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Abstract—The problem of the effect of internal heat evolution on the motion of a heated solid spherical particle 
in a viscous fluid is analytically solved in the Stokes approximation at small Reynolds and Peclet numbers. The 
temperature drop between the surface of the particle and the area away from it is assumed to be arbitrary. In 
solving hydrodynamic equations, the thermal conductivity of the particle is set to be a power function of tem
perature and the viscosity of the fluid, an exponential-power function of temperature. The observability of this 
effect is discussed.

INTRODUCTION
We consider the steady motion of a solid nonuni- 

formly heated hydrosol particle of radius R  in a viscous 
incompressible fluid occupying the whole space. The 
particle is heated by internal heat sources nonuniformly 
distributed over its volume with density qir. 0), where 
r  and 0 are spherical coordinates (0 < 0 < n). Heating of 
a hydrosol particle may be associated with a chemical 
reaction proceeding in its volume, its radioactive decay, 
electromagnetic radiation absorption, etc. As a result, 
the surface temperature of the particle may far exceed 
the environmental temperature. This, in turn, may 
change the electrophysical properties of the fluid and, 
thereby, substantially affect the velocity and pressure 
field distributions in the neighborhood of the particle. 
Of all fluid transport coefficients, the dynamic viscosity 
is the most temperature-dependent [1]. This depen
dence is given by the formula

1 + Z F 4 r £ - 1 exp<j - A [ ^ - l  I ,(1)

which describes the variation of the viscosity in a wide 
temperature range (at Fn = 0, this formula can be 
reduced to the well-known Reynolds formula [1]). 
Here, A and Fn are constants, |i„ = \\.e(Tx), and Tx is the 
fluid temperature away from the particle. For water, we 
have A = 5.779, = -2.318, F2 = 9.118, and Tx =
273 K; for glycerol, A = 17.29, F 1 = -1.228, F2 = 7.022, 
and Tx = 303 K. The relative error of formula (1) is no 
higher than 3% in both cases. Factors Fn were calcu

lated using the Maple VIII software package. Hereafter, 
indices and refer, respectively, to external
parameters (those of the viscous fluid), internal param
eters (those of the particle), and parameters at infinity 
(away from the particle).

Interacting with the nonuniformly heated surface, 
the fluid starts moving over the surface toward higher 
temperatures. This effect, called the thermal slip, 
causes additional force F? to arise. Once this force 
becomes equal to the viscous force of the environment, 
the particle starts moving uniformly. Thus, if the tem
perature drop near the particle is significant (i.e., (Tis -  
TX)ITX - 0 ( 1 ) ,  where Tis is the mean temperature of the 
particle surface in the viscous fluid), the solid particle 
moves steadily.

When the particle is heated through electromagnetic 
radiation absorption, its steady motion in a fluid is 
termed photophoresis [2, 3]. In this case, the tangential 
component of the velocity on the surface of a solid 
aerosol particle (r = R) satisfies the slip condition [4],

Un = K t,
Ve d r e

■r t , de (2)

Here, Ue is the shear component of mass velocity U in 
the spherical coordinate system; v e is the dynamic vis
cosity of the fluid; Te is the fluid temperature; and Kts is 
the thermal slip coefficient, which is derived from the 
kinetic theory of gases. If the accommodation coeffi
cients for the tangential momentum, a T. and energy, a i:, 
equal unity, gaskinetic coefficient = 1.152 [4].
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The problem of fluid slip over the surface of a solid 
hydrosol particle was first solved by Basset [5]. He sup
posed that the tangential velocity of a fluid relative to 
the surface of a solid is proportional to shear stresses 
and named the corresponding proportionality coeffi
cient (Kls) the slip coefficient. It is assumed that this 
coefficient depends on only the nature of the fluid and 
solid surface (if it is other than zero). If the spherical 
particle is at rest and the fluid flows about it, this 
hypothesis for the axisymmetric flow (the Basset 
hypothesis) takes the form

U = K  u ( dU 9 i ldU r  
e tsH  dr r 90

Ue
r

V P e = |teAUe + 2(V(xe • V )U e + [V(xe x curlU J;

divUe = 0;

A Te = 0; 

d iv (^ V r ,)  = -qc,

(1.1)

(1.2)

(1.3)

Ve dT e
r = R: Ur = 0, Ue = K ts^ r ^ ,  Te = T h

>: U, £/Mcos0er - £ / Msin0ee, (1.4)

■P T  -1 co> -*• e 

—  0 :

■T„,

Elaboration of a theory accounting for the effect of 
internal heat evolution on the motion of a solid spheri
cal particle in a viscous nonisothermal fluid is a chal
lenging task. First, the motion of a particle in a fluid is 
governed by both surface and volume effects arising 
from nonuniform distributions of hydrodynamic and 
temperature fields. Second, this motion is a result of 
slip of the fluid over the solid surface. Thermal slip of a 
fluid over a solid surface is not yet fully understood. 
The reason is that a rigorous mathematical theory of 
inhomogeneous fluids is still lacking. Third, a mecha
nism of thermal energy distribution inside the solid that 
causes its nonuniform heating is unknown. However, 
impressive theoretical and experimental advances in 
this respect have recently been made [6, 7].

