
Journal of Mathematical Sciences, Vol. 249, No. 6, September, 2020

DISTRIBUTIONS SUPPORTED ON CONICAL
SURFACES AND GENERATED CONVOLUTIONS

V. B. Vasil’ev

Belgorod National Research University
14/1 Studencheskaya St., Belgorod 308007, Russia

vbv57@inbox.ru UDC 517.983

We describe the structure of distributions supported on conical surfaces and calculate

the Fourier transform for some cones. The results are represented as convolutions with

particular kernels. We use transmutation operators owing to which it is possible to

clarify connections between the change of variables for a distribution and its Fourier

transform. Bibliography: 17 titles.

A lot of examples of distributions supported on various type surfaces in m-dimensional spaces

can be found in [1, 2]. However, in the literature, there are no results concerning distributions

in the general form (counterparts of the Schwartz theorem on the general form of a distribution

supported at a point in the one-dimensional case [3]). This paper is motivated by the recent

results of [4]–[8], where pseudodifferential equations are studied in domains with conical points

on the boundary in the multidimensional (m � 3) case.

1 Distributions and Change of Variables

1.1. Choice of test functions. Let C be an acute convex cone in R
m containing no entire

line. Assume that the conical surface is given by the equation xm = ϕ(x′), x′ = (x1, . . . , xm−1),

where ϕ : Rm−1 → R is a smooth function on R
m−1 \ {0} such that ϕ(0) = 0. We introduce the

change of variables t1 = x1, t2 = x2, . . . , tm−1 = xm−1, tm = xm − ϕ(x′) and denote by Tϕ :

Rm → Rm the change operator. It is obvious that this transformation is smooth except for the

origin. We introduce the change of variables for the following class of distributions. For the space

of test functions we take the Lizorkin space Φ(Rm) [9] which is a subspace of the Schwartz space

S(Rm) of infinitely differentiable functions that are rapidly decreasing at infinity and vanish at

the origin, together with all its derivatives. If Φ′(Rm) and S′(Rm) denote the corresponding

spaces of distributions, then Φ′(Rm) ⊃ S′(Rm) and all operations with distributions in Φ′(Rm)

are legitimate for distributions in S′(Rm).
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Definition 1.1. The variable change operator on functions in Φ(Rm) is defined by

(Tϕψ)(x) = ψ(Tϕx).

It is easy to see that the Jacobian of Tϕ is everywhere (except for 0) equal to 1. By the

choice of the class of test functions, we can ignore the point 0. It is clear that the operator Tϕ

is invertible and its inverse is defined by (T−1
ϕ ψ)(x) = ψ(T−1

ϕ x).

Let f be a locally integrable function generating a distribution by

(f, ψ) =

∫

Rm

f(x)ψ(x)dx.

The functional Tϕf is defined by (Tϕf, ψ) = (f,T−1
ϕ ψ) since

(Tϕf, ψ) =

∫

Rm

(Tϕf)(x)ψ(x)dx ≡
∫

Rm

f(Tϕx)ψ(x)dx =

∫

Rm

f(x)ψ(T−1
ϕ x)dx ≡ (f, T−1

ϕ ψ).

We use the following result based on the Schwartz theorem about a one-dimensional distri-

bution in S′(R) supported at the point 0 [2, 3].

Proposition 1.1. If a distribution f ∈ S′(Rm) is supported on the hyperplane xm = 0, then

f(x) =

n∑
k=0

ck(x
′)⊗ δ(k)(xm), x = (x′, xm), (1.1)

where ck ∈ S′(Rm−1), k = 0, 1, . . . , n, are arbitrary distributions.

1.2. Change of variables for distributions.

Definition 1.2. The operator Tϕ acts by the formula

(Tϕf, ψ) = (f,T−1
ϕ ψ) ∀ ψ ∈ S(Rm).

Proposition 1.2. If a distribution f ∈ S′(Rm) is supported on ∂C, then Tϕf is supported

on R
m−1.

Propositions 1.1 and 1.2 imply the following assertion.

