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We have studied the possibilities of using diffracted transition radiation excited by a relativistic electron 
beam in a single-crystal target to determine the beam divergence. For this purpose, we investigated the 
expressions we had previously derived that describe the angular density of diffracted transition radiation 
excited by a relativistic electron beam crossing a thin single-crystal plate. In our calculations, we used 
the two-parameter model distribution function to represent the angular distribution of ultra-relativistic 
electrons in the beam. For determining the beam divergence parameters, the methods of two-dimensional 
objective function minimization were used. The model calculations we performed confirm the efficiency 
of the above-mentioned methods for determining the divergence of a relativistic electron beam.

© 2020 Elsevier B.V. All rights reserved.
Introduction

The problem of creating new methods for indicating beam pa-
rameters in charged particle accelerators is always relevant. The 
transverse size and divergence are base parameters of the accel-
erated electron beam. The main task of beam indication for the 
physicists creating, studying and applying the beams of relativis-
tic electrons in the energy range of 100-1000 MeV is the mea-
surement of the beam transverse dimensions, as the divergence is 
0.001 mrad on up-to-date accelerators which is a negligible value 
for the beam transverse size exceeding 10 mm. Currently, in the 
world there are two large electron-positron colliders [1,2] under 
construction. In these setups, the electrons and positrons will be 
accelerated up to 250 GeV and will move in a beam of an ex-
tremely small size (∼5-100 nm). In this case, the main task of the 
beam indication will be the measurement of its divergence. The 
solution of this problem will allow a more informative and exact 
analysis of the experimental data in fundamental and applied in-
vestigations. It is evident that the measurements of electron beam 
divergence require methods minimally affecting the measured pa-
rameters. The use of electromagnetic radiation generated by rela-
tivistic electrons in a thin target is one of the promising directions 
in the development of the beam indication methods. Recently, the 
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possibilities of using the parametric X-ray radiation (PXR) for diag-
nosing the transverse dimensions of the relativistic electron beam 
has been studied experimentally in [3,4].

The effect of the divergence of an electron beam on PXR in 
a crystal was experimentally researched in Tomsk and Tokyo [5]
for electron energies of 600 and 800 MeV, respectively. It was 
shown that the dependence of PXR on the orientation of the crys-
tal is sensitive to the divergence of the beam, and it was proposed 
to use PXR as a simple tool for determining the angular diver-
gence of beams of high-energy charged particles. In [6], it was 
proposed to use parametric X-ray radiation generated in thin crys-
tals to obtain operational information about the position and size 
of an electron beam. In addition to PXR, in the direction of Bragg 
scattering, diffracted transition radiation (DTR) was also observed 
[7–10], which is a consequence of diffraction on a system of par-
allel atomic planes of a crystal of transition radiation photons gen-
erated on the front boundary of the crystal plate.

In our works [11–13] we developed the DTR theory for a 
monocrystalline target and for a periodic layered one considering 
the asymmetry of the Bragg reflection of the Coulomb field of a 
relativistic electron relative to the target surface. In [14], we devel-
oped a dynamic theory of coherent X-ray radiation by a divergent 
beam of relativistic electrons crossing a single-crystal plate in the 
Laue scattering geometry. The expressions obtained in [14] suggest 
that the angular density of the DTR depends on the divergence of 
the electron beam to a greater extent than the angular density of 
PXR.
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In the present work, the DTR generated by a beam of relativistic 
electrons in a single-crystal target in the Laue scattering geometry 
is studied in terms of its applicability for indicating the parame-
ters of electron beams. We consider the radiation for a very thin 
target, when the multiple scattering of electrons on target atoms 
is negligible, which is important for measuring the divergence of 
an electron beam, as this case provides a sufficiently small change 
in the measured parameters. Since the contribution of PXR to the 
yield of coherent radiation in the conditions under consideration is 
negligible compared with the contribution of DTR, it is not consid-
ered in the present work.

In the paper, we analyze the possibility of using the DTR for 
indicating the divergence of relativistic electron beams of ultra-
high energies. We propose a method for defining the parameters of 
the two-dimensional angular distribution of electrons in the beam 
from the measured angular distribution of the diffracted transition 
radiation.

