The Hardy Space of Solutions of the Generalized Beltrami System

O. V. Vashchenko and A. P. Soldatov

Belgorod State University, Belgorod, Russia

We consider the first-order system

$$\frac{\partial \phi}{\partial y} - J \frac{\partial \phi}{\partial x} = F \tag{1}$$

on the plane, where $J \in \mathbb{C}^{l \times l}$ is a constant matrix whose eigenvalues lie in the upper half-plane $\operatorname{Im} \nu > 0$. In the scalar case l = 1, Eq. (1) with an (in general, continuous) coefficient J(z), $\operatorname{Im} J > 0$, is referred to as the Beltrami equation [1, p. 72].

The matrix function

$$E(z) = \frac{1}{2\pi i} z_J^{-1}$$
 (2)

[here and throughout the following, we use the matrix notation $z_J = x \times 1 + y \times J$ for $z = (x + yi) \in \mathbb{C}$] is a fundamental solution of the generalized Beltrami system (1). In other words, for any continuously differentiable compactly supported function F(z), the integral

$$(TF)(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} (t-z)_J^{-1} F(t) dt_1 dt_2$$
(3)

specifies a classical solution of Eq. (1).

Indeed, TF is a continuously differentiable function, and its derivatives are given by the formulas

$$\frac{\partial(TF)}{\partial x} = \frac{1}{2\pi i} \int_{\mathbb{C}} t_J^{-1} \frac{\partial F}{\partial x} (z+t) dt_1 dt_2, \qquad \frac{\partial(TF)}{\partial y} = \frac{1}{2\pi i} \int_{\mathbb{C}} t_J^{-1} \frac{\partial F}{\partial y} (z+t) dt_1 dt_2.$$
(4)

Consider the two-dimensional singular integral

$$(SF)(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} t_J^{-2} F(z+t) dt_1 dt_2$$
(5)

treated as the limit of integrals over $\{|t| \ge \varepsilon\}$ as $\varepsilon \to 0$. Since

$$\int_{|t|=1}^{} t_J^{-2} ds_t = 0, \tag{6}$$

it follows that the necessary condition for the existence of such integrals is satisfied. To verify relation (6), it is most convenient to use the function

$$\chi(
u) = \int_{0}^{2\pi} (\cos heta +
u \sin heta)^{-2} d heta,$$

VASHCHENKO, SOLDATOV

which is analytic in the upper half-plane Im $\nu > 0$. On the one hand, the integral on the left-hand side in relation (6) coincides with the value $\chi(J)$ of this function on the matrix J. On the other hand, the function χ of the matrix and all of its derivatives vanish at the point $\nu = i$, whence we have $\chi(J) = 0$. Let us rewrite the integral (3) as the limit of integrals over $\{|t| \ge \varepsilon\}$ as $\varepsilon \to 0$. Then, in the usual way, we obtain the relations

$$\frac{\partial(TF)}{\partial x} = (SF)(z) + \sigma_1 F(z), \qquad \frac{\partial(TF)}{\partial y} = J(SF)(z) + \sigma_2 F(z), \tag{7}$$

where the coefficients $\sigma_k \in \mathbb{C}^{l \times l}$ are given by the formulas

$$\sigma_k = rac{1}{2\pi i} \int\limits_{|t|=1} t_J^{-1} n_k ds_t, \quad k=1,2,$$

here $n = (n_1, n_2)$ stands for the unit inward normal of the cycle |t| = 1, so that

$$\sigma_1 = -\frac{1}{2\pi i} \int_0^{2\pi} (\cos\theta + J\sin\theta)^{-1} \cos\theta \, d\theta, \qquad \sigma_2 = -\frac{1}{2\pi i} \int_0^{2\pi} (\cos\theta + J\sin\theta)^{-1} \sin\theta \, d\theta.$$

One can readily see that

$$\sigma_2 - J\sigma_1 = -\frac{1}{2\pi i} \int_0^{2\pi} (-\sin\theta + J\cos\theta)(\cos\theta + J\sin\theta)^{-1} d\theta = 1.$$
(8)

Indeed, the left-hand side is the value on J of the function

$$\chi_0(
u) = rac{1}{2\pi i} \int\limits_0^{2\pi} rac{-\sin heta +
u\cos heta}{\cos heta +
u\sin heta} d heta,$$

which is analytic in the half-plane Im $\nu > 0$. Simple computations show that $\chi_0(i) = 1$, $\chi_0^{(k)}(i) = 0$, $k = 1, 2, \ldots$, and hence $\chi_0(\nu) = 1$.

