
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Sintering and physico-mechanical properties of materials based on
silicon nitride nanoscale powders
To cite this article: S N Perevislov et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 848 012068

 

View the article online for updates and enhancements.

This content was downloaded from IP address 188.170.217.39 on 18/05/2021 at 09:12

https://doi.org/10.1088/1757-899X/848/1/012068


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

NMPT-5

IOP Conf. Series: Materials Science and Engineering 848 (2020) 012068

IOP Publishing

doi:10.1088/1757-899X/848/1/012068

1

 

 

 

 

 

 

Sintering and physico-mechanical properties of materials 

based on silicon nitride nanoscale powders 

S N Perevislov1, O A Lukyanova2; A S Lysenkov3; K A Kim3 and A B Vysotin1 

1IV Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of 

Sciences, St. Petersburg, Russia 
2Belgorod State University, Belgorod, Russia 
3Baykov Institute of Metallurgy & Material Science RAS, Moscow, Russia 

E-mail: perevislov@mail.ru 

Abstract. Obtained a high-density material (ρ = 3,28 g/cm3, a porosity of 1,4 %) on the basis 

of silicon nitride powder by liquid phase sintering nanoscale. Displaying pressing pressure on 

the density of sintered materials the based silicon nitride. The process of pattern formation 

material during sintering. The main physico-mechanical characteristics: the density, porosity 

and grain size of the solid phase, the modulus of elasticity, flexural strength, fracture toughness 

ratio, Vickers hardness. 

1. Introduction 

Oxygen-free ceramics belongs to the brittle materials do not exhibit macroscopic ductility and fracture 

when loaded up to the dissociation temperature of the compounds. This phenomenon makes it possible 

to create a unique class of structural materials with high hardness, strength and stability of mechanical 

properties in a wide range of temperatures, exceeding significantly the properties of metal alloys [1]. 

Silicon nitride is widely used in industry due to its unique combination of physical and mechanical 

properties such as high hardness and mechanical strength, low thermal conductivity and good erosion 

properties that allows to apply the product of Si3N4 as a wear-resistant, heat-resistant and acid resistant 

materials, working in extreme conditions of high temperature and aggressive environments. Materials 

made of silicon nitride can be prepared by various methods: reaction sintering, activated sintering, 

chemical vapor deposition and hot, hot isostatic pressing. High properties are achieved at the materials 

produced by the last two methods, however, a large energy consumption, inability to obtain articles of 

complex shapes and low productivity limit the reception of materials by this method on an industrial 

scale. reaction sintering method is impossible to obtain dense materials with a porosity of less than 5 

vol. %. Using the method of chemical precipitation from the gaseous phase leads to materials with 

nearly the theoretical density, but due to the technological difficulties their production is extremely 

difficult. The optimal method is the liquid-phase sintering with oxide dopant, which results in a 

material with high mechanical properties, with less energy consumption and processing cost [2]. For 

materials with a high level of mechanical properties necessary to use fine powders, what is feasible 

with the additional process step of grinding, however, to produce particles of less than 0,5 microns is 

extremely difficult. Using the silicon nitride nanoscale powders (n-Si3N4) allows to obtain dense 

materials with maximum mechanical characteristics, but complicates the intermediate preparation 

materials. 
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As the sintering additives are used as individual oxides of Al2O3, Y2O3, MgO and their eutectic 

mixture. The most common activating additive is a mixture of components Al2O3 and Y2O3 in a ratio 

of yttrium aluminum garnet [3–10]. Among the active energy-oxides can also include Li2O, BeO, 

MgO, CaO, Ce2O, ZrO2 and their double oxide mixture introduced into the materials on the based 

silicon nitride in the form of starting components and in the form of binary eutectic compounds. 

The aim is the preparation and study of physico-mechanical properties of high density ceramic 

materials based on nano powder nitride silicon by liquid-phase sintering. 

