2 , . . . ,  s D for oo ^  D  and j  =  1 , . . . ,  s D otherwise. Therefore, in this system,
the operator N  =  g ^1N^gr plays the role of (9).

3. MAIN RESULTS

In a small neighborhood of F,  the dom ain D  splits into pairwise disjoint curvilinear sectors 
D T w ith vertex r  G F.  The boundary d D T consists of two sm ooth arcs w ith common endpoint 
r  (the lateral sides of a sector) and a circle arc. A vector q G M2 is said to  be associated with 
the sector D T if it is either tangent to  one of its lateral sides at the point r  or directed inwards,
i.e., satisfies r  +  qt G D T for all t  > 0. Let F  consist of m  points. We num ber the lateral sides 
of the sectors D T, r  G F,  in a common sequence TFj ,  j  = 1 , ,  2m, and introduce their smooth 
param etrizations 7j : [0, 1] —> T F}j of the class C'1,M+0; we assume th a t the  points 7^(0) belong to  F.  
We set

Pr = { j  I 7j(0) =  r}  , PT° = {s  I (a  o 7s) (0) =  r}  ,

Q j  =  l ' j  (°) i Q °  =  ( « ° 7 S)'(0).
Obviously, each set PT consists of exactly two elements, and some of the sets P°  can be empty. Ob
viously, the vectors q°s , s e  P°,  and qs, s G PT, are associated with the sector D T. It follows from 
the conditions imposed on the shift a  th a t vectors of one pair PT, as well as vectors qj} j  <E PT, and 
q°, s G P°,  cannot lie on one ray.

By [17, 23], the singular operator K  belongs to  the algebra J T  (C£, —1 <  A <  0). Moreover, 
K  +  K  G J^6, and the 2m x 2m m atrix  ( K Sj )  of the term inal symbol is given by the relation

{ cos if s =  j

{ -  ks] f e r 1} C if 7»(0) =  7j(0), S ^ j  (14)

0 otherwise,

where the upper (respectively, lower) sign is chosen if the param etrization 7  ̂ preserves (respectively, 
changes) the orientation of T. Furtherm ore, the analytic function u whose value on the m atrix  
in curly braces occurs on the right-hand side in (14), is determ ined by the choice of the argum ent 
| arg-u| <  7r.

A similar result is valid for the operator K°Lp = (hp) o a.

L em m a 1. The integral operator K °  belongs to —1 <  A <  0 ) , and its terminal symbol
is given by the relation

± { i s i r n i Q k ° s j{Q =  J  { -  k ° ]  i f  ( a  o 7 s ) (0 )  =  7 j -(0 )  ( 1 5 )
I 0 otherwise

P roof. Let a sm ooth function %(y) on T \ F  be identically equal to  unity in a neighborhood of
F  and vanish outside the arcs T Fj .  Since the  operator x K °  — K ° x  is compact, it suffices to  prove
the assertion of the lemma for x ^ ° X ■ W ithout loss of generality, one can assume th a t all functions 
X ° l j  coincide with some sm ooth function X o ( t ) ,  t  > 0, identically equal to  unity in a neighborhood 
of t  = 0 and vanishing for t  > 1. Then

2 m \
{ { x K ° X P )  7 s )  ( t o )  =  ( t o ) X 0 ^ )  ^ ( t )  ~ ( a o  7 s )  ( * o ) ]  [ 7 j i t ) ]  (<p O 7 j )  (;t ) d t , t o  >  0 .

711 {
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If 7j(0) /  (a  o 7S) (0), then the integral occurring in the sum is compact in the spaces C y([0,1]; 0) —> 
C £,([0 ,1];0) for - 1  <  A', A" <  0.

