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We consider the first-order system

on the plane, where J  £ <Clxl is a constant m atrix  whose eigenvalues lie in the upper half-plane 
Imz/ >  0. In the scalar case I = 1, Eq. (1) w ith an (in general, continuous) coefficient J(z) ,  
Im  J  > 0 ,  is referred to  as the Beltram i equation [1, p. 72].

The m atrix  function
E(z)  = — z 7 1 (2)

V 7 2vr i j  V 7
[here and throughout the  following, we use the m atrix  notation Zj = x x l  + y x J  for z  =
(x + yi) G C] is a fundam ental solution of the generalized Beltram i system (1). In other words, for
any continuously differentiable compactly supported function F(z) ,  the  integral

(TF) (z )  = ^ ~  j \ t -  z ) j 1F ( t ) d t1dt2 (3)
c

specifies a classical solution of Eq. (1).
Indeed, T F  is a continuously differentiable function, and its derivatives are given by the formulas

d (T F ) 1 i  -1 d F , , , , d(TF) 1 f _ < d F ,  , , ,
=  J  t:’ t e  ' +  t )d t ' dU-  —  = 2 7 i J t ^ i!: + t ) d t l d h ■ (4)dx

Consider the two-dimensional singular integral

(SF)( z )  = — [  t j 2F ( z  +  t )d t1dt2 (5)
2 m  J

c

treated  as the limit of integrals over {|i| >  e} as e —>■ 0. Since

[  t j 2dst = 0, (6)

1*1 = 1

it follows th a t the necessary condition for the existence of such integrals is satisfied. To verify 
relation (6), it is most convenient to  use the function
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which is analytic in the upper half-plane Imz/ >  0. On the one hand, the integral on the left-hand 
side in relation (6) coincides w ith the value x ( J )  of this function on the m atrix  J . On the other 
hand, the function % of the m atrix  and all of its derivatives vanish at the point v  =  i, whence we 
have %(J) =  0. Let us rewrite the integral (3) as the limit of integrals over {|i| >  e} as e —> 0. 
Then, in the usual way, we obtain the relations

= (S F ) ( z ) +  a .F i z ) ,  ^ p  =  J ( S F ) ( z )  +  a2F{z) ,  (7)

where the coefficients a k e C lxl are given by the formulas

Gk = 2 \ i  /  t J lrikdSt’ k = 1>2>
\t\ = l

here n  =  (n1, n 2) stands for the unit inward normal of the cycle |i| =  1, so th a t

27T 27r

<Ti = --------- / (cos 9 +  J  sin 9)~ l cos 9d9,  a 2 = --------- /  (cos 9 +  J s in # ) -1 s in9 d9.
2 tti J  2 tti J

0 0

One can readily see th a t

27T

<t2 — J o \  =  — [ ( — sin 9 +  J  cos 6)(cos 9 +  J  sin 0)~1d0 = 1. (8)
2 m  J

o

Indeed, the left-hand side is the value on J  of the function

27T
, , 1 f — sin 9 +  v  cos 9 in

Xo{v) = 7) 7 /  ------ 7T,---------- ~d9,27xi J  cos 9 + vs \n  9
0

which is analytic in the half-plane I m u  > 0. Simple com putations show th a t Xo(*) =  1, 
k = 1 , 2 , ,  and hence Xo(^) =  1-

By combining (7) w ith (8), we find th a t the function T F  indeed satisfies Eq. (1).
The singular operator (5) belongs to  the Calderon-Zygm und type. By [2, p. 52 of the Russian 

translation], it is bounded in the space L p{C), p > 1; moreover, if F  e  L p, then the integral exists 
for almost all z. This, together w ith (7) and (8), implies the following result.

Theorem 1. Let a domain D  C C lie in a finite part of  the plane, and let F  e  L P(D), p > 1. 
Then the integral (3) defines a funct ion T F  that lies in the Sobolev space W 1'P(D) and whose 
derivatives are given by (7). Moreover,

|T F |tvi.p(D) <  C \F\LP{yD'), (9)

where C  > 0 is a constant depending only on p and D.

Proof. The estim ates
\ {TF)x \Lp +  \ {TF)y\LP <  C \F\lp

form the contents of the Calderon-Zygm und theorem  for the singular operator S.  The estim ate 
\TF\Lp(D) < C \F \Lp(D) for the integral (3) can readily be derived from the Holder inequality. These 
estim ates imply (9).
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Let D  be the  dom ain bounded by a piecewise sm ooth contour T. Consider a sequence of contours 
r „  C D, n  = 1 , 2 , . . . ,  approxim ating T in the following sense: for each n, there exists a piecewise 
continuous differentiable homeomorphic m apping a n : T —> T„ such th a t

Ia n(t) -  t |c(r) +  IOLn -  l | c(r) —► 0 as n  —► oo. (10)

In particular, if the contour T„ bounds the dom ain D n, then  every compact set K  C D  lies in 
all D n for sufficiently large n.

