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A B S T R A C T

Objective: This study aimed to investigate the role ofESR1 and PGR gene polymorphisms in development
of intrauterine growth restriction (IUGR) among Russian women in Central Russia.
Study design: This case–control study recruited a total of 520 women in the third trimester of pregnancy,
including 196 IUGR patients and 324 controls. The participants were unrelated women of self-reported
Russian ethnicity. Participants were genotyped at 4 functionally significant polymorphisms of theESR1
(rs2234693, rs9340799) and the PGR (rs484389, rs1042838) genes. The association analysis was
performed using logistic regression. Two polymorphisms, which were associated with IUGR, and 26
polymorphisms linked to them (r2�0.6) were analyzed for their functional significance in silico.
Results: Haplotype TG of loci rs2234693-rs9340799ESR1 (OR = 1.94, pperm = 0.006) was associated with an
increased risk of IUGR. Allele T of rs2234693 decreases expression of ESR1 in thyroid gland, allele T of
rs2234693 and allele G of rs9340799 increase affinity to eight transcription factors (AP-4, HEN1, E2A, LBP-
1, RP58, LUN, Ets and Hand). The loci that are linked (r2�0.6) to the IUGR-associated SNPs, have the
cis-eQTL value (expression ESR1 in thyroid gland) and showed their regulatory effects in organs and
tissues related to pathogenesis of IUGR.
Conclusion: Haplotype TG defined by polymorphisms rs2234693-rs9340799 of theESR1 gene is associated
with the development of IUGR in Russian women from Central Russia.

© 2020 Elsevier B.V. All rights reserved.
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Introduction

Intrauterine growth restriction (IUGR) is a condition when the
rate of fetal growth is lower than expected for the gender and race
of the fetus [1,2]. IUGR usually results from innate reduced growth
potential or multiple adverse effects on the fetus. The “normal”
neonate has birth weight between the 10th and 90th percentile for
the given gestational age, race and gender with no sign of growth
retardation and malnutrition [1]. An estimated fetal weight or
abdominal circumference of less than the 10th centile for the
population at a given gestational age was traditionally considered
highly suggestive of IUGR [3].

The worldwide prevalence of IUGR is estimated between 5 %
and 10 % of all pregnancies [4]. It may strongly affect the newborn’s
short- and long-term health [5]. For affected infants, the health
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complications at delivery may include hypothermia, hyper- or
hypoglycemia, persistent pulmonary hypertension, polycythemia,
pulmonary hemorrhage, intrapartum asphyxia and stillbirth [1].
Since IUGR often results in preterm birth, various prematurity-
associated multisystem diseases, such as impaired cognitive and
motor development or/and physical growth may contribute to the
intermediate and long-term health complications in IUGR new-
borns [5]. Moreover, an impaired fetal growth can increase a risk
for certain diseases later in life, such as metabolic syndrome, type 2
diabetes mellitus, obesity, dyslipidemia, cardiovascular diseases
and others [6,7].

The mechanisms underlying IUGR remain unclear, since there is
much heterogeneity of disease etiology. In general, IUGR has been
associated with 1) fetal etiologies, such as genetic abnormalities
(chromosomal abnormalities, syndromes,), 2) maternal factors
(persistent hypoxia or undernutrition, vascular disease, and toxins),
and 3) placental etiologies [8,9]. It is thought that 40 % of birth
weight is ascribable to genetic factors, whereas the other 60 % is due
to fetal environmental contributions [7]. Evidence from variance
components analyses and monogenic human models [10] shows
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that birth weight variation is influenced both by genotypes
inherited by the fetus and by maternal genotypes that influence
the intrauterine environment [11].

Maternal genotypes determine maternal phenotypes, which may
affect growth of thefetus, such ascirculating levelsof variousmetabolic
factors (e.g., glucose, hormones, etc.) or/and transfer of these and
other nutrients through the placenta. Such maternal environmental
effects underlain by maternal genotype may affect fetal growth
independently from the effects of respective genetic variants that
are inherited by the fetus directly from the mother [12].