Let 7j ( 0) =  (a  o 7S) (0). In this case, the kernel of the integral can be represented in the form 
k (t0, t ) x [qj\ [qjt — <?%] 1 w ith some m atrix  function k (t0,t)  such th a t

k ( t 0, t ) - l < E C ? +E([0,l] x [0,1]; 0)

with a small e > 0. Moreover, k = 0 in a neighborhood of the sides t  = 1 and to =  1 of the square 
[0,1] x [0,1]. Therefore, neglecting a compact term , the expressions 7j(t) — (a  o 7 ,,) (t0) and 7 '( i)  
in the integrand can be replaced by qjt — q°st 0 and qj} respectively. Ju st as in the proof of the 
corresponding result for K ,  we obtain the desired assertion.

We trea t the weight order A as a function A : k  —> A (jk(0))  constant on pairs PT of the partition 
P  = (PT) of the set { 1 , . . . ,  2m}. By (14), the m atrix  K  has a block diagonal form with respect to  
this partition , and its PTth  diagonal block K  ( ( , P T) is considered on the axis R e (  =  AT.

Consider a partition  (Fj) of the set F  such th a t r  G Fj, a ( r ± 0 )  G F  (for some sign) implies th a t 
a ( r  ±  0) G Fj. Then the first condition in (3) can be replaced by the requirem ent th a t the weight 
order A is constant on the elements of this partition. Let Ej  consist of pairs PT, r  G Fj. Then
each set entirely lies in some Ej.  This, together w ith (15), implies th a t the term inal symbol K °  
is a 2m x 2m m atrix  th a t has a block diagonal form in the partition  (Ej)  and its diagonal block
K ° ( ( j , E j )  is defined on the line R e (  =  A; here and throughout the following, Aj stands for the 
restriction to  A on Ej.

Consider the  singular operator N  = QrN^g^1 occurring in (12). We subject the weight function 
Qr(t) of order 5 to  the additional condition

(Qr o Is)  (t) = t Sj, s e E j .  (16)

This, together w ith the results of [23], implies th a t this operator belongs to  the algebra 
J ^ ( C ^ E ) .  In this case, its term inal symbol N  has a block diagonal form in the partition  E  
and is given by the relation

N  ((, Ej) = N „ ( ( -  Sj, E j ) , R e (  = \ j ,
\  \  (17)

2N ,  =  a*( 1 +  K ) A +  a* ( l  +  K )  +  a°K°  +  a° ,K° .

Note th a t a* and a° are diagonal 2m x 2m matrices with constant entries (a* o 7j) (0) and 
(a* 0 7j) (0)) respectively, along the diagonal. To com pute the term inal symbols of the operators K  
and K 0, one should use the relation M ( ( )  = M ( ( ) ,  where the bar on the right-hand side stands for 
the  conjugation involution in the class of functions x(():  x ( ( )  = x  (()  w ith the complex conjugation 
on the right-hand side. In the case of the operators K  and K°,  this involution corresponds to  the 
replacement of i s i n 7r£ in (14) and (15) and the m atrix  J  in the definition of [x] by — i s in 7r£ and J ,  
respectively.

Obviously, the Fredholm properties of system (12) and the operator N  are equivalent, and their 
indices are related by k  = indiV +  (2 — s D)l.  Therefore, by applying the corresponding results 
in [24] to  N ,  we obtain the following criterion for the Fredholm property.

T h eorem  2. Problem (1), (2) has the Fredholm property in the class C£ (D ;F )  i f  and only i f  
d e ta ( i)  /  0 everywhere on T, including the limit values at the point  r  G F, and

det N  ( ( ,E j )  /  0, R e (  = Xj, j  = 1 , . . .  (18)

In this case, the index x  of the problem is given by the formula

*  = “  a rg (det a*)|r +  I (2 -  s D) -  ^  In det N  ((, Ej)  ^
3

(19)



By [24], the solvability of the equation N p  = /  can be described in term s of conditions of 
orthogonality of the right-hand side /  to  the solutions ip £ C ^ x_ 1+0 of the homogeneous adjoint 
equation N'ip = 0. The orthogonality and adjointness are treated  in the sense of the form