 

2. Materials and Method 

We used a nanosized powder plasmochemical Si3N4 (OOO «Plazmotherm», Russia) with a particle 

size d = 50–80 nm and a silicon nitride obtained by CVC (ISMAN Sciences, Russia), ground in a 

planetary mill to a size d0,5 = 1 m. Nanosize powder has a high content of silicon and oxygen 

impurities – 0,8 and 1,7 wt. %, respectively. In the course of storage due to the high activity of n-Si3N4 

adsorbs oxygen on the surface, forming a thin SiO2 film, which during the sintering react with oxide 

additives to form a fusible silicate melts. The compositions of the materials investigated in the work 

shown in Table 1. 

 

Table 1. The compositions of the ceramic materials of silicon nitride. 

Number of 

composition 

Content 

5Al2O3∙3Y2O3, wt. % 

Content of nanosized Si3N4, 

wt. % 

Contents micron Si3N4, 

wt. % 

1 15 0 85 

2 15 5 80 

3 15 10 75 

4 15 15 70 

5 15 20 65 

6 15 25 60 

7 15 40 45 

8 15 60 25 

9 15 75 10 

10 15 85 0 

 

As a sintering additive, a mixture of Y2O3 and Al2O3 oxides (OOO «Plazmotherm», Russia), 

particle size d = 30–50 nm, in a ratio forming step of sintering yttrium aluminum garnet (YAG) [11]. 

A liquid phase-sintered materials based on silicon nitride ceramic prepared by techniques [12], the 

method comprising preparing the batch molding of the samples at different pressures (25; 50; 75; 100 

MPa), high temperature drying and sintering. 

To increase the bulk density of the n-Si3N4 powders and oxides repeatedly briquetted and 

granulated. The starting powders in a predetermined ratio (Table 1) were stirred in a drum mixer. The 

polyethylene glycol used as a temporary process binder. Sintering was performed at 1780 °C in N2 

atmosphere with isothermal exposure for 40 min. 

density of the samples was determined by hydrostatic weighing. Porosity was measured using an 

optical microscope Meiji Techno IM 7200 and computer image analyzer. The elastic modulus was 

determined by excitation of the resonant vibrations on the installation Zvuk–130. Three-point bending 

strength was measured on installation ShimadzuAG–300kNX. Hardness and fracture ratio was 

determined by introducing into the material and measuring the Vickers pyramid diagonals print size 

and originating from cracks on its corners microhardness PMT–3M. The microstructure and grain size 

of the solids was investigated by the scanning electron microscope Tescan Vega 3. Equipment granted 

«Engineering Center» SPSIT. 
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3. Results and discussion 

Obtaining ceramics of high quality with a maximum level of mechanical properties is possible while 

achieving high density (close to the theoretical). The sintering process may be controlled by selection 

of dispersion, particle morphology. For silicon nitride retardation characteristic of diffusion processes, 

as in the lattices covalent compounds suppressed processes diffusion-viscous flow responsible for the 

mass transfer and seal the solid-state sintering. Sintering can significantly intensify the introduction of 

additives, which at a certain temperature (below the sintering temperature of ceramics) form at the 

grain boundaries primary liquid phase component. To accelerate the seal material may also be 

reducing the size of the precursor particles, using nanoscale particles during sintering which reduces 

the diffusion path and increasing the mass transfer [13]. 

Sintering mechanism includes: a seal of the particles by the method of solid-phase sintering; education 

fusible silicates and glasses; redistribution Si3N4 particles in the presence of a silicate liquid phase; 

dissolving α-, -Si3N4 in the silicate melt by the interface and their recrystallization from the melt in the 

form -Si3N4. It plays an important role as the formation on the particles Si3N4 layer of a solid solution 

(phase Si–Al–O–N, known as «sialon») due to dissolution of nitride in the yttrium aluminum garnet, which 

is described by the formula Si6-ZAlZOZN8-Z (z = 0÷4,2) [5]. During sintering Si3N4 with oxides based on 

aluminum are formed in the solid solutions Si3N4 Al2O3 (1- and X1-phase), the latter being located in a 

bundle between the Si3N4 grains and '-phase. '-phase growth occurs by recrystallization of Si3N4 by the 

melt corresponding to the composition X1-phase which is formed at a temperature over 1700 °C. The 

interaction of these elements leads to the formation of wurtzite structures (O-phase), apatite structure 

compounds (H-phase) and a solid solution of Y2O3 in the Si2N2O (Y-phase). Daylight α'→' sialon to as 

α→ Si3N4 observed for the presence of liquid phase. 