By combining (7) with (8), we find that the function TF indeed satisfies Eq. (1).

The singular operator (5) belongs to the Calderón–Zygmund type. By [2, p. 52 of the Russian translation], it is bounded in the space $L^p(\mathbb{C})$, p > 1; moreover, if $F \in L^p$, then the integral exists for almost all z. This, together with (7) and (8), implies the following result.

Theorem 1. Let a domain $D \subseteq \mathbb{C}$ lie in a finite part of the plane, and let $F \in L^p(D)$, p > 1. Then the integral (3) defines a function TF that lies in the Sobolev space $W^{1,p}(D)$ and whose derivatives are given by (7). Moreover,

$$|TF|_{W^{1,p}(D)} \le C|F|_{L^p(D)},$$
(9)

where C > 0 is a constant depending only on p and D.

Proof. The estimates

$$|(TF)_x|_{L^p} + |(TF)_y|_{L^p} \le C|F|_{L^p}$$

form the contents of the Calderón–Zygmund theorem for the singular operator S. The estimate $|TF|_{L^p(D)} \leq C|F|_{L^p(D)}$ for the integral (3) can readily be derived from the Hölder inequality. These estimates imply (9).

Let D be the domain bounded by a piecewise smooth contour Γ . Consider a sequence of contours $\Gamma_n \subseteq D, n = 1, 2, \ldots$, approximating Γ in the following sense: for each n, there exists a piecewise continuous differentiable homeomorphic mapping $\alpha_n : \Gamma \to \Gamma_n$ such that

$$|\alpha_n(t) - t|_{\mathbb{C}(\Gamma)} + |\alpha'_n - 1|_{\mathbb{C}(\Gamma)} \to 0 \quad \text{as} \quad n \to \infty.$$
⁽¹⁰⁾

In particular, if the contour Γ_n bounds the domain D_n , then every compact set $K \subseteq D$ lies in all D_n for sufficiently large n.

Let $\phi \in W_{\text{loc}}^{1,p}(D)$; i.e., this function belongs to the class $W^{1,p}$ in each domain D_n , n = 1, 2, ...Then, by the embedding theorem [3], the estimate

$$|\phi|_{L^p(\Gamma_n)} \le C_n |\phi|_{W^{1,p}(D_n)} \tag{11}$$

is valid for each n.

We introduce the following notion. A function $\phi \in W^{1,p}_{\text{loc}}(D)$ belongs to the Hardy class $H^p_J(D)$ if

$$\frac{\partial \phi}{\partial y} - J \frac{\partial \phi}{\partial x} \in L^p(D) \tag{12}$$

$$\sup_{n} |\phi|_{L^{p}(\Gamma_{n})} < \infty.$$
(13)

Note that

$$W^{1,p}(D) \subseteq H^p_J(D). \tag{14}$$

Indeed, in this case, the norm on the right-hand side in the estimate (11) can be computed in $W^{1,p}(D)$; therefore, it is only necessary to show that the constants C_n occurring in this estimate are uniformly bounded. By using condition (10), one can readily obtain this fact from the proof of the embedding $W^{1,p} \subseteq L^p(\Gamma)$ (e.g., see [3, p. 420]).

It follows from (14) and Theorem 1 that T is a bounded operator in the spaces $L^p(D) \to H^p_J(D)$ and each function $\phi \in H^p$ can be represented in the form

$$\phi = TF + \phi_0, \tag{15}$$

where $F \in L^p(D)$ and ϕ_0 satisfies the homogeneous equation (1). Solutions ϕ of this homogeneous equation (1) were dubbed Douglis analytic functions or, briefly, *J*-analytic functions in [4].

An example of such functions is given by the Cauchy type integral

$$(I\varphi)(z) = \frac{1}{\pi i} \int_{\Gamma} (t-z)_J^{-1} dt_J \varphi(t), \quad z \in D,$$
(16)

where dt_J stands for the matrix differential $dt_1 + J dt_2$, $t = t_1 + it_2 \in \Gamma$, and, to be definite, we assume that the contour Γ has the positive sense with respect to D (i.e., the domain D lies to the left when moving along it).

By [5], the integral (16) with a vector function $\varphi \in L^p(\Gamma)$ defines a function $I\varphi \in H^p_J(D)$. More precisely, the following assertion is valid.