(<A VO = J  <p(v)'tp(v)dsy,
r

where p(y)ip(y)  is the inner product in R*.
System (12) is a “finite-dimensional” perturbation  of the above-mentioned equation, and one 

can readily write out the homogeneous adjoint system. To be definite, we assume th a t D  is a finite 
domain, i.e., oo ^  D.  Then the adjoint system of (12) is given by the homogeneous system

(N'ip) (x) +  £>r 1(x)r]i = 0, s e F ,  i = 1 ,2 , . . .  , s D,

J  Im  (a* +  a°) (y)gT(y)ip(y)dsv =  0 (12 )
r

for the pair ip £ C ^ x_ 1 and rj = (rji) G where s = s D and r?i =  0.
Therefore, the solvability of problem  (1), (2) is determ ined by the orthogonality ( / ,  VO =  0 for 

all solutions (ip, rj) of the homogeneous system (12').
By analogy with [17], we supplem ent Theorem  2 w ith results on the asym ptotics and smoothness 

of a solution of problem (1). We assume th a t the problem is of normal type, i.e., the assum ption of 
Theorem  2 for det a  is valid. However, condition (18) can fail for some block N  ( ( ,E j ) ,  say, for 
N  ( ( ,E{) .  The m atrix  function N  ( ( ,E { )  is analytic in some open strip  Ai — e < R e (  <  Ai + e  and 
has the form x ( ( )  -hx(() .  Therefore, if the function det N ( (  -j-u) vanishes for u = 0, then the same 
is true  for det N  ((  +  u)  as well. Moreover, the orders of the poles and of the m atrix  functions 
N ~ l (C, +  u) and N ( (  +  u)  coincide. If det N  ( ( ;Ei)  /  0, then, by the definition, we set = 0.

The theorem  on the asymptotics deals with the behavior of an a rb itrary  solution <fi £ Cx_0 (D; F)  
in the  sectors D T, r  G F lt under the corresponding conditions for the behavior of the functions 
( /  ° 7j) (t)> J e  ^ i )  a s  t  —>■ 0. Here and throughout the following Cx_0, is treated  as the union of 
Cx-s  over e >  °- Likewise, C£+0 =  f |  C£+e.

T h e o re m  3. Let
k

( /  ° 7j) (t) -  Re (ln* t) t^Cij £  C^+oQO, 1]; 0), j  £ E u
i = 0

with some Cij G R* for  a given (,  Re (  = Ai. Then for  each solution (p G CX_0(D; F)  of problem (1),
(2), there exist c^- G C ;, r  G F 1} j  = 1 , . . . ,  k  +  rs, such that

k-\-rs

<t>{x) “  S  +  [^  “  T ^ c r j )  -  T ] ) j  G C £ + 0  ( D T ] T ) , T G f i .
3= 0

P ro o f . We rewrite the first equation in (12) in the form Nip = / ,  where the right-hand side
/  satisfies the same condition as / .  By the theorem  on asym ptotics [24], the solution of this 
equation satisfies the inclusion

k + r (

(p o 7j.) (t) -  Re J ]  (In**) tfdij  G C£+0([0 ,1];0), j  £ Ei ,
i = 0

with some dtj £  R*. This, together with the corresponding property [17] of the Cauchy type 
integral (4), implies th a t the corresponding property is valid for <p(x) as well.

THE BITSADZE-SAMARSKII PROBLEM FOR DOUGLIS ANALYTIC FUNCTIONS
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We state the smoothness theorem  for one of sm ooth arcs T0 composing T. More precisely, let 
T0 be the closure of one of connected components of T \ F .  The set F0 of endpoints of this arc can 
consist of two points or a single point. In the la tte r case, T0 is treated  as a “closed” arc.

T h eorem  4. In addition to the assumptions of  Theorem 2, suppose that  T0 G j 7 n,M+0, 
a  G C'",M+0 ( T 0) , and a,b  G C n,fJ/+0 ( T 0) .  I f  f  G ( T 0 ; F0) , then each solution (f> G C x (D; F)  of  
problem (1), (2) has the similar property ( f )  G (T0;F0).