Thus, when the silicon nitride sintered with the oxides formed multiphase materials, whose 

structure is determined by the following factors: the composition and phase dispersion of Si3N4; type 

and oxide content, liquid phase sintering temperature and duration of high-temperature exposure [14]. 

Materials with a large number of n-Si3N4 achieve maximum density under the molding pressures of 

50–75 MPa. Nano powder has a large specific surface, so the high-density materials prepared 

therefrom molding at lower pressures. According to [15] in the silicon nitride sintered α-phase Si3N4 

completely transformed into  phase. This process is active in the temperature range 1100–1400 °C, 

when the density reaches only 60–65 % of the density of the sintered material. By increasing the 

sintering temperature goes into step increases densification rate, which is accompanied by a maximum 

shrink material. 

Compressed to the optimum density of the samples have a high sintering density (97–98 % of 

theoretical for the latter two compounds) (Figure 1). Increasing the density of samples with increasing 

content of n-Si3N4 because nanoscale powders during sintering is achieved by high-density packing of 

the particles and increases the mass transfer of material from the surface to the grain boundaries. The 

radius of the particles is comparable with the diffusion layer thickness therefore activated sintering and 

is accompanied by volumetric shrinkage. When smaller n-Si3N4 content greater molding pressure 

necessary to obtain the best properties of materials. This trend is observed for formulations 1–3 

samples for which the maximum density is achieved with a molding pressure of 100 MPa. Sample 

compositions 4 and 5 show the highest density value is already at a molding pressure of 75 MPa, 

wherein the further increase in pressure led to a decrease in density. With increasing concentration of 

n-Si3N4 (formulations 6–10) the maximum density is achieved with a molding pressure of 50 MPa. 

The highest density of the material at 75 % n-Si3N4 and 10 % micron-Si3N4 (Figure 1). Thus, it can be 

concluded that the nanoscale powder is not only increases the density of the sintered samples, but also 

intensifies the process of particle compaction. 

An important parameter in the design of composite materials is porosity, which value is 

considerably affect the mechanical properties (see Table 2). 

As seen from Table 2, by increasing the content of n-Si3N4 composed of the composite material 

porosity decreases, which is well supported by data reported for density (Figure 1). Table 2 also shows 

the dimensions of the grains of silicon nitride. The structure consists of elongated grains, and a 
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reinforcing material imparting good mechanical properties to it (Figure 2). In the final stage of 

sintering the structure material is significantly increased content of elongated grains with clear-cut 

length to diameter ratio different 35. 

On the strength of the materials affected by the presence of structural defects (dislocations, 

impurity atoms pores and microcracks). The presence of the first two types of defects increases the 

overall strength of the material and reduces its last two. High speed cooling of the plasma during the 

synthesis of nanoscale silicon nitride particles results in a considerable concentration of lattice defects 

and, as a result, high activity of the powder. The appearance of significant amounts of edge and screw 

dislocations due to the kinetic characteristics of the process producing n-Si3N4. As shown in Table. 2, 

the total porosity of the materials based on n-Si3N4 does not exceed 2–3 %, resulting materials have a 

high strength level (Figure 3) 

 

 
 

Figure 1. The dependence of the density of the sintered samples of different compositions by molding pressure. 

 

Table 2. The values of porosity and grain size of materials based on silicon nitride. 

№ 

composition 

Porosity 

Р (± 0,1),% 

The pore size, microns Grain size 

dmax, m Pmax Pmin 

1 3,5 13,2 1,2 5,1 

2 3,3 12,7 1,4 4,7 

3 3,1 10,4 1,2 4,8 

4 2,5 11,9 1,1 4,4 

5 2,6 10,6 0,8 3,9 

6 2,1 11,3 1,1 4,0 

7 2,0 9,4 1,2 3,1 

8 1,8 8,8 1,0 2,9 

9 1,4 7,5 0,8 1,8 

10 1,1 3,1 0,5 0,3 

 

The module of elasticity of materials is a function of the strength and also depends on the structural 

defects, i.e. the density and the bulk porosity. The paper [16] studied materials based on n-Si3N4 and 

concluded that by increasing the concentration of nano-sized powder of ceramics density increases. 