This study was aimed to analyze a role of polymorphisms of the
ESR1 and PGR genes in the development of IUGR among Russian
women from Central Russia.

Material and methods

Study subjects

Between 2013 and 2017, 520 unrelated women in the third
trimester of pregnancy were enrolled in the study. The ethical
approval was obtained from the Regional Ethics Committee of
Belgorod State University. All individuals gave their written
informed consent prior to entering the study. The participants
were examined in the perinatal center of the Saint Joasaph
Belgorod Regional Clinical Hospital.

When recruiting the participants, the following inclusion
criteria were applied: Russian ethnicity (self-reported), birthplace
in Central Russia [13], and singleton pregnancy. Patients with
pre-eclampsia, congenital malformations of internal genitals,
anomalies of placental location, uterine fibroids, self-declared
non-Russian descent or a birthplace outside of Central Russia,
isosensitization of Rh factor or ABO blood group systems were not
enrolled. IUGR of varying severity was diagnosed in 196
participants. The diagnosis of IUGR was based on clinical data,
growth and weight parameters after the birth and ultrasound
fetometry (TOSHIBA XARIO SSA-660A) (as described elsewhere,
[14]). Based on the differences between fetometric data and
nomograms, three degrees of IUGR were defined: the first
corresponded to the reduction of the estimated gestational ages
from the standard ones by 2 weeks; the second – by 3–4 weeks;
and the third – by more than 4 weeks [15]. The first-degree IUGR
was revealed in 105 patients (53.57 %), second-degree in 77
patients (39.28 %) and third-degree in 14 patients (7.14 %). Women
without IUGR were controls (324 in total).

DNA isolation and genotyping assay

Approximately 4�5 ml blood sample from each participant was
collected in vacutainer tubes (Vacutainer1). DNA was extracted
Table 1
The regulatory potential of the studied SNPs (HaploReg, v4.1, http://archive.broadinstit
colour in this table, the reader is referred to the web version of this article.)
from whole blood by phenol-chloroform method and then checked
for quality (as described earlier, [16]).

Based on the significant regulatory potential, in total four SNPs
in ESR1 (rs2234693, rs9340799) and PGR (rs484389, rs1042838)
genes were selected for the analysis [17]. These SNPs are located in
a region of regulatory motifs and have impact on gene expression
level (Table 1) (determined using the online tools HaploReg, v4.1
update 05.11.2015, https://pubs.broadinstitute.org/mammals/hap-
loreg/haploreg.php).

Genotyping for all the polymorphisms was done using the
MALDI-TOF mass spectrometry iPLEX platform (Agena Biosci-
ence Inc, San Diego, CA). Genotyping blind replicates were
included to ensure quality control. The repeatability test for 5 %
of randomly selected samples was performed, yielded 100 %
reproducibility.

Statistical analysis

Hardy-Weinberg equilibrium was assessed, based on the
determined frequencies of genotypes and by using the chi-square
test. The logistic regression method was used to analyze
associations of the SNPs with IUGR assuming additive (i.e.,
comparison of all genotypes, e.g., TT vs TC vs CC), recessive (CC
vs TC/TT, where C is a minor allele) and dominant (CC/TC vs TT,
where C is a minor allele) genetic models with adjustment for
covariates (BMI and age at menarche as quantitative variables
(value of the trait), and history of medical abortion as qualitative
variables (yes/no)) (Table 2). The adaptive permutation test was
applied to adjust for multiple comparisons [18]. The PLINK v. 2.050
software (available at http://zzz.bwh.harvard.edu/plink/) was used
to perform the association analyses.

Functional SNPs

The genetic variants associated with IUGR and SNPs strongly
linked to them were studied for their functional significance
(regulatory potential and eQTLs). SNPs in strong linkage disequi-
librium (LD) (r2�0.6) with the IUGR-associated ones were
identified using HaploReg (v4.1) (http://archive.broadinstitute.
org/mammals/haploreg/haploreg.php). The data of the European
population from the 1000 Genomes Project Phase was used to
estimate linkage disequilibrium.

