On limit behavior of a solution to boundary value problem in a plane sector

Shaban H. Kutaiba | Vladimir B. Vasilyev

Chair of Applied Mathematics and Computer Modeling, Belgorod State National Research University, Pobedy street 85, Belgorod, 308015, Russia

Correspondence

Vladimir B. Vasilyev, Chair of Applied Mathematics and Computer Modeling, Belgorod State National Research University, Pobedy street 85, Belgorod 308015, Russia.
Email: vladimir.b.vasilyev@gmail.com

Abstract

We study a certain boundary value problem in Sobolev-Slobodetskii spaces with integral condition in a plane excluding a ray from origin. Using auxiliary problem in outside of a convex cone and the wave factorization concept, we construct a general solution and consider transfer to limit boundary value problem. It was shown that limit boundary value problem can be solvable only if the boundary function satisfies to a certain singular functional equation.

KEYWORDS

elliptic pseudo-differential equation, limit boundary value problem, wave factorization, general solution

MSC CLASSIFICATION
35S15; 47G30

1 | INTRODUCTION

Theory of pseudo-differential operators and equations on manifolds with a smooth boundary was very intensive which was developed in the second half quarter of the last century, ${ }^{1-3}$ and now, there are a lot of applications of the theory. ${ }^{4-6}$ Many papers and books are related to a theory of elliptic pseudo-differential operators and equations on nonsmooth manifolds or on manifolds with nonsmooth boundaries. ${ }^{7-14}$ According to the local principle to obtain Fredholm property for a general pseudo-differential operator, we need to study invertibility properties for model operators in so called canonical domains. One of such domains is a cone.
The authors develop a special approach to studying elliptic pseudo-differential equations on manifolds with a non-smooth boundary. Key point of the approach is studying a unique solvability for a model equation in a canonical domains. Such canonical domains can be a whole space \mathbb{R}^{m}, a half-space $\mathbb{R}_{+}^{m}=\left\{x \in \mathbb{R}^{m}: x=\left(x^{\prime}, x_{m}\right), x_{m}>0\right\}$ or a certain cone in \mathbb{R}^{m}. Some results in this direction are included in the books ${ }^{15,16}$ and papers, ${ }^{17-19}$ but now, some new results were obtained, ${ }^{15,20-24}$ and it permits developing the approach more explicitly. Moreover, some results ${ }^{25,26}$ can help to describe more complicated situations than ordinary m-dimensional cone in \mathbb{R}^{m}, namely, we would like to consider here the situation when starting cone degenerates into a cone of a lower dimension. We will start from two-dimensional case.

Outline of the paper is the following. We introduce boundary value problem with additional integral condition for a model elliptic pseudo-differential operator in a plane sector. For solving this problem, we describe functional spaces, operators, and a special factorization for an elliptic symbol. Further, we find a solution for the boundary value problem, and study conditions under which the solution exists for limit value of a cone.

2 | STATEMENT OF THE PROBLEM AND AUXILIARIES

Let D be a plane domain of the following type $D=\mathbb{R}^{2} \backslash\left\{x \in \mathbb{R}^{2}: x_{1}=0, x_{2}>0\right\}$, and A be an elliptic pseudo-differential operator with the symbol $A(\xi)^{3}$ satisfying the condition:

$$
\begin{equation*}
a_{1}(1+|\xi|)^{\alpha} \leq|A(\xi)| \leq a_{2}(1+|\xi|)^{\alpha} \tag{*}
\end{equation*}
$$

with positive constants a_{1}, a_{2}.
We will study the following boundary value problem

$$
\begin{align*}
& (A u)(x)=v(x), \quad x \in D \tag{1}\\
& \int_{-\infty}^{+\infty} u\left(x_{1}, x_{2}\right) d x_{2}=g\left(x_{1}\right) . \tag{2}
\end{align*}
$$

Let us note that the condition (2) is the so-called nonlocal or integral condition. It appears in studies not often, but nevertheless, it is used in studying some problems. ${ }^{27-29}$

Our strategy is the following. Let $C_{+}^{a}=\left\{x \in \mathbb{R}^{2}: x=\left(x_{1}, x_{2}\right), x_{2}>a\left|x_{1}\right|, a>0\right\}$ be plane sector with the size 2α (so that $a=\cot \alpha$), and we will study Equation (1) with the condition (2) in the domain $\mathbb{R}^{2} \backslash C_{+}^{a}$. So our starting equation will be the following:

$$
\begin{equation*}
(A u)(x)=v(x), \quad x \in \mathbb{R}^{2} \backslash C_{+}^{a} \tag{3}
\end{equation*}
$$

Further, if we can find the solution of the problem (3), (2) then we will try to obtain limit expression for the solution under $a \rightarrow \infty(\alpha \rightarrow 0)$. We will see that under our assumptions the problem (1),(2) can be solvable only if the function g satisfies a certain equation.