1. PROBLEM DEFINITION

We consider the steady motion of a solid nonuni
formly heated spherical hydrosol particle of radius R  in 
a viscous incompressible fluid occupying the whole 
space. The particle is heated by heat sources nonuni
formly distributed over its volume with density qt(r, 0). 
It is assumed that any phase transition is absent, the 
thermal conductivity of the particle far exceeds the 
thermal conductivity of the fluid, and the thermal con
ductivity of the particle is a power function of temper
ature (A., = )• Here, = K i T j  and /, = The
particle moves in the spherical coordinate system (r, 0, 
(p) with the origin at its center.

In view of the above assumptions, the equations and 
boundary conditions for velocity U,„ pressure Pe, and 
temperatures Te and T. in the spherical coordinate sys
tem have the form [8, 9],

Here, Ur and Ue are the radial and shear component of 
mass velocity Ue, LL is the velocity of the plane-paral
lel flow of the fluid about the particle (IL  || 0Z), e(. and 
ee are the unit vectors of the spherical coordinate sys
tem, Ux = |U J, a 0 is the Stefan-Boltzmann constant, 
a , is the integral blackness, and A is the Laplacian.

The basic parameters of the problem are coefficients 
p,„ |i„. and X,,. as well as quantities R. Tx , and Ux, which 
remain unchanged during the motion of the spherical 
particle. From these parameters, one can constitute a 
dimensionless combination, the Reynolds number, 
Re„ = (\i„UJ{)/pe <  1. Let us nondimensionalize 
Eqs. (1.1)—(1.3) and boundary conditions (1.4) as fol
lows: V„ = I ]JU„, tk = 7’/./7’„. and p„ = PJP„ (P,„ = 
(\x,JJ,JIR), where k = e or i.

At 8 = Re„ <s? 1, the incoming flow can be consid
ered as a disturbance; therefore, a solution to the equa
tions of fluid dynamics and heat transfer should be 
sought in the form

Ve = v i 0) + 8 v i1)+ ..., 

pe = p?' + ep™ + ..., , = i ' + V,■
(1.5)

2. TEMPERATURE FIELDS AND THE DRIVING 
FORCE AND VELOCITY OF THE STEADY 
MOTION OF THE HYDROSOL PARTICLE

Substituting (1.5) into the set of Eqs. (1.1)—(1.3) and 
separating the variables, we arrive at expressions for the 
mass velocity components and temperature fields,

Vr(y,Q) = co s0 (l + A 1G1(y) + A 2G2(y)),

te(y, 0) = t(e \ y )  + ^ \ y ,  0);
Ve(y,Q) = - s in 0 ( l  + A xGz(y) + A 2G4(y)),

ti(y,Q) = t\0)(y) + et\1)(y,Q),

(2.1)

(2.2)

where

k(D

y  n=0( «  + 3 )y
1 “ a(2)g 2 = - i y ^ ^
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“ 2
>' ,.o

(n + 3 ) ln -  -  1
y -

k(D
/ r\ \ 2 n(n + 3) y

G3 = G 1 + y-G [, G4 = G 2 + ^G !2,

t f \ y ) = l  + l ,  V = ^ tzR \

(2.3)

t? \y )  =

y

1 + coBn + -,— "1— I qjdV + J —dy
4nRXi„T„yJ

d V
1 + CO

f(D = _ ^ o s 0 _  

(1 + co)^

y \ - 2d y - - 2^ f l dy

, y = r/R,

(1 + (ù)RJBy +
3

,  = —i;COS0,

+ 1
. ( , K (1 +CÛ) 2 l n +  1 f ( f\\ D , Wf n(y) =  j - j ;— y — J qi(r,Q)Pn(x)dx,

iC° °° -1

= ^JîiZrfV'

When calculating coefficients Â ,11 and Â 2) by 

these formulas, one should take into account that A*',1 1 = 

-3 , A<2) = -1 , A f  = 1, C  = a<4) = 1, a<3) = -4 ,

od1} = Fn> a i2) = (4 -  n)Fn + AFn_v  a[,2) = 4, a!„4) =

A nln !, a^3) = 2AFn _ 1 -  2(n + 2)Fn,

A[2) = - J [  6 a (14) + 2 (3 a (11)- a (12)) + a (13)],

a  = ^ { - 6 yc44) + [3 (4 a (11) -  a f-1) + a (13)]A(12)

- [2 ( 3 a ^ 1)- a ^ 12)) + oc23)]y}.

The constants of integration appearing in (2.1) and 
(2.2) are found from the boundary conditions on the 
particle surface. Then, integrating the stress tensor over 
the particle surface, one can find total force F acting on 
the hydrosol particle, which is a linear combination of 
viscous force Ffl and force F?,

F = F„ + eF , (2.4)

where

Fn =  - 6 n R \ i „ U „ f ]ln i , F q = 6nR\L ^fqJ n z,

U  = ^ exP {_A^ }’

f q = K x
4 v e G1
3 / . -V 6 / . ; / '

■exp{-Ay},

is the dipole moment of the heat source density, Pn(x) 
are Legendre polynomials, x = cos0, and z = rcos0.