1. Radiation process geometry

In order to describe the radiation generated by a beam of rel-
ativistic electrons traversing a single-crystal plate we consider the 
radiation by one singled out electron in the beam. For the consid-
ered case of relativistic electrons, we are able to use the small-
angle approximation in radiation process geometry. Each of the 
electrons in the beam will be determined by the position of its 
velocity vector V (Fig. 1) relative to the beam axis (unit vector e1) 
using the variable ψ :

V =
(

1 − 1

2
γ −2 − 1

2
ψ2

)
e1 + ψ, e1ψ = 0, (1a)

where ψ is the angle of the electron velocity deviation from the 
axis of the electron beam e1. This variable can be decomposed by 
components parallel and perpendicular to the plane of the picture 
in Fig. 1: ψ = ψ‖ + ψ⊥ .

The unit vector n of the momentum of the incident photon 
generated by this relativistic electron will be determined by its po-
sition relative to e1 using the angular variable θ0:

n =
(

1 − 1

2
θ2

0

)
e1 + θ0, e1θ0 = 0, (1b)

where θ0 is the angle between the direction of the incident photon 
n and the axis e1.

Also, we will determine the unit vector ng of the diffracted 
photon momentum by its position relative to e2 using the vector 
angular variable θ :

ng =
(

1 − 1

2
θ2

)
e2 + θ, e2θ = 0, e1e2 = cos 2θB . (1c)

The variable θ is the angle of radiation, counted from the de-
tector axis e2 (Bragg scattering direction). The angular variables 
determining the incident photon and the photon diffracted in the 
single-crystal target on the system of parallel atomic planes can 
be decomposed by components parallel and perpendicular to the 
plane of the picture (Fig. 1): θ = θ‖ + θ⊥ , θ0 = θ0‖ + θ0⊥ .

In Fig. 1, ψ0 is the electron beam divergence, θB is the Bragg 
scattering angle (defined under θ0 = 0, θ = 0), γ = 1/

√
1 − V 2 is 

Lorenz-factor of the electron, δ is the angle between the entrance 
boundary of the target and the system of diffracting atomic planes 
in the target. In formulas (1), we use the fact that the variables θ0, 
θ , and ψ are of the same order of smallness as γ −1 (γ −1 < 10−3).

So, we will consider the coherent radiation of a separate elec-
tron in the beam crossing a single-crystal target at the angle 
Fig. 1. The radiation process geometry.

ψ(ψ‖, ψ⊥) to the electron beam axis e1. To move from the ra-
diation by a single electron to the one by a beam of electrons 
we will use the averaging of the radiation spectral-angular den-
sity by all the electron trajectories (over angles θ = θ‖ + θ⊥ and 
θ0 = θ0‖ + θ0⊥) as shown below.

The two main radiation mechanisms which contribute to the 
coherent radiation generated by a relativistic electron are the 
diffracted transition radiation (DTR) and the parametric X-ray ra-
diation (PXR). Note that at super high energies of the electron 
which is under our consideration the contribution of PXR can be 
neglected.

2. Spectral-angular density of DTR from a thin single-crystal 
plate

We shall use the expression for spectral-angular density of DTR 
generated by an electron in the beam traversing a monocrystalline 
plate of arbitrary thickness obtained in [14]:

ω
d2N(s)

DTR

dωdΩ
= e2

4π2
Ω(s)2 ×

(
1

γ −2 + (θ⊥ − ψ⊥)2 + (θ‖ + ψ‖)2

− 1

γ −2 + (θ⊥ − ψ⊥)2 + (θ‖ + ψ‖)2 − χ ′
0

)2

R(s)
DTR,

(2a)

where the spectral function

R(s)
DTR = ε2

ξ(ω)2 + ε

×
[

exp
(−2b(s)ρ(s)(1)

) + exp
(−2b(s)ρ(s)(2)

)

− 2 · exp

(
−b(s)ρ(s) 1 + ε

ε

)
· cos

(
2b(s)

√
ξ (s)2 + ε

ε

)]
,

(2b)

Ω(1) = θ⊥ − ψ⊥, Ω(2) = θ‖ + ψ‖,
C (1) = 1, C (2) = cos 2θB ,

(2) = ε + 1

2ε
+ 1 − ε

2ε

ξ(s)√
ξ (s)2 + ε

+ κ(s)√
ξ (s)2 + ε

,

(1) = ε + 1

2ε
− 1 − ε

2ε

ξ(s)√
ξ (s)2 + ε

− κ(s)√
ξ (s)2 + ε

,
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ε = sin(δ + θB)

sin(δ − θB)
, ρ(s) = χ ′′

0

|χ ′
g|C (s)