Let 0  G W ^ ( D ) - ,  i.e., th is function belongs to  the class W 1,p in each dom ain D n, n  = 1 , 2 , . . .  
Then, by the embedding theorem  [3], the estim ate

|0Up(r„) <  Cn\(f)\w1’P(Dn) (11)

is valid for each n.
We introduce the following notion. A function (f> e  W ^ ( D )  belongs to  the H ardy class H P(D)

if

(12)
sup|(/>|LP(rri) <  oo. (13)

n

Note th a t
W hp(D)  C H P(D).  (14)

Indeed, in this case, the norm  on the right-hand side in the estim ate (11) can be com puted in 
W 1,P( D ); therefore, it is only necessary to  show th a t the constants Cn occurring in this estim ate 
are uniformly bounded. By using condition (10), one can readily obtain this fact from the proof of 
the  embedding W 1,p C L P(T) (e.g., see [3, p. 420]).

It follows from (14) and Theorem  1 th a t T  is a bounded operator in the spaces L P( D ) —> H j ( D ) 
and each function <fi e  H p can be represented in the form

<f> =  T F  +  0o, (15)

where F  e  L P(D ) and 0 O satisfies the homogeneous equation (1). Solutions (f) of this homogeneous 
equation (1) were dubbed Douglis analytic functions or, briefly, J-analy tic  functions in [4].

An example of such functions is given by the Cauchy type integral

(Itp)(z) = —  f ( t -  z ) j 1dtJtp(t), z e D ,  (16)
iri J

r

where d t j  stands for the m atrix  differential dt± +  J  dt2, t  = ti  +  i t2 £ T, and, to  be definite, 
we assume th a t the contour T has the positive sense w ith respect to  D  (i.e., the dom ain D  lies to 
the  left when moving along it).

By [5], the integral (16) w ith a vector function ip e  L P(T) defines a function lip e  H P(D).  More 
precisely, the  following assertion is valid.

T h e o re m  2. (a) The operator I  is a bounded operator in the spaces L P( D ) —> H P(D).
(b) Let <p G L P(T), p > 1. Then for  the integral, there exist angular limit values (f)+ (to) for  

almost all t 0 £  T, and the Sokhotskii-Plemelj formula

4>+ (to) =  p> (to)  +  —  [  ( t  -  t o ) ^ 1 d t j ( p ( t )  
iri J

r

is valid, where the integral on the right-hand side is a singular integral treated in the sense of the 
Cauchy principal value. In  addition, \4>+\Lp <  C\p \LP.



In particular, it follows from Theorem  2 th a t H P(D ) equipped with the norm

101 =  I0v -  +  suPl0Unr„)  (17)
n

is a Banach space. By using Theorem  2, one can readily give the following equivalent description 
of the space H p.

T h eorem  3. In the class of  smooth functions in D, the norm (17) is equivalent to the norm

101 =  \4>V ~  +  \4>\lp{T)- (18)

P roof. By virtue of the expansion (15), it suffices to  verify the equivalence of the norms (17) 
and (18) for J-analy tic  functions.

By C +0 (D)  we denote the class of Holder continuous functions. If (f) is a J-analy tic  function 
in C +0 ( D ) , then, by applying Theorem  2 to  the Cauchy formula

2<f>(z) = ~  f ( t ~  z ) j 1dtJ(f)(t), 
iri J  

r

we obtain the estim ate \<P\h p ( d ) <  C\<fi\LP(r)- Conversely, let (f) e  H P(D)  n C +0 (D) .  Then, by (10), 
the  sequence a n uniformly converges to  (f) on T, whence we obtain \4>\lp{t) <  Ci\<P\hp(d)- This 
implies the desired equivalence of the norms.

Theorem  3, together with its proof, implies th a t the space H P(D)  can be obtained as the closure 
of the class C 1̂ 0 (D) in the norm (18). In particular, to  each function <fi e  H p, one can assign its 
limit value (f)+ e  L P(T).

The expansion (16) can be complemented as follows.

T h eorem  4. Let D  be the domain bounded by a simple piecewise Lyapunov contour without 
return points, and let J  be a triangular matrix. Then each funct ion (f) e  H P(D) can be uniquely 
represented in the form

<p = TF  +  lip +  *£, (19)

where £ e K 1, F = <py — J<px , and (p e  L P(T) is a vector funct ion taking real values.

P roof. By replacing 0 by <f> — T<f>, w ithout loss of generality, one can assume th a t F  = 0. In this 
case, it suffices to  use the  results in [4, 6].
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