P roof. By analogy with Lemma 1 from [25], one can readily show th a t K 0p  = ( I p ) o a  belonging 
to  (T0, F0) for tp G C X(T;F).  Under the additional requirem ent p \Vo =  0, a similar property is 
valid for Kip. Therefore, the first equation in (12) can be represented in the form

cio (1 +  K 0) po +  flo ( l  +  Ko) Po =  2 / o  G Cx ,fJ/ (T0; F ) ,

where a0 (po) is the restriction of a*(ip) to  T0 and the Cauchy operator K 0 is defined with respect to  
T =  T0. An application of the smoothness theorem  to this equation implies th a t p 0 G (T0, F0). 
Consequently, it holds for

(/)(x) = p 0(x) + ( K qPo) (x) + —  I  [x - y Y ldyp{y ) .
i r i  J

r \ r 0

4. TH E TERM INAL SYMBOL OF TH E PROBLEM

The coefficients a* and a° and the operator N  = QrN^g^1 itself depend on the choice of the 
weight order 5 in (10). Therefore, it is desirable to  replace the term inal symbol N  of this operator 
by some m atrix  function free of this dependence. For the R iem ann-H ilbert problem (and for more 
general problems of this type), the corresponding constructions were given in [17]. The case of 
problem (1) with a° /  0 needs additional considerations.

We order each pair PT = {k, r} (and write PT = k , r )  by assuming th a t the m otion through the 
point r  on T in the positive direction (for which the dom ain D  lies on the left) is performed from 
TFr towards TFfc. Vectors q G M2 associated with D T form a sector (a cone), which is denoted 
by S T. The opening angle, which is obtained from ST under the transform ation

q = (91, 92) ->■ [q]„ = Q1 + VQ2 ,

where Im v  >  0, is denoted by QTyV. We fix the branch of a rg [q\v th a t continuously depends on q <E S T 
and Imz/ >  0. It defines a power-law function [<?]£ and the m atrix  [<?]£ =  [q]j. Obviously, it, as well 
as J ,  is a triangular m atrix  w ith diagonal entries [q] ,̂ v  G a(J) .  The num ber lv of their occurrences 
on the diagonal is equal to  the m ultiplicity of the eigenvalue v  in the characteristic polynomial of
the m atrix  J .  In a similar way, one can define the m atrix  [q] w ith respect to  a rg [q\9 =  — arg[<7]„. 
In the following, these matrices are used for the tangent vectors qk and qr of the sector D T and for 
its “interior” vectors q°, s G P°.  By the definition of a continuous branch of arg[<7]„, we have

arg [Qk],, ~  arg [qr]v = dTtU, k , r  = PT. (20)

In what follows, we often deal with 2m x 2m matrices x ( ( )  th a t have a block-diagonal form 
in the  partition  P. We  w rite out their diagonal blocks x ( ( , P T) in the form of a 2 x 2 table with 
respect to  the order k, r of elements of the pair PT.

Consider a m atrix  W*(£) of this type analytic in the strip  —1/2 <  R e (  <  0 and given by the 
relation

1 ( -e -™ cf e T C e ^ [ ^ T C



If the  entries G of the block m atrix  (a^-)^ are invertible and triangular, then the deter
m inant of this m atrix  coincides w ith the determ inant of the m atrix  d = a n a 22 — 012^21 and is equal 
to  the product of its diagonal entries da, i = 1 , . . . ,  I. By applying this rem ark to  the m atrix  (21) 
and by taking account of (20), we obtain
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d e t  W .  (C, f t )  =  1 1  { ( 2 i s i n i r 0 2 -  ( 2 , s i n ^ C F  ^  Vh

=  II +-LJ- (—2*sm7rOvea{J) K v J

- c  ■

(22)

