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Abstract—The paper is devoted to studying limit behavior for a solution of model elliptic pseudo-
differential equation with some integral boundary condition in 4-wedge conical canonical 3D singu-
lar domain with two parameters. It is shown that the solution of such boundary value problem can
have a limit with respect to endpoint values of the parameters in appropriate Sobolev–Slobodetskii
space if the boundary function is a solution of a special functional singular integral equation.
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1. INTRODUCTION

A lot of papers and books are devoted to constructing and developing a theory of elliptic pseudo-
differential operators and equations on non-smooth manifolds or on manifolds with non-smooth bound-
aries [1–5]. The term “a theory” means that these studies describe Fredholm properties and an index
theorem.

According to the local principle to obtain Fredholm property for a general pseudo-differential operator
we need to study invertibility properties for model operators in so called canonical domains. Distinct
model operators and canonical domains generate distinct Fredholm theories.

The author develops its own approach to studying elliptic pseudo-differential equations on manifolds
with a non-smooth boundary. Key point of the approach is studying a unique solvability for a model
equation in a canonical domains. Such canonical domains can be a whole space R

m, a half-space
R
m
+ = {x ∈ R

m : x = (x′, xm), xm > 0} or a certain cone in R
m. Some first author’s results are included

in the book [12], but to now the author have obtained some new results [13, 14, 16, 17] which permit
developing the approach more explicitly. Moreover, some results [19, 21] can help to describe more
complicated situations than ordinary m-dimensional cone in R

m, namely we would like to consider here
the situation when starting cone degenerates into a cone of a lower dimension.

2. PRELIMINARIES

2.1. Notations

Here we will introduce some notations and definitions. Let Cab
+ be a domain inside of a 4-wedge angle

Cab
+ = {x ∈ R

3 : x = (x1, x2, x3), x3 > a|x1|+ b|x2|, a, b > 0}

in 3-dimensional space R
3. If A is a pseudo-differential operator with a symbol Ã(ξ) non depending on

a spatial variable x then a model pseudo-differential equation under consideration is the following

(Au)(x) = v(x), x ∈ Cab
+ . (1)
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According to [7] we consider symbols A(ξ) satisfying the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α, α ∈ R, (2)

with some positive constants c1, c2.
The key tool for studying the solvability for the equation (1) is a concept of wave factorization of an

elliptic symbol [12]. We need some notations and definitions from [9].
A radial tube domain over the cone Cab

+ is called a domain of C3 of the following type

T (Cab
+ ) ≡ {z ∈ C

3 : z = x+ iy, x ∈ R
3, y ∈ Cab

+ }.

A conjugate cone
∗

Cab
+ is called such a cone for all points of which

x · y > 0, ∀y ∈ Cab
+ ,

where x · y means the inner product for x and y.

Lemma 1.
∗

Cab
+ = {ξ ∈ R

3 : ξ = (ξ1, ξ2, ξ3), ξ3 > 1
2a |ξ1|+

1
2b |ξ2|.

Proof. This is an easy exercise for undergraduate students. �

A cone is called self-conjugate if its conjugate cone coincides with initial one. So, we se that the cone
Cab
+ will be a conjugate if and only if a = b = 1√

2
.

Definition 1. Wave factorization of symbol Ã(ξ) with respect to the cone Cab
+ is called its

representation in the form

Ã(ξ) = Ã�=(ξ)Ã=(ξ),

where the factors Ã�=(ξ), Ã=(ξ) satisfy the following conditions:
1) Ã�=(ξ), Ã=(ξ) are defined everywhere without may be the points {ξ ∈ R

3 : ξ3 =
1
2a |ξ1|+

1
2b |ξ2|};

2) Ã�=(ξ), Ã=(ξ) admit an analytical continuation into radial tube domains T (
∗

Cab
+ ), T (−

∗
Cab
+ )

respectively, which satisfy the estimates

|A±1
�= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗
Cab
+ .