Theorem 1.1. Any distribution f ∈ S′(Rm) supported on the conical surface ∂C can be

written as

f(x) = T−1
ϕ

(
n∑

k=0

ck(y
′)⊗ δ(k)(ym)

)
, (1.2)

where ck ∈ S′(Rm−1), k = 0, 1, . . . , n, are arbitrary distributions.

Theorem 1.1 in this setting does not yield much information, but we need a version of this

theorem formulated in terms of Fourier images.
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2 Fourier Transform of Distributions

It is natural to ask how the transform of a distribution supported on a conical surface looks

like. Thus, the Fourier transform of the distribution (1.1) is a polynomial of degree n in the

variable ξm with coefficients c̃k(ξ
′), k = 0, 1, . . . , n.

For u(x) ∈ S(Rm) the Fourier transform is defined by [1]–[3]

(Fu)(ξ) ≡ ũ(ξ) =

∫

Rm

eix·ξu(x)dx.

The Fourier transform of a distribution is defined by the formula (Ff, ψ) = (f, Fψ), and,

consequently, (FTϕf, ϕ) = (f,T−1
ϕ Fϕ).

By the above properties, to establish connections between Tϕ and the Fourier transform, it

suffices to consider test functions.

Let f ∈ S′(Rm) be supported on the conical surface ∂C. By Theorem 1.1, it has the form

(1.2). We obtain the following chain of identities:

(Ff, ψ) =

(
FT−1

ϕ

(
n∑

k=0

ck(y
′)⊗ δ(k)(ym)

)
, ψ

)

=

(
FT−1

ϕ F−1F

(
n∑

k=0

ck(y
′)⊗ δ(k)(ym)

)
, ψ

)
=

(
Vϕ

(
n∑

k=0

c̃k(ξ
′)ξkm

)
, ψ

)
,

where FT−1
ϕ F−1 ≡ Vϕ denotes the operator defined originally on S(Rm). We note that this

operator is invertible; moreover, V −1
ϕ = FT−1

ϕ F−1 and T−1
ϕ = T−ϕ. By the above observations,

we can conclude that

Ff = Vϕ

(
n∑

k=0

c̃k(ξ
′)ξkm

)
.

2.1. Kernel of the operator Vϕ. Based on the key identity FT−1
ϕ = VϕF , we conclude

that it is more convenient to work with the operator Vϕ in the Fourier image. We begin with

the left-hand side. We fix u ∈ S(Rm) and calculate

(FT−1
ϕ u)(ξ) =

∫

Rm

eiy·ξ(T−1
ϕ u)(y)dy =

∫

Rm

eiy·ξ
′
u(y′, ym + ϕ(y′))dy

=

∫

Rm

eix·ξe−iξmϕ(x′)u(x′, xm)dx′dxm =

∫

Rm

eix
′·ξ′e−iξmϕ(x′)û(x′, ξm)dx′,

where û(x′, ξm) denotes the Fourier transform of u(x′, xm) with respect to xm. Taking into

account the properties of the Fourier transform, we can make the following conclusions.

We denote Fx′→ξ′(e
−iξmϕ(x′)) ≡ Kϕ(ξ

′, ξm). Then we find the integral representation of the

operator Vϕ:

(FT−1
ϕ u)(ξ) =

∫

Rm

Kϕ(ξ
′ − η′, ξm)ũ(η′, ξm)dη′,

where K(ξ′, ξm) is the Fourier image of the corresponding distributions.
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2.2. Plane case: exact construction of Vϕ. In the case m = 2, only one cone is of

interest for us; namely, Ca
+ = {x ∈ R

2 : x = (x1, x2), x2 > a|x1|, a > 0}. We calculate

(FT−1
ϕ u)(ξ) =

+∞∫

−∞
e−ia|y1|ξ2e−iy1ξ1 û(y1, ξ2)dy1

=

+∞∫

−∞
χ+(y1)e

−iay1ξ2e−iy1ξ1 û(y1, ξ2)dy1 +

+∞∫

−∞
χ−(y1)e−iay1ξ2eiy1ξ1 û(y1, ξ2)dy1

=

+∞∫

−∞
χ+(y1)e

−iy1(aξ2+ξ1)û(y1, ξ2)dy1 +

+∞∫

−∞
χ−(y1)e−iy1(aξ2−ξ1)û(y1, ξ2)dy1,

where û(y1, ξ2) denotes the one-dimensional Fourier transform with respect to the second vari-

able. The last two terms are the Fourier transforms of the functions

χ+(y1)e
−iy1(aξ2+ξ1)û(y1, ξ2), χ+(y1)e

−iy1(aξ2+ξ1)û(y1, ξ2)

with respect to y1, so that we can use the following properties [10] (the Sokhotski formula