Using IF*, we introduce the 2m  x 2m  m atrix  IF  w ith diagonal blocks

IF  ( ( ,PT) = diag t ) ,  g(r, t ) J  IF* ( ( - S r ,P r ) ,  q(x , t ) = [x -  t ]~Stq(x ), (23)

defined on the line R e (  =  AT — ST.
The following assertion represents the term inal symbol N  in the form of the product of IF  by a 

m atrix  th a t is naturally  referred to  as the term inal symbol of the  problem. In view of applications 
to  more general problems, it is convenient to  replace the operators a and a° occurring in (1) 
by arb itrary  functional operators A  and A°  belonging to  the algebra s /  introduced in [17, 24]. 
Moreover, by virtue of the condition imposed on A, the term inal symbol of these operators has the 
same structure  as N ,  i.e., it has a block-diagonal form in the partition  E.  The operators A * and 
A° are defined by analogy with (11) on the basis of A  and A 0.

We introduce the 2m  x 2m  matrices X ( ( )  and X ° ( ( )  whose columns with numbers in the  ordered
pair PT = k , r  are given by the relation

X sr (C) =  £  A sj fe]C =  X sk(0, K t t )  =  E  A % k ° ] C =  (24)
je-Rr j€P°

where s ranges over 1 , . . . ,  2m.
These matrices, together w ith A  and A 0, have a block diagonal form with respect to  the par

tition (Ej).  Indeed, if s e  E t and PT C E v , i /  i', then  A sj = 0, j  e  PT, and therefore, s e  E i} 
j  e P T°. Likewise, A°sj = 0 for s e  E, j  e P T°, since, in addition to  PT, P°  also belongs to  E v .

L em m a 2. One has
N  = ( X  +  X ° )  IF. (25)

P roof. First, we justify  the desired assertion under the assum ption th a t 5 =  0. Then —1/2 <
A <  0, and the asterisk in the notation A*, A°, N*, and N °  can be om itted. By (14) and the
definition of [q] ,̂ the diagonal block K  ( ( ,P T) has the form

K ( C , P T) 1 (  COS7rC - e ^ iCkfc]C[9r]_C\
isin7r( y e *̂C [gfcp c [gr ]c _ COS7r£ J

here and throughout the following, PT = k , r .  Hence it follows th a t

1 (  e*«(1 +  k~] ((  p  ) = ----------- ( &7Tt e m ^  ^
V Tj ^invrC  { e ^ [ q k] -c [qr}c - e ~ ^

(1 + 1  ) ( c  p  ) = 1 - e~” c e” c ^  ^
V J isinvrC I - e -^iC[qk] c [(?r]c e*K

<7-- 7-C '



This, together with (21), implies th a t
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Consider the term inal symbol K °  of the operator K°.  By (15), its m atrix  row K °  ( ( , s  x  PT)
consisting of the entries K°sk and (K 0) sr is nonzero only for s £ P® and has the form

(i s m i r ( ) k °  (C,s x PT) = (e”«  [<7S°]C [qkl C, - e ~ ^  [<7S°]C [<?T]^C) •

Hence it follows th a t

( i s i m r Q k 0 ( ( , s  x PT) = ( - e ^ iC[<?s°]C[<?fc] C,e 7r<c[^°]C[qrT] C)  .

In notation (21), this implies th a t

k 0 ( ( , a x P T) = 2(o,[q°s] ^ W ( ( , P T),  T 0 ((,  a  x  PT) = 2 ( W f  ,0^j W  ((,  PT) . (27)

We introduce auxiliary 2m  x 2m  matrices C7± and C7° by setting

^ ( ( , s x P T) =  (o ,[gs]c) ,  ^ ( ( , s x P T) =  ( y ( , o ) ,  s £ PT,

U l ( C , s x P T) = (o, [(?S0] C) ,  U°_ (C,s x PT) = , s £ P ° Tl (28)

U± (C,s x PT) = 0, s qL PT\ U ± ( ( , s  x  PT) =  0, s £  PT°.