In (2.3), G[ and G1' are the first and second deriva
tives of the corresponding functions with respect to y 
(k = 1, 2). Coefficients A ^  (n > 1) and Â 2) (n > 3) are 
found with the recurrence relations

A(1) = -  1

k = 1

a (2) = - l
(n + 3)(n -  2)

- 6 a  <ny n)+ ^ i ( n  + 2 - k )

N l \y = l = G lG‘2- G 2G\, N 2\y = l = -G[,
( 0)1

ly = i ’

X

n(n + 5)

x ^  [(« + 4 -  k ) (a ^ \n  + 5 - k ) -  a f ]) +

S  —  1 i n " e ° °  i ® 0 ® 1 ^ 7 i 3  3  t  t  (O0 — 1 + 2^  + 4   ̂ Àjs — À;co?es,

and n: is the unit vector in the Z direction. Subscript “s” 
refers to physical quantities taken on the hydrosol par
ticle surface at mean dimensionless temperature /es = 
T J T X. This temperature is given by

T± e;
f i

= 1 + l
4 kR K ~T '

Q)dV

GqGiRT«

k = 1 K

V

T  \4 1 e
r"

(2.5)

-  1

x [(n + 2 -  k ) -  a i2)] + <xf] }y kA ^ lk

+ [(2n + 5 -  2fc)ai1) -  a f )]ykA(„1)_k_2
k = 0

In (2.5), integration is over the entire volume of the 
particle.

With the condition Xe <  satisfied, one can ignore 
the 0 dependence of the dynamic viscosity in the parti-
cle-fluid system and put | i = |i,,( i^'  ). Then, expres
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Function /zph vs. incident radiation intensity 70 for Cû = (7) 
0.5, (2) 0.7, and (3) 1.0. Curve 4  is constructed for small 
temperature drops.

sion (1) takes the form

Y
i +  £ F'

„.1 y
exp-j - A (2.6)

Formula (2.6) allows splitting the problem into ther
mal and hydrodynamic subproblems. Respective solu
tions are joined together using the boundary conditions 
on the surface of the hydrosol particle.

Equating total force F to zero yields an expression 
for the velocity of steady motion (steady-state velocity) 
of a solid spherical particle in a viscous nonisothermal 
fluid,

U, = - e fV n z.
J LI

(2.7)

thickness 5R < R  adjacent to the area being heated and 
the heat source density within this layer is given by [10]

4;(r, 0) = <
- Û -

0, o < e < ï ,

where I0 is the incident radiation intensity.

Then,

J ?i(r, Q)zdV = k R 3I 0, J ?i(r, Q)dV = k R 2I0,
y y

and we obtain expressions accounting for the effect of 
internal heat evolution on the driving force and velocity 
of steady motion of a solid spherical particle acting as 
an absolutely black body,

Fvh = -E6izR\L„KiafjA1, Uvh = eK tshvh,

where

f v h
2 v e G1
3 t esN 1b l mT,

v es Gx

ex p { -A y } /0,

^ph  - ■/n.

3. RESULTS AND DISCUSSION
Formulas (2.4) and (2.7) make it possible to esti

mate the effect of internal heat evolution on the driving 
force and velocity of steady motion of a hydrosol parti
cle when the viscosity of the surrounding fluid is an 
exponential-power function of temperature.

It follows from these formulas that the sense and 
magnitude of F? and U? depend on the sense and mag
nitude of the dipole moment of the heat source density, 
as well as on the thermal conductivity of the particle. At 
A., — ► 00  and a fixed value of the dipole moment of the 
heat source density, F? and U? tend to zero.

To estimate the effect of heat sources nonuniformly 
distributed over the volume of the hydrosol particle on 
its steady-state velocity, it is necessary to know their 
nature. Let heat sources arise when the particle acting 
as a black body absorbs electromagnetic radiation. In 
this case, the radiation is absorbed in a thin layer of

The figure plots function /;ph against incident radia
tion intensity I0 to illustrate the effect of internal heat 
evolution on phoretic velocity Uph of the solid hydrosol 
particle. Numerical estimates were made for borated 
graphite particles suspended in water. The calculation 
parameters were T^ = 273 K, k,,„ = 55 W/(m K), and 
three values of co. Curve 4 in the figure was constructed 
for small relative temperature drops (y — ► 0, co = 0) but 
for molecular transport coefficients taken at the particle 
surface mean temperature. Internal heat evolution is 
seen to significantly influence the steady-state velocity 
of the hydrosol particle.

CONCLUSIONS

We derived expressions for the force acting on a 
spherical hydrosol particle and for its steady-state 
velocity at an arbitrary temperature drop between the 
particle surface and the surrounding fluid away from 
the particle. The particle is heated by heat sources non
uniformly distributed in its volume. The results 
obtained in this work may be helpful in designing 
experimental setups imposing directional motion on 
hydrosol particles, estimating the sedimentation rate of 
hydrosol particles in channels, analyzing transport of 
hydrosol particles in the chemical reaction zone, etc. 
Quantitative investigation into this effect for solid par
ticles seems to be a feasible task.
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