Theorem 2. (a) The operator I is a bounded operator in the spaces $L^p(D) \to H^p_J(D)$.

(b) Let $\varphi \in L^p(\Gamma)$, p > 1. Then for the integral, there exist angular limit values $\phi^+(t_0)$ for almost all $t_0 \in \Gamma$, and the Sokhotskii–Plemelj formula

$$\phi^+\left(t_0
ight)=arphi\left(t_0
ight)+rac{1}{\pi i}\int\limits_{\Gamma}\left(t-t_0
ight)_J^{-1}dt_Jarphi(t)$$

is valid, where the integral on the right-hand side is a singular integral treated in the sense of the Cauchy principal value. In addition, $|\phi^+|_{L^p} \leq C |\varphi|_{L^p}$.

VASHCHENKO, SOLDATOV

In particular, it follows from Theorem 2 that $H^p(D)$ equipped with the norm

$$|\phi| = |\phi_y - J\phi_x|_{L^p(D)} + \sup_n |\phi|_{L^p(\Gamma_n)}$$
(17)

is a Banach space. By using Theorem 2, one can readily give the following equivalent description of the space H^p .

Theorem 3. In the class of smooth functions in D, the norm (17) is equivalent to the norm

$$|\phi| = |\phi_y - J\phi_x|_{L^p(D)} + |\phi|_{L^p(\Gamma)}.$$
(18)

Proof. By virtue of the expansion (15), it suffices to verify the equivalence of the norms (17) and (18) for J-analytic functions.

By $C^{+0}(D)$ we denote the class of Hölder continuous functions. If ϕ is a *J*-analytic function in $C^{+0}(\bar{D})$, then, by applying Theorem 2 to the Cauchy formula

$$2\phi(z)=rac{1}{\pi i}\int\limits_{\Gamma}(t-z)_{J}^{-1}dt_{J}\phi(t),$$

we obtain the estimate $|\phi|_{H^p(D)} \leq C |\phi|_{L^p(\Gamma)}$. Conversely, let $\phi \in H^p(D) \cap C^{+0}(\overline{D})$. Then, by (10), the sequence α_n uniformly converges to ϕ on Γ , whence we obtain $|\phi|_{L^p(\Gamma)} \leq C_1 |\phi|_{H^p(D)}$. This implies the desired equivalence of the norms.

Theorem 3, together with its proof, implies that the space $H^p(D)$ can be obtained as the closure of the class $C^{1,+0}(\overline{D})$ in the norm (18). In particular, to each function $\phi \in H^p$, one can assign its limit value $\phi^+ \in L^p(\Gamma)$.

The expansion (16) can be complemented as follows.

Theorem 4. Let D be the domain bounded by a simple piecewise Lyapunov contour without return points, and let J be a triangular matrix. Then each function $\phi \in H^p(D)$ can be uniquely represented in the form

$$\phi = TF + I\varphi + i\xi,\tag{19}$$

where $\xi \in \mathbb{R}^l$, $F = \phi_y - J\phi_x$, and $\varphi \in L^p(\Gamma)$ is a vector function taking real values.

Proof. By replacing ϕ by $\phi - T\phi$, without loss of generality, one can assume that F = 0. In this case, it suffices to use the results in [4, 6].

ACKNOWLEDGMENTS

The work was financially supported by the Program "Universities of Russia" (project no. UR04.01.486).

REFERENCES

- 1. Vekua, I.N., *Obobshchennye analiticheskie funktsii* (Generalized Analytic Functions), Moscow: Nauka, 1988.
- 2. Stein, I., Singular Integrals and Differentiability Properties of Functions, Princeton: Princeton Univ. Press, 1970. Translated under the title Singulyarnye integraly i differentsial'nye svoistva funktsii, Moscow: Mir, 1973.
- 3. Nikol'skii, S.M., *Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya* (Approximation of Functions of Several Variables and Embedding Theorems), Moscow: Nauka, 1969.
- 4. Soldatov, A.P., Izv. Akad. Nauk Ser. Mat., 1991, vol. 55, no. 5, pp. 1070-1100.
- 5. Soldatov, A.P. and Aleksandrov, A.V., Differ. Uravn., 1991, vol. 27, no. 1, pp. 3-8.
- 6. Soldatov, A.P., Izv. Akad. Nauk Ser. Mat., 1992, vol. 56, no. 3, pp. 566-604.