Then one can rewrite relations (26), (27) in the form

l  + K  = 2U+W, l  + k  = 2U_W, K °  = 2U°+W, K °  = 2U°W.  (29)

Consequently, for the term inal symbol N ,  we have relation (25) with the matrices

X  =  A u + +  AIJ- ,  X °  = A ° u l  +  A ° u ° ,

which, by virtue of (28), coincide w ith (24).
Let us proceed to  the case in which 5 ^ 0  and A is an arb itrary  weight order. In this case,

we have A * =  Ac  and A° = A°c° w ith the m ultiplication operators c =  gg^1 and c° =  (go  a ) ^ 1.
By (10), (16), and the definition of the function g ( t , x ) =  g(x)[x — t ] -5", we have

( c  o 7j .) ( t )  =  [ r 1 (7 j ( t )  -  7 j ( 0)) ]  &T q ( t ,  7 j ( t ) ) , r  =  7^ ( 0),

(c° o 7s) (*) =  [ r 1 ( ( a o 7s) (t) -  ( a  o y s) ( 0 ) ) ] ^  £>(t,7 s ( t ) )  , r  =  ( a  o 7s ) (0) G F,

where we have used the relation A (P°) =  A (PT) =  AT. In notation (13), this implies th a t

( c o y s) (0) = [qsf T g(r ,r ) ,  s £ PT; (c° o 7«) (0) =  [g°] ^  g(r, r),  s £ P ° .  (30)

Finally, by the definition of 5 in (10), the relation 5T <  0 should be valid for r  =  7S(0) G D] 
therefore, (c° o 7S) (0) =  0.



In the case under consideration, the expression (17) for the term inal symbol of the operator N  
acquires the  form

2 N  ((, E 3) =  Ac ((, E 3) ( l  +  K )  ((  -  53, E 3) +  T c  (C, E 3) ( l  +  )  ( (  -  53, E 3)

+  i ° c °  (C, E 3) k °  (C -  63, E 3) +  ~¥&  (C, E 3) 63, E 3) .

The expressions (29), where W  should be replaced by W t , can be substitu ted  into the right-hand 
side of this relation. On the  other hand, by (22), (28), and (30), we have

(cU+) (C - i , s x  PT) = U+ ((,  s x PT) q(t , t ),
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and similarly,

Moreover,

(cUJ) ( (  -  5T, s x PT) = U-  ((, s x PT) q(t , r), s G PT,

(c°C/+) (C -  fir, s X PT) = U°+ (C, S X PT) q(t , t ),

{¥u°_) (C — 6T, s x P T) = U°_ (C, s X PT) fayF),  s G PT°.

(c°E/°) (C - i , s x  PT) =  ( c°U°+) (( - i T, s x  PT) =  U°+ ((  -  ST, s x PT)
= U°_(( ;-5T, s x P T) = 0 ,  (a  o 7S) (0) G D.

By substitu ting all these relations into (31), by using (23), and by arguing as in the case 5 =  0,
we obtain relation (25) w ith the m atrices X  = AlJ+ +  A U -  and X °  = A°U°  +  A°U°_, which 
completes the proof of the lemma.

In the case of the m ultiplication operators a = A  and a0 = A 0 in problem (1), the expressions (24) 
are simplified, since the term inal symbols of these operators are the diagonal matrices a =  ( a ^ ) ,  
d; =  (a o t j) (0), and similarly for a0. Therefore, relation (24) can be represented in the form

I ( ( , S x P r) =  { ( ® C’as [ ^ C

X° (C, s x PT) =  |  ( a° ^  ’ a°s ^  )

It readily follows from Lemma 2 th a t the term inal symbol N  can be replaced by X  +  X °  in 
the Fredholm property criterion (18) in Theorem  2 as well as in Theorem  3. For the index of the 
problem, we have the following assertion.