[11, 12], written for one variable):

+∞∫

−∞
χ+(x)e

−ixξu(x)dx =
1

2
ũ(ξ) + v.p.

i

2π

+∞∫

−∞

ũ(η)dη

ξ − η
,

+∞∫

−∞
χ−(x)e−ixξu(x)dx =

1

2
ũ(ξ)− v.p.

i

2π

+∞∫

−∞

ũ(η)dη

ξ − η
.

Taking into account these properties, we conclude that

(FT−1
ϕ u)(ξ) =

ũ(aξ2 + ξ1, ξ2) + ũ(aξ2 − ξ1, ξ2)

2

+ v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

aξ2 + ξ1 − η
− v.p.

i

2π

+∞∫

−∞

ũ(η, ξ2)dη

aξ2 − ξ1 − η
≡ (Vϕũ)(ξ).

Theorem 2.1. In the case of an plane angle Ca
+, the operator Vϕ has the form

(Vϕũ)(ξ) =
ũ(aξ2 + ξ1, ξ2) + ũ(aξ2 − ξ1, ξ2)

2

+ v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

aξ2 + ξ1 − η
− v.p.

i

2π

+∞∫

−∞

ũ(η, ξ2)dη

aξ2 − ξ1 − η
.

2.3. Multidimensional case: construction of kernel Kϕ. It turns out that the kernel

Kϕ is “computable” in the particular case ϕ(x′). We set ϕ(x′) = a|x′|, a > 0, and use formulas
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from [13] (cf. also [14], where real counterparts of these formulas are given in the form of the

Poisson kernel)

Kϕ(ξ
′, ξm) =

iξma2m−1π
m−2

2 Γ(m/2)

(ξ21 + ξ22 + . . .+ ξ2m−1 − a2ξ2m)m/2
.

Consequently, for our multidimensional cone the operator Vϕ has the form

(Vϕũ)(ξ) = lim
τ→0+

∫

Rm−1

izma2m−1π
m−2

2 Γ(m/2)ũ(η′, ξm)dη′

((ξ1 − η1)2 + (ξ2 − η2)2 + . . .+ (ξm−1 − ηm−1)2 − a2z2m)m/2
, (2.1)

where zm = ξm − iτ , τ > 0, which gives us a reason to call it the conical potential.

Theorem 2.2. For a multidimensional circular cone the operator Vϕ has the form (2.1).

Remark 2.1. Formula (2.1) should be understood in the sense of the theory of distributions.

Exact definitions will be given below for the operator Vϕ in the space S′(Rm).

We consider a cone in the multidimensional space

{
x ∈ R

m : xm >

m−1∑
k=1

ak|xk|, ak > 0

}
.

Then the operator Vϕ is also computable (cf. [15] in the case m = 3).

Finally, taking into account the above calculations, we can give a definition of the operator

Vϕ for distributions.

Definition 2.1. For distributions f ∈ S′(Rm) we introduce the transform Vϕ by

(Vϕf̃ , ψ) ≡ (f̃ , V−ϕψ) ∀ ψ ∈ S(Rm).

3 General Solution and Boundary Conditions

3.1. Pseudodifferential equation and wave factorization of symbol. We consider

the simplest cone Ca
+ = {x ∈ R

m : x = (x′, xm), xm > a|x′|, a > 0} and show the role of the

above-mentioned distributions in the construction of solutions to the pseudodifferential equation

(Au+)(x) = f(x), x ∈ Ca
+, (3.1)

in the space Hs(Ca
+) and the right-hand side Hs−α

0 (Ca
+) under the following condition on the

symbol A(ξ) [4, 6, 16]:

c1(1 + |ξ|)α � |A(ξ)| � c2(1 + |ξ|)α

provided that the symbol admits the wave factorization with respect to Ca
+ [7, 5]