,

b(s) = 1

2 sin(δ − θB)

L

L(s)
ext

, ν(s) = χ ′
gC (s)

χ ′
0

, κ(s) = χ ′′
g C (s)

χ ′′
0

,

ξ (s)(ω) = η(s)(ω) + 1 − ε

2ν(s)
,

η(s)(ω) = 2 sin2 θB

V 2|χ ′
g|C (s)

(
ω(1 − θ// cot θB)

ωB
− 1

)
,

dΩ ≡ dθ‖ · dθ⊥. (3)

The expressions (2) describe σ -polarized waves under s = 1
and π -polarized waves under s = 2. The expressions (2) describe 
the spectral-angular density of DTR taking into account the devi-
ation of the electron velocity direction (the angle ψ(ψ⊥, ψ//)) in 
relation to the electron beam axis e1. These expressions have been 
derived within the frame of a two-wave approximation [15] of the 
dynamical diffraction theory for the general case of the asymmet-
ric reflection of the radiation waves in relation to the front surface 
of the monocrystalline target (angle δ). Parameter ε determines 
the degree of asymmetry of the reflection of the coulomb field of 
the relativistic electron relative to the target surface. It should be 
noted that the angle of the electron incidence to the target sur-
face (δ − θB ) decreases when asymmetry parameter ε increases. 
Parameter b(s) is equal to half the path of the electron in target 
Le = L/ sin(δ − θB) expressed in the lengths of extinction of X-ray 
waves in crystal L(s)

ext = 1/ω|χ ′
g|C (s) .

Now we shall consider the radiation excited by the relativis-
tic electrons in a thin nonabsorbing crystal, i.e. under the con-
dition when the longest path of the diffracted photon in plate 
L f = L/ sin(δ + θB) is considerably shorter than the length of x-
ray absorption in the crystal Labs = 1/ωχ ′′

0 :

2
b(s)ρ(s)

ε
= L f

Labs
	 1. (4)

For the case of a thin nonabsorbing target the spectral function 
(2b) takes the form

R(s)
DTR = 4ε2

ξ (s)2 + ε
sin2

(
b(s)

√
ξ (s)2 + ε

ε

)
. (5)

To determine the angular density of DTR we should integrate the 
expression (2a) over ω using frequency function ξ (s)(ω) and the 
relationship dω

ω = |χ ′
g|C (s)

2 sin2 θB
dξ (s) from the definition of ξ (s)(ω) in (3). 

Then we will obtain the DTR angular density in the following form:

dN(s)
DTR

dΩ
= e2χ ′ 2

0

8π2 sin2 θB |χ ′
g|C (s)

× Ω(s)2

σ (s)2(|χ ′
g|C (s)σ (s) + χ ′

0)
2

×
∞∫

−∞
R(s)

DTRdξ (s)(ω), (6)

where

σ (s) = 1

|χ ′
g |C (s)

(
γ −2 + (θ⊥ − ψ⊥)2 + (θ// + ψ//)

2 − χ ′
0

)
.

Further we consider the case b(s) 	 √
ε. The spectral function in 

(6) integrated over frequency ω by using approximation (5) leads 
to the following expression for integral:

∞∫
R(s)

DTRdξ (s)(ω) ≈ 4πεb(s), b(s) 	 √
ε. (7)
−∞
In this case the expression for the angular density of the DTR takes 
the form

dN(s)
DTR

dΩ
= e2ωBχ

′ 2
0 χ ′ 2

g C (s)2

4π sin2 θB

Ω(s)2

(γ −2 + Ω2 − χ ′
0)

2 · (γ −2 + Ω2)2

× ε
L

sin(δ − θB)
, (8)

where Ω2 = (θ⊥ − ψ⊥)2 + (θ// + ψ//)
2.

Now we can use the obtained formula (8) for determining 
the ultrarelativistic electron beam divergence parameters from the 
measured distribution of the angular density of the DTR generated 
in a thin (b(s) 	 √

ε) single-crystal target. This expression is de-
rived within the framework of the two-wave approximation of the 
dynamic theory of diffraction taking into account the deviation of 
the electron velocity direction (angle ψ ) from beam axis e1 (see in 
Fig. 1).