T h eorem  5. (a) The indices x(X)  and x  (A) of  problem (1), (2) in the classes Cx and C£, 
respectively, are related by the formula

x(A) -  x  ( a)  =  > (33)
3

where x 3 (A, A) is the number of  zeros (with regard to multiplicities) of the funct ion  
det (X  +  X ° )  ((; E 3) in the strip lying between the lines R e (  =  \ 3 and R e (  =  \ 3 with the 
+  sign for  Aj < Xj and the — sign otherwise;

(b) the formula

for s G Pr
for s Pr,

for s G PT°
for s PT°.

m  1 , , „  , 1  v -  r d e t ( X  +  X 0) ( C , £ , ) l
*(A) =  - -  arg det. a|r +  ((2 -  sD) -  —  £  In |  d e t y f c E )  }

R e (^=\j — ioo (34)

-  1/2 <  A <  0,

is valid for  —1/2 <  A <  0, where Y  is the matrix defined similarly to X  in (32) for  a =  1.



P roof, (a) It suffices to  prove the assertion under the assum ption th a t A is sufficiently close 
to  A. In this case, Kj (A, A) coincides with the similar quantity  com puted for det N  ((, Ej),  as follows 
from (25). Therefore, relation (33) is a corollary to  the index formula (19) and the Rouche theorem  
for analytic functions.

(b) If —1/2 <  A <  0, then  in definition (23) of the m atrix  W ,  one can set 5 =  0, whence W  = W t . 
Likewise, a =  a*. Therefore, by taking account of the relation

det N  =  det ( X  +  X ° )  det W  =  det (X  +  X °) d e t( Y W )  
v '  det Y

and the index formula (19), one can reduce the proof of formula (34) to  the proof of the relation

ln ( d e t r iU ) |ReC=A =  0. (35)

By analogy with (22), for the determ inant of the m atrix

F ( C , P T) = f e C k i c V
V [Qr] [Qr] )

we have

det Y  ((, PT) =  J J  \\[qk]v [gr]„|c (—2z sin6»Tjl,C)} •

Therefore, in tu rn , relation (35) can be reduced to  the form

's in 0 (  sin(27r — 9)(
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In
sin 7r(

=  0,
R eC = A

where —1 / 2 < A < 0  and 0 < 9 < 2 tt. The left-hand side of this relation is continuous w ith respect 
to  9 and A and remains integer. Therefore, it is constant, and one should set 9 = tt.

Note th a t the m ultiplication of the m atrix  X  in (24) on the right by the diagonal m atrix  x  with 
diagonal entries x r = [qr] x k =  x r , where k , r  = PT, r  e  F,  reduces it to  the m atrix  X  for which

X sr = A sr +  A skvT = X sk and PT = k, r; here vT(() = [qr \ T h i s  m atrix  X  exactly coincides 
with the term inal symbol [17] of the generalized R iem ann-H ilbert problem corresponding to  a = A  
and a0 = 0 in (1).

5. THE SPECIAL BLOCK STRUCTURE 
OF THE TERM INAL SYMBOL OF TH E PROBLEM

We denote points r  e  F  by the symbols r*, i = 1 , . . . ,  m, and represent the sets Pi and P°  
in (13) in the corresponding form. The expressions (24) imply th a t the change of order in the 
pair Pi results only in a rearrangem ent of the corresponding columns of the matrices X  and X ° .  
Therefore, this order can be chosen arbitrarily. We denote the first and second elements of the 
ordered pair Pi by Pi(p), p = 1,2.

Let X^ j)  stand for the 2 x 2  m atrix  consisting of the entries of the m atrix  X  in the rows and 
columns w ith indices in Pi and Pj, respectively; X ^  has a similar meaning. By (32), ( X ^ )  is a 
diagonal m atrix  (i.e., X ^  =  0, * /  j )  with diagonal entries

X^u'jpi X(ii^p2 (xk [qk\ , k Pi(p).

Likewise,

v °  — kfc]C if k = Pi(p) G P°
x (h)pi -  A («)p2 -  ) k J J

I 0 otherwise.