The regulatory potential of the candidate SNPs for IUGR was
analyzed in silico using HaploReg (v4.1). The affinity between the
factor-binding site of the reference (ref) and alternative (alt) alleles
of a locus and transcription factors was estimated as a difference
between the LOD scores of the alleles: DLOD = LOD (alt) - LOD (ref)
[19]. A negative value indicates the increased affinity of this motif
by the reference allele, while a positive value suggests the
respective increase for the alternative allele.
ute.org/mammals/haploreg/haploreg.php). (For interpretation of the references to
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Table 2
Phenotypic characteristics of the study participants.

Parameters IUGR patients, n (%) Controls, n (%) p

N 196 324 –

Age, years (min–max) 26.63 � 4.41 (16.0–41.0) 26.18 � 4.98 (18.0–41.0) 0.07
BMI, kg/m2 22.69 � 3.39 23.72 � 3.61 0.001
Age at menarche and menstrual cycle
Age at menarche, years 12.77 � 1.10 12.54 � 1.02 0.01
Duration of bleeding menstrual (mean, days) 5.05 � 0.73 5.03 � 0.80 0.76
Menstrual cycle length (mean, days) 28.56 � 1.95 28.32 � 1.62 0.33
Gynecological pathologies
History of medical abortion 32.14 (63) 22.53 (73) 0.02
History of infertility 1.53 (3) 2.16 (7) 0.86
History of miscarriage (total) 15.82 (31) 13.89 (45) 0.63
Miscarriage in first trimester 10.20 (20) 8.02 (26) 0.49
Pregnancy loss in first trimester 3.06 (6) 3.74 (12) 0.89
Ectopic pregnancy 2.04 (4) 3.09 (10) 0.66
History of disorders of the menstrual cycle 7.14 (14) 8.02 (26) 0.84
History of pelvic inflammatory disease 15.82 (31) 13.89 (45) 0.63
Intrauterine infection during pregnancy 28.06 (55) 25.93 (84) 0.66
Antenatal intrauterine fetal death 1.53 (3) 0 (0) 0.10
Somatic pathologies
Essential hypertension 27.04 (53) 20.06 (65) 0.08
Arterial hypotension 2.55 (5) 2.47 (8) 1.00
Chronic pyelonephritis 20.92 (41) 14.81 (48) 0.09
Obesity 8.67 (17) 10.49 (34) 0.60
Varicose veins 3.57 (7) 1.54 (5) 0.23
Endocrine disorders 7.65 (15) 6.17 (20) 0.63
Chronic gastroduodenitis 4.08 (8) 2.47 (8) 0.44
Nervous system pathology 0.05 (1) 0 (0) 0.80
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GTExportal data (http://www.gtexportal.org/) as of 10.12.2017
(Release V7 updated on 09/05/2017) (dbGaP Accession phs000424.
v7.p2) was used to estimate an effect of the IUGR candidate SNPs
on gene expression level (cis- and trans-eQTL). The False Discovery
Rate (FDR) �0.05 was applied to determine significant
eQTLs. Linear regression coefficient (β) that indicates a change
of the normalized gene expression per a single polymorphic
variant was used to estimate effect of an allelic variant on the gene
expression.

Results

The phenotypic characteristics of the case and control groups
are presented in Table 2. The IUGR patients had lower BMI
(p = 0.001),) higher rates of history of medical abortion (p = 0.02)
and later menarche at age (p = 0.01) as compared to the controls
(Table 2). Therefore, these factors were applied as covariates in the
association analyses.