The number æ is called index of wave factorization.
Everywhere below we assume that such wave factorization exists.
We study the equation (1) in Sobolev–Slobodetskii space Hs(Cab

+ ). By definition, this space consists

of functions u from Hs(Rm) which supports belong to Cab
+ . A norm in the space Hs(Cab

+ ) is induced by
the Hs-norm

||u||s =

⎛
⎝
∫

R3

ũ(ξ)(1 + |ξ|)2sdξ

⎞
⎠

1/2

,

where the sign ∼ over u denotes its Fourier transform

ũ(ξ) =

∫

R3

u(x(eix·ξdx.

The right hand side v in the equation (1) is taken from the space Hs−α
0 (Cab

+ ) of functions defined in Cab
+

which admit a continuation �v into whole Hs−α(Rm). The norm in such a space is defined as

||v||+s = inf ||�v||s,
where inf is taken over all continuations �v.

After these auxiliaries we can present the construction of a general solution of the equation (1) for
certain values æ.
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2.2. A General Solution
To simplify our constructions we will consider the homogeneous boundary value problem

(Au)(x) = 0, x ∈ Cab
+ . (3)

We will use our constructions from [16, 17] to describe the general solution of the equation (1) for the
case æ− s = 1 + δ, |δ| < 1/2.

Let us introduce the following singular integral operators [10, 11]

(S1u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞∫

−∞

u(τ, ξ2, ξ3)dτ

ξ1 − τ
,

(S2u)(ξ1, ξ2, ξ3) = v.p
i

2π

+∞∫

−∞

u(ξ1, η, ξ3)dη

ξ2 − η
.

Then
A�=(ξ)ũ(ξ) = C̃1(ξ1 − aξ3, ξ2 − bξ3) + C̃2(ξ1 − aξ3, ξ2 + bξ3)

+̃C3(ξ1 + aξ3, ξ2 − bξ3) + C̃1(ξ1 + aξ3, ξ2 + bξ3), (4)

where

C̃1(ξ1 − aξ3, ξ2 − bξ3) =
1

4
c̃0(ξ1 − aξ3, ξ2 − bξ3)−

1

2
(S1c̃0)(ξ1 − aξ3, ξ2 − bξ3)

− 1

2
(S2c̃0)(ξ1 − aξ3, ξ2 − bξ3) + (S1S2c̃0)(ξ1 − aξ3, ξ2 − bξ3);

C̃2(ξ1 − aξ3, ξ2 + bξ3) =
1

4
c̃0(ξ1 − aξ3, ξ2 + bξ3)−

1

2
(S1c̃0)(ξ1 − aξ3, ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1 − aξ3, ξ2 + bξ3)− (S1S2c̃0)(ξ1 − aξ3, ξ2 + bξ3);

C̃3(ξ1 + aξ3, ξ2 − bξ3) =
1

4
c̃0(ξ1 + aξ3, ξ2 − bξ3) +

1

2
(S1c̃0)(ξ1 + aξ3, ξ2 − bξ3)

− 1

2
(S2c̃0)(ξ1 + aξ3, ξ2 − bξ3)− (S1S2c̃0)(ξ1 + aξ3, ξ2 − bξ3);

C̃4(ξ1 + aξ3, ξ2 + bξ3) =
1

4
c̃0(ξ1 + aξ3, ξ2 + bξ3) +

1

2
(S1c̃0)(ξ1 + aξ3, ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1 + aξ3, ξ2 + bξ3) + (S1S2c̃0)(ξ1 + aξ3, ξ2 + bξ3).

Theorem 1. Let æ− s = 1 + δ, |δ| < 1/2. A general solution of the equation (3) is given by the
formula (4), where c0(x1, x2) is an arbitrary function from Hs−ae+/2(R2).