3. The angular density of the DTR excited by a divergent beam of 
relativistic electrons

Let us consider the influence of the divergence of the beam of 
super high energy electrons traversing a thin monocrystalline tar-
get on the DTR angular density. For this purpose, we average the 
expression for the DTR angular density over all possible rectilin-
ear trajectories of the electron in the beam. As an example, we 
carry out the averaging of the DTR angular density (8) over the 
two-dimensional Gauss distribution

f (ψ) = 1

πψ0⊥ψ0‖
e
−(

ψ2⊥
ψ2

0⊥
+ ψ2‖

ψ2
0‖

)

, (9)

where ψ0‖ and ψ0⊥ are the parameters of the electrons beam 
divergence in the plane of the mirror reflection of the coulomb 
field of the electron on a system of parallel atomic planes in 
the crystalline target and in the plane perpendicular to it (see in 
Fig. 1) accordingly. Parameters ψ0‖ and ψ0⊥ define an elliptical 
cone bounding the part of the electron beam beyond which the 
angular density of the electron distribution decreases by more than 
e times compared with the density on the beam axis. In the con-
sidered case the expression for the averaged DTR angular density 
generated by the beam of relativistic electrons normalized by the 
number of electrons, takes the form
〈

dN(s)
DTR

dΩ

〉
b(s)	√

ε

= e2ωBχ
′ 2
g

4π sin2 θB

εL

sin(δ − θB)

1

πψ0⊥ψ0‖

×
∞∫

−∞

∞∫
−∞

Ω(s)2e
−(

ψ2⊥
ψ2

0⊥
+ ψ2‖

ψ2
0‖

)

(γ −2 + Ω2 − χ ′
0)

2 · (γ −2 + Ω2)2
dψ⊥dψ‖. (10)

In Fig. 2 the curves plotted by formula (10) demonstrate the distri-
bution of the angular density of the DTR generated by the electron 
beam of a different divergence. In Fig. 3 the curves are plotted 
for analogous conditions except the energy of electrons which are 
considerably higher than in the case of Fig. 2.

The curves shown in Fig. 2 and Fig. 3 demonstrate the signifi-
cant dependence of the DTR angular density on the divergence of 
the electron beam. Fig. 2 illustrates that the angular density of the 
DTR under the considered parameters of the monocrystalline tar-
get for the electron energy Ee = 5 GeV is substantially sensitive to 
the beam divergence in the range ψ0 ≤ 0.2 mrad.

Under the energy of beam electron Ee = 100 GeV (see Fig. 3) 
the DTR angular density is sensitive to electron beam divergence in 
the range ψ0 ≤ 0.02 mrad. One can see that under higher electron 
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Fig. 2. The dependence of the DTR angular density on the divergence of the rela-
tivistic electron beam generating it. The distribution of the DTR angular density on 
angle θ⊥ in the plane perpendicular to the plane of Fig. 1 containing axis e2 (see 
in Fig. 1) for different values of the beam divergence ψ0 =

√
ψ2

0⊥ + ψ2
0‖ is demon-

strated. The electron energy Ee = 5 GeV (γ = 104), the angle θ‖ = 0.

Fig. 3. The same as in Fig. 2 but for the value of electron energy about Ee = 100
GeV (γ = 2 · 105).

energy the DTR angular distribution becomes narrower, and the 
angular density becomes more sensitive to the divergence of the 
electron beam.

4. Determination of the electron beam divergence parameters 
using the measured angular distribution of the DTR

The divergence of a relativistic electron beam can be estimated 
based on the DTR angular density by using the approximation of 
the DTR angular distribution by a function with one or several pa-
rameters. For example, for the approximation of the angular distri-
bution of electrons in the beam we shall use the bivariate normal 
distribution (9) with the values of distribution dispersions ψ0‖ and 
ψ0⊥ (beam divergence parameters) which are different in horizon-
tal and vertical planes.
In this work variants of using the angular distribution of the 
DTR generated by an electron beam of super high energy in a thin 
nonabsorbing monocrystalline target for indicating the beam di-
vergence parameters shall be demonstrated. As an example of a 
single-crystal target we shall give consideration to a thin plate of 
diamond with diffracting atomic planes (111).

In order to determine the divergence parameters, we shall solve 
the task of objective function minimization. As the objective func-
tion, the mean-square deviation of the calculated DTR angular dis-
tribution from the measured one in the experiment is used.