The data about the studied SNPs are shown in Table 3. All
polymorphisms had MAF > 5 % and did not deviate from the HWE
(p>0.30). None of the SNPs appeared to be significantly associated
with IUGR according to the additive, dominant or recessive models
Table 3
The allele and genotype frequencies of the studied SNPs in the case and control group

Chr SNP Minor
allele

Major
allele

Minor allele
frequency

Number o
chromoso

IUGR patients (n = 196)
6 rs2234693 T C 0.510 390 

6 rs9340799 G A 0.410 388 

11 rs484389 C T 0.240 388 

11 rs1042838 T G 0.169 390 

control group (n = 324)
6 rs2234693 T C 0.484 632 

6 rs9340799 G A 0.388 636 

11 rs484389 C T 0.225 636 

11 rs1042838 T G 0.145 640 

Note: * minor allele homozygotes/heterozygotes/major allele homozygotes.
(Table 4). Haplotype TG defined by rs2234693-rs9340799 of the
ESR1 gene (according to the HaploReg (v4.1), the distance between
SNPs is 46bp, r2 = 0.61, D�= 1, LOD > 2) was associated with IUGR
(OR = 1.94, p = 0.001, pperm = 0.006) (Table 5).

The results of the HaploReg (v4.1) analysis suggest that the
IUGR-associated SNPs (rs2234693 and rs9340799) have a signifi-
cant regulatory potential (Table 1): they are located in an
evolutionarily conserved regions (GERP cons) that have enhancer
histone mark (H3K27ac, H3K4me1) in adipose nucleia, and a
region of eight regulatory motifs. Allele G of rs2234693 ESR1
decreases affinity to 6 transcription factors - E2A (DLOD = �12,0),
AP-4 (DLOD = �11,9), HEN1 (DLOD = �11,9), LUN (DLOD = �12,0),
LBP-1 (DLOD = �1,6), RP58 (DLOD = �11,9), and allele G of
rs9340799 ESR1 increases affinity to 2 transcription factors -
Hand1 (DLOD = 11,8) and Ets (DLOD = 4,3).

We also studied 26 SNPs, which were linked (r2�0.6) to the
two IUGR-associated polymorphisms (Supplementary Table 1).
Among those, rs2077647 (synonymous) was located in an exon
and all the others were located in introns. One SNP (rs2077647)
was located in an evolutionarily conserved region. Several genetic
markers appeared to have a significant regulatory potential. For
example, rs2077647 (linked to rs2234693) has a promoter histone
s.

f the studied
mes

Genotype
distribution*

Ho He P HWE

50/99/46 0.508 0.500 0.887
33/93/68 0.479 0.484 0.883
11/71/112 0.366 0.365 1.000
3/60/132 0.308 0.281 0.305

69/168/79 0.532 0.500 0.310
48/151/119 0.475 0.475 1.000
19/105/194 0.330 0.349 0.337
7/79/234 0.247 0.248 0.824

http://www.gtexportal.org/


Table 4
Associations of the SNPs of the ESR1 and PGR genes with IUGR.

Chr SNP n Additive model Dominant model Recessive model

OR 95 %CI P OR 95 %CI P OR 95 %CI P

L95 U95 L95 U95 L95 U95

6 rs2234693 511 1.12 0.86 1.44 0.407 1.09 0.71 1.64 0.719 1.23 0.82 1.87 0.323
6 rs9340799 512 1.09 0.85 1.42 0.498 1.11 0.76 1.61 0.589 1.15 0.71 1.87 0.565
11 rs484389 512 1.09 0.81 1.46 0.590 1.15 0.80 1.65 0.464 0.95 0.44 2.03 0.887
11 rs1042838 515 1.21 0.85 1.72 0.295 1.30 0.88 1.92 0.188 0.70 0.18 2.73 0.606

All results were obtained after adjustment for covariates.
OR, odds ratio.
95 %CI, 95 % confidence interval.

Table 5
Associations of the haplotypes with IUGR.