3. BOUNDARY CONDITIONS
3.1. Integral Boundary Condition

To determine uniquely an arbitrary function c0(ξ1, ξ2) we need certain additional condition. We
suppose that we know the following function ũ(ξ1, ξ2, 0). It means that we know the following integral

+∞∫

−∞

u(x1, x2, x3)dx3 ≡ g(x1, x2), (5)

the condition (5) has the following form in the Fourier image

ũ(ξ1, ξ2, 0) = g̃(ξ1, ξ2). (6)
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3.2. Solution of a Boundary Value Problem

Substituting (6) into (4) we can collect similar summands. Indeed, we have

Ã�=(ξ)ũ(ξ) =
4∑

k=1

C̃k(ξ1, ξ2) =
1

4
c̃0(ξ1, ξ2)−

1

2
(S1c̃0)(ξ1, ξ2)−

1

2
(S2c̃0)(ξ1, ξ2) + (S1S2c̃0)(ξ1, ξ2)

+
1

4
c̃0(ξ1, ξ2)−

1

2
(S1c̃0)(ξ1, ξ2) +

1

2
(S2c̃0)(ξ1, ξ2)− (S1S2c̃0)(ξ1, ξ2)

+
1

4
c̃0(ξ1, ξ2) +

1

2
(S1c̃0)(ξ1, ξ2)−

1

2
(S2c̃0)(ξ1, ξ2)− (S1S2c̃0)(ξ1, ξ2)

+
1

4
c̃0(ξ1, ξ2) +

1

2
(S1c̃0)(ξ1, ξ2) +

1

2
(S2c̃0)(ξ1, ξ2) + (S1S2c̃0)(ξ1, ξ2) = c̃0(ξ1, ξ2).

Substituting the condition (6) into latter result we have the following

Ã�=(ξ
′, 0)ũ(ξ′, 0) = c̃0(ξ

′), ξ′ − (ξ1, ξ2).

Therefore

c̃0(ξ
′) = Ã�=(ξ

′, 0)g̃(ξ′). (7)

Theorem 2. Let æ− s = 1 + δ, |δ| < 1/2, g ∈ Hs+1/2(R2). The unique solution of the boundary
value problem (3), (5) is given by the formula (4), where c0(x1, x2) is defined by the formula (7).

4. LIMIT BEHAVIOR

4.1. The Case a → 0, b → 0

This case corresponds to the half-space ξ3 > 0. Thus we have according to the formula (4)

Ã�=(ξ)ũ(ξ) =
4∑

k=1

C̃k(ξ1, ξ2) = c̃0(ξ1, ξ2).

Thus, we have the same formula for a general solution as in [7]. Let us note that for this case the wave
factorization transform into ordinary factorization with a parameter with respect to the one-dimensional
cone (0,+∞).

4.2. The Case a → 0, b = const

C̃1(ξ1, ξ2 − bξ3) =
1

4
c̃0(ξ1, ξ2 − bξ3)−

1

2
(S1c̃0)(ξ1, ξ2 − bξ3)

− 1

2
(S2c̃0)(ξ1, ξ2 − bξ3) + (S1S2c̃0)(ξ1, ξ2 − bξ3);

C̃2(ξ1, ξ2 + bξ3) =
1

4
c̃0(ξ1, ξ2 + bξ3)−

1

2
(S1c̃0)(ξ1, ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1, ξ2 + bξ3)− (S1S2c̃0)(ξ1, ξ2 + bξ3);

C̃3(ξ1, ξ2 − bξ3) =
1

4
c̃0(ξ1, ξ2 − bξ3) +

1

2
(S1c̃0)(ξ1, ξ2 − bξ3)

− 1

2
(S2c̃0)(ξ1, ξ2 − bξ3)− (S1S2c̃0)(ξ1, ξ2 − bξ3);

C̃4(ξ1, ξ2 + bξ3) =
1

4
c̃0(ξ1, ξ2 + bξ3) +

1

2
(S1c̃0)(ξ1, ξ2 + bξ3)
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+
1

2
(S2c̃0)(ξ1, ξ2 + bξ3) + (S1S2c̃0)(ξ1, ξ2 + bξ3).

For this case the formula (4) becomes the following

Ã�=(ξ)ũ(ξ) =
c̃0(ξ1, ξ2 − bξ3) + c̃0(ξ1, ξ2 + bξ3)

2
+ (S2c̃0)(ξ1, ξ2 + bξ3)− (S2c̃0)(ξ1, ξ2 − bξ3).

Taking into account the formula (7) we can write

Ã�=(ξ)ũ(ξ) =
Ã�=(ξ1, ξ2 − bξ3, 0)g̃(ξ1, ξ2 − bξ3) + Ã�=(ξ1, ξ2 + bξ3, 0)g̃(ξ1, ξ2 + bξ3)

2

+
i

2π

⎛
⎝v.p.