We shall solve this problem by fitting the parameters of the 
normal angular distribution in one or two orthogonal planes con-
taining the electron beam axis, in particular, in the plane of the 
mirror reflection of the coulomb field of the relativistic electron 
from a system of atomic planes (111) of the diamond single-crystal 
target.

For detecting the opportunities of the minimization process op-
timization, such as, reducing the calculation time and minimizing 
the error of determining the divergence parameters, we have con-
sidered two variants for resolving this problem.

In the first variant, we use as the objective function the sum of 
the mean-square deviations of the calculated and measured DTR 
angular density for a row of N points of angular density distribu-
tion (θ⊥i, θ// = 0), containing the axis e2 (θ⊥ = 0, θ// = 0), where 
i = 1, 2..N (see in Fig. 1):

ϕ0(ψ0⊥,ψ0//) =
N∑
i

(
dNDTR

dΩ
(θ⊥i, θ//i,ψ0⊥,ψ0//)

− dNDTR

dΩ
(θ⊥i, θ//i)

EXP
)2

, (11)

where

dNDTR

dΩ
(θ⊥i, θ//i,ψ0⊥,ψ0//) =

2∑
s=1

(
dN(s)

DTR

dΩ
(θ⊥i, θ//i,ψ0⊥,ψ0//)

)
,

(s) is the index of polarization vector projection on the coordinate 
axes, N – the number of points presenting DTR angular distribu-
tion in the chosen interval of θ⊥ . The value of θ// is chosen as 
θ// = 0. As “measured” values of angular density, the values of 
the DTR angular density calculated by (10) for the given values 
of the parameters of the electron beam divergence ψ0⊥ = 1/γ and 
ψ0// = 2/γ are used. In reality, the “points” of the measured dis-
tribution of the DTR angular density will be of a finite size. At the 
angular distribution interval of −2/γ ≤ θ⊥ < 2/γ under θ‖ = 0 the 
dependence of the objective function on the parameters of diver-
gence has a pronounced minimum, that defines the unambiguity 
in searching the optimal parameters value (see in Fig. 4).

We solved the task of the two-dimensional objective function 
minimization in two different ways – the method of Hook-Jeeves 
[16] and the Nelder-Mead method [17].

The Hook-Jeeves minimization method proved to be preferable 
for this purpose as it cuts the computation 1.5 times relative to the 
Nelder-Mead method and allows better control of the calculation 
intermediate result errors.

In the second variant of the solution of the divergence param-
eters determination problem we use the objective function con-
structed as the sum of square deviations of the measured and 
calculated values of the DTR angular density in three character-
istic points of the angular density distribution (θ⊥ = 0, θ‖ = 0), 
(θ⊥ = γ −1, θ‖ = 0) and (θ⊥ = 0, θ‖ = γ −1). These points corre-
spond to the minimal and maximal values of the DTR angular 
density generated by one electron moving in the target along the 
electron beam axis.
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Fig. 4. Two-dimensional objective function (11), whose minimal value corresponds 
to the desired divergence parameters of the relativistic electron beam ψ0⊥ =
(ψ0⊥)exp and ψ0‖ = (ψ0‖)exp.

So, we search for the parameters of the beam divergence ψ0⊥
and ψ0‖ by minimizing the objective function:

ϕ(ψ0⊥,ψ0//) = ϕ1(ψ0⊥,ψ0//) + ϕ2(ψ0⊥,ψ0//)

+ ϕ3(ψ0⊥,ψ0//), (12)
where

ϕ1(ψ0⊥,ψ0//) =
(

dNDTR

dΩ
(θ⊥ = 0, θ// = 0,ψ0⊥,ψ0//)

− dNDTR

dΩ
(θ⊥ = 0, θ// = 0)EXP

)2

,

ϕ2(ψ0⊥,ψ0//) =
(

dNDTR

dΩ
(θ⊥ = 0, θ// = 1/γ ,ψ0⊥,ψ0//)

− dNDTR

dΩ
(θ⊥ = 0, θ// = 1/γ )EXP

)2

,

ϕ3(ψ0⊥,ψ0//) =
(

dNDTR

dΩ
(θ⊥ = 1/γ , θ// = 0,ψ0⊥,ψ0//)

− dNDTR

dΩ
(θ⊥ = 1/γ , θ// = 0)EXP

)2

,

dNDTR

dΩ
(θ⊥, θ‖,ψ0⊥,ψ0‖) =

2∑
s=1

(
dN(s)

DTR

dΩ
(θ⊥, θ‖,ψ0⊥,ψ0‖)

)
.