Gene SNPs included Haplotype Frequency OR P

IUGR patients (n = 196) Controls (n = 324)

ESR1 rs2234693|rs9340799 TG 0.143 0.080 1.94 0.001
rs2234693|rs9340799 CG 0.267 0.308 0.87 0.175
rs2234693|rs9340799 TA 0.368 0.404 0.93 0.332
rs2234693|rs9340799 CA 0.223 0.208 1.13 0.453

PGR rs484389|rs1042838 CT 0.162 0.139 1.21 0.300
rs484389|rs1042838 CG 0.081 0.089 0.90 0.651
rs484389|rs1042838 TG 0.757 0.772 0.93 0.645

Note: The results were obtained by the logistic regression analysis with adjustment for covariates; OR - odds ratio, p - significance level.
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mark in 24 tissues, is located in a DNase-1 hypersensitive region
in seven tissues, a region of four regulatory motifs (RP58, LUN-1,
Znf143, Zfp410), and a binding region for regulatory protein
HAE2F1. Polymorphism rs62442056 (linked to rs9340799) is
located in a DNase-1 hypersensitive region in 29 tissues, a region
of five regulatory motifs (Foxa, Foxi1, CEBPB, TCF12, HDAC2), and
a binding region for three regulatory proteins (TCF12, NRSF,
SIN3AK20). Polymorphism rs9479130 linked to two loci
(rs2234693 and rs9340799) of the ESR1 gene (r2 = 1.00 and
r2 = 0.61, respectively) is associated with IUGR. This SNP is located
in a DNAase- hypersensitivity region in 24 tissues, a region of two
regulatory motifs (ZBTB33, AP-1), and a binding region for three
regulatory proteins (TCF12, NRSF, SIN3AK20). Importantly, the loci
that are linked to the IUGR-associated SNPs, showed their
regulatory effects in organs and tissues related to pathogenesis
of IUGR, i.e. ectoderm, mesoderm, and endoderm cultured cells,
amnion, placenta, fetal organs (brain, muscle, adrenal gland, etc.),
adult organs (pancreas, ovaries, muscle tissue, adrenal gland,
adipose tissue, various brain regions (angular gyrus, substantia
nigra, hippocampus, germinal matrix etc.), liver etc.) [7].

According to the GTExportal database, variant rs2234693 has
the cis-eQTL value and may affect expression of ESR1 in the thyroid
glands: allele G of rs2234693 ESR1 is associated with the higher
gene expression (β = 0.13, p = 0.000035, pFDR�0.05). Also, two
IUGR-associated SNPs (rs2234693 and rs9340799) are in strong LD
with the other cis-eQTL polymorphisms (16 SNPs) affecting ESR1
expression in the thyroid gland (Supplementary Table 2).

Discussion

In the present study, we report for the first time the associations
of two ESR1 gene polymorphisms with IUGR in Russian women
from Central Russia: haplotype TG defined by loci rs2234693-
rs9340799 increased a risk for IUGR (OR = 1.94). According to the
HaploReg database (v4.1), allele T of rs2234693 and allele G of
rs9340799 increase affinity to the transcription factors E2A, AP-4,
LBP-1, HEN1, LUN, RP58, Hand and Ets. The rs2234693 and
rs9340799 polymorphisms of the ESR1 gene are located in an
evolutionarily conserved regions and have a enhancer histone
mark in adipose nucleia. Variant rs2234693 and sixteen polymor-
phisms linked to rs2234693 and rs9340799 have the cis-eQTL
significance and may influence the ESR1 gene expression in the
thyroid gland (allele T of rs2234693 decreases the expression of
ESR1). In addition, the loci that are linked to the IUGR-associated
SNPs (26 polymorphisms), showed their various regulatory effects
in tissues and organs related to the pathogenesis of IUGR, fetal and
adult organs.