+∞∫

−∞

Ã�=(ξ1, η, 0)g̃(ξ1, η)dη

ξ2 + bξ3 − η
− v.p.

+∞∫

−∞

Ã�=(ξ1, η, 0)g̃(ξ1, η)dη

ξ2 − bξ3 − η

⎞
⎠. (8)

4.3. The Case a = const, b → 0

This case is analogical to the previous one, and we have the following representation

C̃1(ξ1 − aξ3, ξ2) =
1

4
c̃0(ξ1 − aξ3, ξ2)−

1

2
(S1c̃0)(ξ1 − aξ3, ξ2)

− 1

2
(S2c̃0)(ξ1 − aξ3, ξ2) + (S1S2c̃0)(ξ1 − aξ3, ξ2);

C̃2(ξ1 − aξ3, ξ2) =
1

4
c̃0(ξ1 − aξ3, ξ2)−

1

2
(S1c̃0)(ξ1 − aξ3, ξ2)

+
1

2
(S2c̃0)(ξ1 − aξ3, ξ2)− (S1S2c̃0)(ξ1 − aξ3, ξ2);

C̃3(ξ1 + aξ3, ξ2) =
1

4
c̃0(ξ1 + aξ3, ξ2) +

1

2
(S1c̃0)(ξ1 + aξ3, ξ2)

− 1

2
(S2c̃0)(ξ1 + aξ3, ξ2)− (S1S2c̃0)(ξ1 + aξ3, ξ2);

C̃4(ξ1 + aξ3, ξ2) =
1

4
c̃0(ξ1 + aξ3, ξ2) +

1

2
(S1c̃0)(ξ1 + aξ3, ξ2)

+
1

2
(S2c̃0)(ξ1 + aξ3, ξ2) + (S1S2c̃0)(ξ1 + aξ3, ξ2).

For this case the formula (4) becomes the following

Ã�=(ξ)ũ(ξ) =
c̃0(ξ1 − aξ3, ξ2) + c̃0(ξ1 + aξ3, ξ2)

2
+ (S1c̃0)(ξ1 + aξ3, ξ2)− (S1c̃0)(ξ1 − aξ3, ξ2).

Thus, according to (7) we obtain

Ã�=(ξ)ũ(ξ) =
Ã�=(ξ1 − aξ3, ξ2, 0)g̃(ξ1 − aξ3, ξ2) + Ã�=(ξ1 + aξ3, ξ2, 0)g̃(ξ1 + aξ3, ξ2)

2

+
i

2π

⎛
⎝v.p.

+∞∫

−∞

Ã�=(η, ξ2, 0)g̃(η, ξ2)dη

ξ1 + aξ3 − η
− v.p.

+∞∫

−∞

Ã�=(η, ξ2, 0)g̃(η, ξ2)dη

ξ1 − aξ3 − η

⎞
⎠ . (9)

Remark 1. It seems very interesting that the formulas (8), (9) are very close to formulas given in [6].
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4.4. The Case a → ∞, b = const

This is more complicated case in comparison with the previous ones. Really, let us introduce the
change of variables ξ1 − aξ3 = t1, ξ1 + aξ3 = t3. Then we obtain

ξ1 =
t3 + t1

2
, ξ3 =

t3 − t1
2a

.

So we see that ξ3 → 0 as a → ∞. According to this fact we calculate C̃k, k = 1, 2, 3, 4 under a → ∞

C̃1(t1, ξ2) =
1

4
c̃0(t1, ξ2)−

1

2
(S1c̃0)(t1, ξ2)−

1

2
(S2c̃0)(t1, ξ2) + (S1S2c̃0)(t1, ξ2);

C̃2(t1, ξ2) =
1

4
c̃0(t1, ξ2)−

1

2
(S1c̃0)(t1, ξ2) +

1

2
(S2c̃0)(t1, ξ2)− (S1S2c̃0)(t1, ξ2);

C̃3(t3, ξ2) =
1

4
c̃0(t3, ξ2) +

1

2
(S1c̃0)(t3, ξ2)−

1

2
(S2c̃0)(t3, ξ2)− (S1S2c̃0)(t3, ξ2);

C̃4(t3, ξ2) =
1

4
c̃0(t3, ξ2) +

1

2
(S1c̃0)(t3, ξ2) +

1

2
(S2c̃0)(t3, ξ2) + (S1S2c̃0)(t3, ξ2).