Virtually all the compositions curves are extreme character with a maximum at the optimal 

properties of the molding pressure. A trend increase in the modulus of elasticity with increasing 

content of nano-sized Si3N4 powder composed of materials (Figure 4). Since the modulus depends 

directly on the density, the more denser materials at the maximum amount of n-Si3N4, showed a high 

level of properties (Figure 4). 
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Figure 3. The dependence of the bending strength of samples of different compositions by molding pressure. 

 

An important characteristic of composite materials is the ratio of fracture toughness (K1C) (Fig. 5), 

which also depends on the density and on the presence of defects in the structure (porosity) in the bulk 

material. In [17] it is shown that by increasing the density of ceramics based on Si3N4 its K1C values 

increase. Great influence on the mechanical properties of materials has materials based on silicon 

nitride nature intergranular phase. Since yttrium oxide additive increases the viscosity of the material, 

and alumina softens it somewhat. The value K1C brittle ceramics can be enhanced by introducing the 

dispersed second phase inclusions. In [18, 19] has shown that when administered in the ceramics 

based on silicon nitride, a small amount of TiN increases its fracture toughness ratio of 1,5 times. 

According to [20, 21], with increasing concentration of n-Si3N4 volume percentage of the pores is 

reduced, thereby reducing the likelihood of local crack propagation and improving the value of K1C 

(Figure 5). The materials are destroyed in accordance with the intergranular mechanism (destruction of 

grain bonded). 

 

 

Figure 2. Etched microstructure of the 

section of the sintered Si3N4-material. 
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Figure 4. Dependence modulus of elasticity the 

material of the amount of n-Si3N4 

Figure 5. Dependence crack resistance the 

material of the amount of n-Si3N4 

 

According to [22–24], the introduction of whiskers carbide, silicon nitride into the composition of a 

material based on silicon nitride, significantly increases its strength properties. Daylight α→β-Si3N4 

grains elongated promotes crystallization, due to which the strength is increased. 

The dependence of the compressive strength of the number of silicon nitride powder nano shown in 

Figure 6. Flexural strength and compressive hot-pressed materials may reach 900–1000 MPa and 

1500–1700 MPa [25, 26] that 2,0–2,5 times higher than the strength values of the liquid-phase-sintered 

ceramics of micron powders. In this paper were obtained by liquid phase sintering materials based on 

n-Si3N4 with properties σb = 600 ±15 MPa; σ = 1720 ±20 MPa. 

For test materials, the Vickers hardness is slightly lower than for ceramic based powders 

micrometer Si3N4 (Figure 7). Hardness heterophase materials is determined by the method of additive 

between the hardness phases within them. During sintering Si3N4 particles partly dissolve into the 

oxide bonded, forming a "Sialon" phase, reducing the overall hardness of the material. 

 

  

Figure 6. The dependence of the compressive 

strength materials from amount of n-Si3N4. 

Figure 7. Dependence of Vickers hardness 

materials on the amount of n-Si3N4. 

 

Thus, using a liquid-phase sintering of silicon nitride, the method was able to obtain materials with 

a sufficiently high level of mechanical properties that allow to recommend it for use in various fields 

of industry – in the production of sliding bearings, balls for rolling bearings, end seals for centrifugal 

pumps, of the cutting tool, abrasive nozzles, turbine blades and refractory products. 

4. Conclusion 

Obtained a high-density material (ρ = 3,28 g/cm3) based nonorazmernogo silicon nitride powder by 

liquid phase sintering. The process of pattern formation material during sintering, as well as physical 

and mechanical characteristics. Maximum properties obtained at high material (85%) content of 
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nanoscale silicon nitride: ρ = 3,20 ± 0,02 g/cm3; P = 1,1±0,1%; E = 320±10 GPa; b = 600±15 MPa;  

 = 1720±20 GPa; K1C = 4,8 ± 0,1 MPa·m1/2; HV = 15,2 ± 0,1 GPa. Maximum properties in materials 

based on nanoscale powders are obtained at the optimal (50–75 MPa) pressure molding. 
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