This variant was chosen to reduce the calculation time. To-
ward approximating the angular distribution of an electron beam 
by two-dimension normal distribution we shall seek the optimal 
values of the parameters of distribution with computer programs 
implementing the minimization method of Hook-Jeeves. In pic-
tures Fig. 5 the objective function and the contributions of each of 
Fig. 5. The objective function ϕ(ψ0⊥, ψ0//) = ϕ1(ψ0⊥, ψ0//) +ϕ2(ψ0⊥, ψ0//) +ϕ3(ψ0⊥, ψ0//) for determination of the electron beam divergence parameters ψ0⊥ and ψ0// by 
the axially asymmetrical DTR angular distribution. The angular coordinates are expressed in units of γ −1, where γ = We/me ·c2 is Lorenz factor of electron, We is the electron 
total energy. The calculations were carried out for γ = 2 ·105. The objective function has a pronounced minimum at the point (ψ0⊥ = (ψ0⊥)exp = 1/γ , ψ0‖ = (ψ0‖)exp = 2/γ ). 
ϕ1(ψ0⊥, ψ0‖), ϕ2(ψ0⊥, ψ0‖) and ϕ3(ψ0⊥, ψ0‖) are the contributions to the objective function of each of the three used points of DTR angular distribution (θ⊥ = 0, θ‖ = 0), 
(θ⊥ = 0, θ‖ = γ −1) and (θ⊥ = γ −1, θ‖ = 0) correspondently.
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these three points of DTR distribution in the objective function are 
demonstrated. One can see that each of these contributions have 
ravine topology and cannot allow the exact defining of the mini-
mum on the objective function, but their sum has a pronounced 
minimum, which provides the unequivocal determination of diver-
gence parameters of a two-dimension angular distribution of the 
electron beam.

For example, the minimization process of the objective function 
was built on three points of the DTR angular distribution using the 
Hook-Jeeves method. For the “experimentally measured” value of 
angular density in each of the chosen points of the distribution 
the values calculated for the beam with divergence parameters 
ψ0⊥ = 1/γ and ψ0‖ = 2/γ are used. The approximation of the cal-
culated parameter to these “experimental” values was carried out 
for the DTR generated by the beam of electrons (γ = 2 · 105) on 
a system of atomic planes (111) of a thin (L = 50 μm) diamond 
single-crystal target.

The second variant provides the conditions for calculating the 
beam divergence parameters using the extremal small number of 
the points in the DTR angular density distribution that consider-
ably saves the computation time.

It should be noted that in a real measuring system the measure 
“points” on the angular distribution of the DTR will be represented 
by dots of finite size, providing a set of statistical data enough 
to achieve the required measurement accuracy. Since the sensitiv-
ity of the DTR angular distribution to the changes in the electron 
beam parameters at these points is maximal, we expect the mea-
surement error not to be greater than in the first method. The size 
of each of the “points” on the detector can be comparable with 
the characteristic radius LD · γ −1, where LD is the distance from 
the target to the registration plane. This is possible because, while 
solving the task, we determine the parameters of a two-parametric 
distribution function, which is not intended to describe more de-
tailed features of the real distribution of the electron beam density.

Another important parameter of the relativistic electron beam 
on the accelerator is its transverse size. This parameter is meant 
to measure exactly in the required place of the beam indication. In 
our case, we assume that the transverse size of the electron beam 
on the target is small compared to the size that it would have 
at a distance equal to the distance to the detector of diffracted 
transition radiation (DTR) and therefore insignificantly influences 
the accuracy of the beam divergence measurement.

5. Conclusions

The analytical expressions for the angular density of diffracted 
transition radiation (DTR) excited by a divergent beam of relativis-
tic electrons in a thin monocrystalline target have been examined. 
The calculations of the angular density of the DTR emitted from 
a thin plate of diamond C(111) as the target have been made. 
The modeling of the process of determining the divergence pa-
rameters for the relativistic electron beam from the measured 
distribution of the DTR angular density was implemented using 
the optimization method based on objective function minimiza-
tion. The objective function was built in the form of a sum of 
squared deviations of the calculated values of the DTR angular 
density from the measured ones in the chosen points of the DTR 
angular distribution. We estimated the efficiency of the applied 
algorithms by calculating the beam divergence parameters using 
different two-dimensional objective functions and different meth-
ods of their minimization.
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