Taking into account the formula (4) we have for new variables t1, ξ2, t3, a → ∞ the following equality

Ã�=

(
t3 + t1

2
, ξ2, 0

)
ũ

(
t3 + t1

2
, ξ2, 0

)
=

c̃0(t3, ξ2) + c̃0(t1, ξ2)

2
+ ((S1c̃0)(t3, ξ2)− S1c̃0)(t1, ξ2))

and using the condition (6) we obtain

Ã�=

(
t3 + t1

2
, ξ2, 0

)
g̃

(
t3 + t1

2
, ξ2

)
=

c̃0(t3, ξ2) + c̃0(t1, ξ2)

2
+ ((S1c̃0)(t3, ξ2)− S1c̃0)(t1, ξ2)) .

Substituting the formula (7) into the latter equation we finally obtain

Ã�=

(
t3 + t1

2
, ξ2, 0

)
g̃

(
t3 + t1

2
, ξ2

)
=

Ã�=(t3, ξ2, 0)g̃(t3, ξ2) + Ã�=(t1, ξ2, 0)g̃(t1, ξ2)

2

+
i

2π

⎛
⎝v.p.

+∞∫

−∞

Ã�=(η, ξ2, 0)g̃(η, ξ2)dη

t3 − η
− v.p.

+∞∫

−∞

Ã�=(η, ξ2, 0)g̃(η, ξ2)dη

t1 − η

⎞
⎠ . (10)

This equality (8) is one-dimensional functional singular integral equation with a parameter with respect
to the function g̃(ξ1, ξ2).

4.5. The Case a = const, b → ∞
This case is very similar to the previous one but nevertheless we will describe the corresponding

formulas and equations. A structure of the solution is defined by the following functions

C̃1(ξ1, t2) =
1

4
c̃0(ξ1, t2)−

1

2
(S1c̃0)(ξ1, t2)−

1

2
(S2c̃0)(ξ1, t2) + (S1S2c̃0)(ξ1, t2);

C̃2(ξ1, t3) =
1

4
c̃0(ξ1, t3)−

1

2
(S1c̃0)(ξ1, t3) +

1

2
(S2c̃0)(ξ1, t3)− (S1S2c̃0)(ξ1, t3);

C̃3(ξ1, t2) =
1

4
c̃0(ξ1, t2) +

1

2
(S1c̃0)(ξ1, t2)−

1

2
(S2c̃0)(ξ1, t2)− (S1S2c̃0)(ξ1, t2);

C̃4(ξ1, t3) =
1

4
c̃0(ξ1, t3) +

1

2
(S1c̃0)(ξ1, t3) +

1

2
(S2c̃0)(ξ1, t3) + (S1S2c̃0)(ξ1, t3).

Here we have used the change of variables ξ2 − bξ3 = t2, ξ2 + bξ3 = t3 and respectively

ξ2 =
t3 + t2

2
, ξ3 =

t3 − t2
2b

→ 0, b → ∞.
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Thus, according to the formula (4) we have for new variables ξ1, t2, t3, b → ∞

Ã�=

(
ξ1,

t3 + t2
2

, 0

)
ũ

(
ξ1,

t3 + t2
2

, 0

)
=

c̃0(ξ1, t3) + c̃0(ξ1, t2)

2
+ (S2c̃0)(ξ1, t3)− (S2c̃0)(ξ1, t2).

Using the condition (6) we write

Ã�=

(
ξ1,

t3 + t2
2

, 0

)
g̃

(
ξ1,

t3 + t2
2

)
=

c̃0(ξ1, t3) + c̃0(ξ1, t2)

2
+ (S2c̃0)(ξ1, t3)− (S2c̃0)(ξ1, t2)

and finally according to the formula (7)

Ã�=

(
ξ1,

t3 + t2
2

, 0

)
g̃

(
ξ1,

t3 + t2
2

)
=

Ã�=(ξ1, t3, 0)g̃(ξ1, t3) + Ã�=(ξ1, t2, 0)g̃(ξ1, t2)

2

+
i

2π

⎛
⎝v.p.