A(ξ) = A�=(ξ) ·A=(ξ)

with index æ. The structure of solutions to Equation (3.1) is known in the case æ− s = n+ δ,

n ∈ N, |δ| < 1/2 and takes the following form in the simplest case n = 1, f ≡ 0:

ũ+(ξ) = A−1
�= (ξ)V−ϕc̃1(ξ

′)
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or, in more detail:

ũ+(ξ) = A−1
�= (ξ)

∫

Rm−1

iξma2m−1π
m−2

2 Γ(m/2)c̃1(η
′)dη′

((ξ1 − η1)2 + (ξ2 − η2)2 + . . .+ (ξm−1 − ηm−1)2 − a2ξ2m)m/2
, (3.2)

where c1 is an arbitrary function in a suitable Sobolev–Slobodetski space [15].

3.2. Integral boundary condition. There is one arbitrary function in (3.2). If this function

is fixed, then the solution becomes unique. To determine it in a unique way, we need to consider

the equation with some additional (boundary) condition. As a result, we obtain a boundary

value problem. In the simplest case, we obtain the problem with integral boundary condition

+∞∫

0

u+(x
′, xm)dxm = g(x′) (3.3)

which can be written in the Fourier images as

ũ+(ξ
′, 0) = g̃(ξ′). (3.4)

Substituting (3.4) into (3.2), we obtain the following integral equation for c̃1:

lim
ξm→0

∫

Rm−1

iξma2m−1π
m−2

2 Γ(m/2)c̃1(η
′)dη′

((ξ1 − η1)2 + (ξ2 − η2)2 + . . .+ (ξm−1 − ηm−1)2 − a2ξ2m)m/2
= A�=(ξ′, 0)g̃(ξ′). (3.5)

Since the right-hand side of (3.5) is known and the left-hand side is the convolution with the

delta-function, we can apply the (inverse) Fourier transform. According to [1], we obtain the

expression

c1(x
′) =

∫

Rm−1

M(x′ − y′)g(y′)dy′, (3.6)

where M(x′) = F−1
ξ′→x′A�=(ξ′, 0).

Thus, the function c1(x
′) is uniquely found by formula (3.6). Consequently, the problem

(3.1), (3.3) has a unique solution.

3.3. The Dirichlet boundary condition. To impose the Dirichlet condition on the general

solution u+ on the conical boundary ∂Ca
+ in a convenient form, we need to make some transfor-

mations. Applying the transform Tϕ to the solution u+, we obtain the function (Tϕu+)(x) on

R
m
+ . Thus, the condition

(Tϕu+)(x
′, 0) = g(x′) (3.7)

is the Dirichlet condition on ∂Ca
+. In the Fourier images, this condition has the form

+∞∫

−∞
(FTϕu+)(ξ

′, ξm)dξm = g̃(ξ′) =
+∞∫

−∞
(Vϕũ+)(ξ

′, ξm)dξm,

where formula (2.1) was taken into account. Consequently, assuming the condition (3.7), we

apply the operator Vϕ to both sides of (3.2) and then integrate with respect to ξm. Then we
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write the result as

g̃(ξ′) = dm

∫

Rm

ξmA−1
�= (ζ ′, ξm))

(|ξ′ − ζ ′|2 − a2ξ2m)m/2

( ∫

Rm−1

ξmc̃1(η
′)dη′

(|ζ ′ − η′|2 − a2ξ2m)m/2

)
dζ ′dξm

= dm

∫

Rm

ξmA−1
�= (ζ ′, ξm))

(|ξ′ − ζ ′|2 − a2ξ2m)m/2
C̃1(ζ

′, ξm)dζ ′dξm, (3.8)

where

C̃1(ζ
′, ξm) =

∫

Rm−1

ξmc̃1(η
′)dη′

(|ζ ′ − η′|2 − a2ξ2m)m/2
.

Thus, the main point of finding solutions is the method for solving Equation (3.8) for C̃1(ζ
′, ξm)

since c1 can be determined by the Fourier transform.

4 Coboundary Operators and Solvability Conditions

In this section, we show what to expect in the case æ − s = n + δ,−n ∈ N, |δ| < 1/2, (cf.