If the sets Fk of points r  =  (i) are treated  as subsets of { 1 ,. . .  ,m } ,  then the m  x m  m atrix  
X ° = ( X ^ )  has a block-diagonal form with respect to  the partition  (Fk). In other words, the 
block m atrix  X °  ( ( , F k) consists of the entries X ^ ,  i , j  G Fk.

In the description (32) of the m atrix  X ° ,  the sets can be diminished by supplem enting their 
definition (13) w ith the condition (a0 o ^ k) (0) /  0. This requirem ent is especially convenient for 
problem (1') in which the shift a  is defined on the part T' of the arc T. By way of illustration, 
we consider a special case of this problem in which T' is an arc with endpoints T\ and r 2 and with 
no interior point r  G F . If a  (T') C D,  then, obviously, X °  is the zero m atrix. Therefore, one 
can assume th a t a ( r i )  G F  and a ( r 2) G D  U  F.  The num bering of the arcs T F  j is chosen as to 
ensure th a t T' finishes by arcs TF1 and TF 2 w ith endpoints T\ and r 2, respectively. We subject the 
num bering of P(i) and P(2) to  the  condition ( i) l  =  i, i = 1,2.

Then, by (32), the second row of each m atrix  X ^  is zero. More precisely, the m  x m  m atrix  
(X ^ )) contains only two nonzero entries
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=  ^ a ° ( r fc) [q°k] a°(Tk)[q°] ^  k = 1,2.

To be definite, we assume th a t T\ g  F i and write out the diagonal block

X ° ( C , F 1) = (X°{tj), T ^ e F , )

of the m atrix  X °  th a t depends on the m utual arrangem ent of the points r fc and a ( r k) ,  k  =  1,2. 
We separately consider all possible cases of this arrangem ent.

(1) Let a ( r i )  =  Ti and a ( r 2) /  t \. Then Fi =  {ri}, P° = {1}, and =  x°.
(2) Let a  i n )  = r 2 and a ( r 2) =  t v  Then Ft = { r i , r 2}, P° = {2}, P 2° =  {1}, X (011} =  X (°22) =  0,

=  x°l7 and X (°21) =  x%.
(3) Let a ( r i )  =  T\ and a ( r 2) =  T\. Then Fi =  { r i , r 2}, P° = {1,2}, X ° 12̂ = X°22̂  = 0, and 

x (n) =x°i, i = 1,2.
(4) Let c x { t i) =  r 2 and r3 =  a ( r 2) /  t u t 2 . Then F t =  { r i , r2, r 3}, P2° =  {1}, P3° =  {2},

X(°i2) =  x°, X (°23) =  x 2, =  0 in the remaining cases.
(5) Let r 4 =  a  ( ti)  /  r i , r 2 and a ( r 2) =  r 4. Then Fx =  { r i , r 2, r 4}, P4° =  {1,2}, and X (°i4) =  x°,

i = 1,2, X ^  =  0 in the remaining cases.
(6) Let r 4 =  a  ( t i )  /  n ,  r 2 and a  ( r2) /  r x, r 2, r 4. Then F x =  { n , r4}, P° = {1}, and X (°14) =  x°,

v0    v0    v0    n
^ ( 1 1 )  —  (4 4 )  “  (4 1 )  “  U -

Note th a t, in cases (4)-(6), the matrices (X + X °)(£ , Fj) are block triangular for all Fj. Therefore, 
their determ inant coincides with d e tX (( ,  Fj),  and the characteristic of the poles (X  +  X 0)-1 ((, Fj) 
coincides with the corresponding characteristic of the m atrix  function X -1 ((,  Fj).  This, in view of 
the geometric interpretation of these cases, implies the following assertion.

T h e o re m  6. Let the curve T' occurring in problem (1'), (2) be an arc that does not contain the 
set F  in its interior, and let the intersection T 'n «  (T') be either empty or consist of  a unique point 
t  G F, a(r)  /  r .  Then one can set X ° =  0 in Theorems 4 and 5.

Note th a t the statem ent of problem (1') suggested in [1] satisfies the assum ption T 'n «  (T') =  0
of the theorem.
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