+∞∫

−∞

Ã�=(ξ1, η, 0)g̃(ξ1, η)dη

t3 − η
− v.p.

+∞∫

−∞

Ã�=(ξ1, η, 0)g̃(ξ1, η)dη

t2 − η

⎞
⎠ . (11)

5. MAIN RESULTS

Collecting our above evaluations we can formulate the following main result.

Theorem 3. Let æ− s = 1 + δ, |δ| < 1/2, g ∈ Hs+1/2(R2). Then for solving the Boundary value
problem (3), (5) the following assertions are valid:

1. if a = b = 0 then the unique solution is given by the formula (4), where c0 is defined by the
formula (7);

2. if a → 0, b = const then the unique solution is defined by the formula (8);

3. if a = const, b → 0 then the unique solution is defined by the formula (9);

4. if a → ∞, b = const then limit of the solution exists if and only if the function g satisfies
the equation (10);

5. if a = const, b → ∞ then limit of the solution exists if and only if the function g satisfies
the equation (11).

APPENDIX

A PRIORI ESTIMATES

For first three cases 1, 2, 3 of Theorem 3 we can give an a priori estimate for the solution using the
following lifting lemma; it was proved in [17].

Lemma 2. If d(x1, x2) ∈ Hs(R2) then D(x1, x2, x3) = d(x1 + ax3, x2 + bx3) belongs to the space
Hs−1/2(R3), a, b ≥ 0, a2 + b2 
= 0.

To distinct the norms in R
3 and R

2 we will the notations || · ||s and [·]s.
Theorem 4. Let −1/2 < δ < 0. The the boundary value problem (3), (5) has a unique

solution for an arbitrary g ∈ Hs+1/2(R2) in the space Hs(Cab
+ ). This solution can be constructed

explicitly by the Fourier transform and the one-dimensional singular integral operator. The a
priori estimate ||u||s ≤ c[g]s+1/2 holds.

Proof. 1. The case 1. We have

ũ(ξ) =
Ã 
= (ξ′, 0)

Ã�=(ξ)
g̃(ξ1, ξ2)
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Then

||u||2s =

∫

R3

∣∣∣∣∣
Ã 
= (ξ′, 0)

Ã�=(ξ)
g̃(ξ1, ξ2)

∣∣∣∣∣
2

(1 + |ξ|)2sdξ ≤
∫

R3

(1 + |ξ′|)2æ(1 + |ξ|)2s
(1 + |ξ|)2æ |g̃(ξ1, ξ2)|2dξ

≤ C

∫

R2

(1 + |ξ′|)2s+1|g̃(ξ1, ξ2)|2dξ′ = C[g]s+1/2.

The cases 2, 3. Here, we need to use Lemma 2 and estimates for one-dimensional singular
integral operators S1, S2. Since h(ξ′) ≡ Ã�=(ξ

′, 0)g̃(ξ′) ∈ H̃s+1/2−æ(R2) ≡ Hs0(R2) we have s0 =

s− æ+ 1/2 = −1/2− δ, so that −1/2 < s0 < 0. Then we obtain [Skh̃]s0 ≤ c[h̃]s0 , k = 1, 2, because
the operators S1, S2 are bounded in H̃s0(R2) [7]. Finally, [h̃]s0 ≤ c[g̃]s+1/2 according to Lemma 2 and
properties of pseudo-differential operators. �

Remark 2. The author’s paper [17] has some inaccuracies in subsections 7.4,7.5, the author took
into account the wrong sign for one of summands in the general solution. Really, the formula is more
simple and the a priori estimates also. This paper gives right signs in the formula for a general solution.

CONCLUSION

The author hopes that these considerations will be continued for more complicated multidimensional
situations [18–21], and it can be useful for the theory of boundary value problems in domains with non-
smooth boundaries.
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