The ESR1 gene (6q25.1-q25.2) encodes an estrogen receptor α, a
ligand-activated transcription factor consisting of several domains
important for hormone binding, DNA binding and activation of
transcription. ESR1 and ESR2 (estrogen receptor β) mediate
biological effects of estrogen in target tissues. Growth factors
can activate ESR1 in the absence of estrogen. Estrogen signaling
plays an important regulatory role in the development and
function of the reproductive system [20]. In the mouse and rat,
disruption of ESR1 causes infertility in both females and males [21].
ESR1 is predominantly expressed in the mammary glands,
hypothalamus, pituitary, uterus and ovarian theca cells [22].
Estrogen is a principal regulator of the gonadotropin hormone-
releasing hormone (GnRH). GnRH neurons in the hypothalamus
synthesize the GnRH peptide, which is a key regulator of the
cascade of hormonal events that are necessary for normal sexual
maturation and reproductive function [23].

During pregnancy, the primary source of steroid hormones
(estrogens and progesterone) is placenta. Studies performed in vivo
suggest that placental steroid hormones may be important in
driving the changes in glucose metabolism and insulin sensitivity
of the mother during pregnancy (play roles in regulating
glucose and insulin homeostasis, appetite regulation and lipid
handling) [24].

Estrogen stimulates the activation of the insulin-like growth
factor 1 receptor (IGF1R) which triggers the activation of the
phosphoinositide 3-kinase (PI3K)/AKT pathway for execution an
inhibitory phosphorylation of the glycogen synthase kinase
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(GSK-3β). Inactivation of GSK-3β prevents the inhibitory
phosphorylation of cyclin D1 and allows for its nuclear
translocation [22]. In addition, IGF1R mediates effects of the
insulin-like growth factors IGF-1 and IGF-2, thus promoting
fetal and neonatal growth, responding to maternal, fetal and
placental signals such as oxygen, hormones, and nutrients [6].
IGF-1 controls fetal growth in response to nutrient availability
while IGF-2 stimulates differentiation and placental growth
[25]. Further, IGFs control hormone secretion, substrate
transport and influence fetal growth either directly by affecting
placental nutrient uptake and transport or indirectly by
influencing maternal substrate availability [25].

Glucose and amino acid uptakes are stimulated by IGF-1, IGF-2,
and trophoblasts [26]. Human IUGR was associated with chronic
fetal hypoglycemia [7]. The expression levels of ESR1, progesterone,
and insulin-like growth factor 1 in placenta were shown to
influence IUGR and gestational age [27].

Previously, loci rs2234693 and rs9340799 associated with IUGR
were also reported as candidate for preeclampsia [28–30], age of
menarche [31], precocious puberty [32], height at menarche [33],
premature ovarian failure [34], endometriosis [35], breast cancer
[36], type II diabetes mellitus [37]. Specifically, Molvarec [28]
reported the GG genotype of the rs9340799 was associated with a
lower risk of IUGR in patients with severe preeclampsia while the
homozygous TA haplotype carriers of ESR1 rs2234693 and
rs9340799 polymorphisms showed an increased risk of severe
preeclampsia. According to the present study results, haplotype TG
of loci rs2234693-rs9340799 increased a risk for IUGR (OR = 1.94)
in patients without preeclampsia. Although the results of the two
studies are somewhat inconsistent, they suggest that allele G of
the rs9340799 polymorphism may contribute to pregnancy
complications. This assumption gains further support from a
recent meta-analysis, which showed that the GG genotype of the
ESR1 rs9340799 polymorphism could be a genetic risk factor for
severe preeclampsia susceptibility [30].

Conclusion

Haplotype TG defined by loci rs2234693-rs9340799 of the ESR1
gene was a factor for an increased risk of IUGR (OR = 1.94). Allele T
of rs2234693 and allele G of rs9340799 increase affinity to eight
transcription factors (LBP-1, AP-4, E2A, HEN1, RP58, LUN, Ets and
Hand); allele T of rs2234693 decreases expression of ESR1 in the
thyroid gland. The loci linked to the IUGR-associated SNPs have the
cis-eQTL value (expression ESR1 in the thyroid gland) and show
their regulatory effects in tissues and organs related to pathogen-
esis of IUGR. The ESR1 gene may contribute to the development of
IUGR through the estrogen signaling pathway. However, further
studies are needed to verify this assumption.
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