[4, 7, 10, 17]). We consider an arbitrary convex cone C containing no entire line and the equation

(Au+)(x) = f(x), x ∈ C. (4.1)

If f ∈ Hs−α
0 (C), then f ∈ Hæ−δ−α

0 (C) since s − α = æ − n − δ − α > æ − δ − α. Then there

exists a unique solution w+ ∈ Hæ−δ(C) Equation (4.1) such that

w̃+(ξ) = A−1
�= (ξ)BmA−1

= (ξ)l̃f(ξ), (4.2)

where Bm is the operator generated by the Bochner kernel for the cone C and lf is an arbitrary

extension of f on Hs−α(Rm) [7, 5].

The difficulty is that formula (4.2) yields a solution in a wider space, and there is arbitrariness

in the choice of a solution in the required class Hs(C).

As above, we apply the transform operators to reduce (4.2) to the case of a half-space and

use the corresponding results of [10]. We use [10] for the notation and facts related to the theory

of one-dimensional singular integral equations and classical Riemann problem [11, 12].

For the operators originally defined on the Schwartz class S(Rm) of infinitely differentiable

functions that are rapidly decreasing at infinity we introduce the notation

(Π±ũ)(ξ′, ξm) = ± i

2π
lim

τ→0+

+∞∫

−∞

ũ(ξ′, ηm)dηm
ξm ± iτ − ηm

,

(Π′ũ)(ξ′) =
+∞∫

−∞
ũ(ξ′, ξm)dξm,

Λ± is a pseudodifferential operator with symbol Λ±(ξ′, ξm) = ξm ± i|ξ′| ± i. In this case, for

ũ+ ∈ H̃n+δ(Rm), n ∈ N, |δ| < 1/2, we have the decomposition [10]

(Π+ũ)(ξ
′, ξm) =

k∑
j=1

i(Π′Λj−1
+ ũ)(ξ′)

Λj
+(ξ

′, ξm)
+

1

Λk
+(ξ

′, ξm)
(Π+Λ

k
+ũ)(ξ

′, ξm). (4.3)
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We write (4.2) in the form

F−1
ξ→x(A�=(ξ)w̃+(ξ)) = F−1

ξ→x(BmA−1
= (ξ)l̃f(ξ))

which implies

(A�= ∗ w+)(x) = χC(x) · (A−1
= ∗ (lf))(x),

where χC is the characteristic function of the cone C.

Acting by the operator T−1
ϕ on both sides of the last equality and passing to the Fourier

images, we note that

T−1
ϕ (χC(x) · (A−1

= ∗ (lf))(x)) = χR
m
+
(x) · T−1

ϕ (A−1
= ∗ (lf)).

Consequently,

(FT−1
ϕ )(A�= ∗ w+)(ξ) = Π+Vϕ(A

−1
= (ξ)l̃f(ξ)),

w̃+(ξ) = A−1
�= (ξ)V−ϕΠ+Vϕ(A

−1
= (ξ)l̃f(ξ)).

Applying (4.3) to the last identity, we obtain the required expansion

w̃+(ξ) =

n∑
j=1

[(A−1
�= · V−ϕ · Λ−j

+ · Vϕ)ṽj ](ξ
′, ξm) + ũ+(ξ),

where (cf. [10]) ṽj(ξ
′) = i(Π′Λj−1

+ · A−1
= · l̃f)(ξ′) and ũ+(ξ) = A−1

�= (ξ)V−ϕΛ
−k
+ (Π+VϕΛ

k
+A

−1
= ·

l̃f)(ξ′, ξm). We also extract the terms V−ϕΛ
−j
+ Vϕṽj ≡ ũj and write the expansion

w̃+(ξ) =
n∑

j=1

(A−1
�= · ũj)(ξ′, ξm) + ũ+(ξ). (4.4)

The first terms in (4.4) play the role of potentials.

Theorem 4.1. Equation (4.1) with æ − s = n + δ, −n ∈ N, |δ| < 1/2, has a solution in

the space Hs(C) if and only if the right-hand side f satisfies the additional conditions ũj = 0,

j = 1, . . . , |n|.
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