2.1 | Spaces and operators

We study Equation (3) in Sobolev-Slobodetskii space $H^{s}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$. By definition, this space consists of functions u from $H^{s}\left(\mathbb{R}^{m}\right)$ which supports belong to $\overline{\mathbb{R}^{2} \backslash C_{+}^{a}}$. A norm in the space $H^{s}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$ is induced by the H^{s}-norm

$$
\|u\|_{s}=\left(\int_{\mathbb{R}^{3}} \tilde{u}(\xi)(1+|\xi|)^{2 s} d \xi\right)^{1 / 2}
$$

where the sign \sim over u denotes its Fourier transform

$$
\tilde{u}(\xi)=\int_{\mathbb{R}^{3}} u\left(x \left(e^{i x \cdot \xi} d x\right.\right.
$$

The right hand side v in Equation (3) is taken from the space $H_{0}^{s-\alpha}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$ of functions defined in $\mathbb{R}^{2} \backslash C_{+}^{a}$ which admit a continuation ℓv into whole $H^{s-\alpha}\left(\mathbb{R}^{m}\right)$. The norm in such a space is defined as

$$
\|\nu\|_{s}^{+}=\inf \|\ell v\|_{s},
$$

where inf is taken over all continuations ℓv.
Let us remind ${ }^{3}$ that a pseudo-differential operator A is defined by its symbol $A(\xi)$ in the following way:

$$
(A u)(x)=\frac{1}{(2 \pi)^{m}} \int_{\mathbb{R}^{2}} e^{-i x \cdot \xi} \tilde{u}(\xi) d \xi
$$

Generally speaking usually, they consider more general symbols $A(x, \xi)$ depending on a spatial variable x, but here, we will consider the simplest variant.

The operator A with the symbol $A(\xi)$ satisfying the condition $(*)$ is a linear bounded operator $H^{s}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right) \rightarrow$ $H^{s-\alpha}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right){ }^{3}$

2.2 | Wave factorization

Our study is based on a concept of the wave factorization. ${ }^{15,16}$ Before introducing the concept, we will remind some definitions from multidimensional analysis. ${ }^{30}$

If C is a convex cone in \mathbb{R}^{2}, then the conjugate cone ${ }_{C}^{*}$ is defined as follows:

$$
\stackrel{*}{C}=\left\{x \in \mathbb{R}^{2}: x \cdot y=x_{1} y_{1}+x_{2} y_{2}>0, \quad \forall y \in C\right\} .
$$

Obviously, $\stackrel{*}{C}_{+}^{a}=\left\{x \in \mathbb{R}^{2}: a x_{2}>\left|x_{1}\right|\right\}$. Let us denote ${ }_{C}^{*}=-{ }_{-}^{*}{ }_{+}^{a}$.
A radial tube domain over the cone C is called a subset of two-dimensional complex space \mathbb{C}^{2} of the following type:

$$
T(C)=\left\{z \in \mathbb{C}^{2}: z=x+i y, x \in \mathbb{R}^{2}, y \in C\right\}
$$

Definition 1. The wave factorization of an elliptic symbol $A(\xi)$ with respect to the cone C_{+}^{a} is called its representation in the form

$$
A(\xi)=A_{\neq}(\xi) A_{=}(\xi),
$$

where factors $A_{\neq}(\xi), A_{=}(\xi)$ must satisfy the following conditions:

1) $A_{\neq}(\xi), A_{=}(\xi)$ are defined for all $\xi \in \mathbb{R}^{2}$ may be except $\left\{\xi \in \mathbb{R}^{2}:\left|\xi_{1}\right|^{2}=a^{2} \xi_{2}^{2}\right\}$;
2) $A_{\neq}(\xi), A_{=}(\xi)$ admit an analytic continuation into radial tube domains $T\left(C_{-}^{a}\right), T\left(C_{+}^{a}\right)$ respectively with estimates

$$
\begin{gathered}
\left|A_{\neq}^{ \pm 1}(\xi+i \tau)\right| \leq c_{1}(1+|\xi|+|\tau|)^{ \pm æ}, \\
\left|A_{\neq}^{ \pm 1}(\xi-i \tau)\right| \leq c_{2}(1+|\xi|+|\tau|)^{ \pm(\alpha-æ)}, \quad \forall \tau \in \stackrel{*}{C_{-}^{a}} .
\end{gathered}
$$

The number $æ \in \mathbb{R}$ is called an index of the wave factorization.
Remark 1. Let us note that we replace in the definition C_{+}^{a}, C_{-}^{a} in a comparison with standard definition of the wave factorization. ${ }^{16}$

2.3 | A special integral operator $\boldsymbol{G}_{\mathbf{2}}$

Let us define this operator in the following way ${ }^{16}$ first for functions u from Schwartz space $S\left(\mathbb{R}^{2}\right)$

$$
\left(G_{2} \tilde{u}\right)\left(\xi_{!}, \xi_{2}\right)=\lim _{\tau \rightarrow 0+} \int_{\mathbb{R}^{2}} \frac{2 a \tilde{u}\left(\eta_{1}, \eta_{2}\right) d \eta}{\left(\xi_{1}-\eta_{1}\right)^{2}-a^{2}\left(\xi_{2}-\eta_{2}+i \tau\right)^{2}}
$$

This operator plays an important role for constructing a solution of Equation (3). It is linear bounded operator $H^{s}\left(\mathbb{R}^{2} \rightarrow\right.$ $H^{s}\left(\mathbb{R}^{2}\right)$ for $|s|<1 / 2 .{ }^{16}$

If we denote by $\tilde{H}^{s}\left(C_{+}^{a}\right), \widetilde{H}^{s}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$ the Fourier images of spaces $H^{s}\left(C_{+}^{a}\right), H^{s}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$, respectively, then an arbitrary function $\tilde{f} \in \widetilde{H}^{s}\left(\mathbb{R}^{2}\right.$ can be uniquely represented in the form

$$
\tilde{f}=\tilde{f}_{+}+\tilde{f}_{-}
$$

where $\tilde{f}_{+} \in \tilde{H}^{s}\left(C_{+}^{a}\right), \tilde{f}_{-} \in \tilde{H}^{s}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$ and

$$
\tilde{f}=G_{1} \tilde{f}+\left(I-G_{2}\right) \tilde{f}
$$

for $|s|<1 / 2$.

2.4 | Transmutation operator

Our further considerations are based on a special transmutation operator which is related to the Fourier transform.

We introduce $T_{a}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the following type:

$$
\left\{\begin{array}{r}
t_{1}=x_{1}, \\
t_{2}=x_{2}-a\left|x_{1}\right| .
\end{array}\right.
$$

This operator transforms ∂C_{+}^{a} into hyperplane $x_{2}=0$.
We are interested in the operator $F T_{a} F^{-1}$; therefore, first, we need to study $F T_{1}$ and to find its explicit form. We have

$$
\begin{array}{r}
\left(F T_{a} u\right)(\xi)=\int_{-\infty}^{+\infty} e^{i a\left|y_{1}\right| \xi_{2}} e^{i y_{1} \xi_{1}} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1} \\
=\int_{-\infty}^{+\infty} x_{+}\left(y_{1}\right) e^{i y_{1} \xi_{1} \xi_{2}} e^{i y_{1} \xi_{1}} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1}+\int_{-\infty}^{+\infty} \chi-\left(y_{1}\right) e^{-i a y_{1} \xi_{1}} e^{y_{y_{1}} \xi_{1}} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1} \\
=\int_{-\infty}^{+\infty} x_{+}\left(y_{1}\right) e^{i y_{1}\left(a \xi_{2}+\xi_{1}\right)} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1}+\int_{-\infty}^{+\infty} x_{-}\left(y_{1}\right) e^{i y_{1}\left(-a \xi_{2}+\xi_{1}\right)} \hat{u}\left(y_{1}, \xi_{2}\right) d y_{1},
\end{array}
$$

where $\chi_{ \pm}$is an indicator of the half-axis $\mathbb{R}_{ \pm}$.
The last two summands are the Fourier transforms of functions

$$
\chi_{+}\left(y_{1}\right) e^{i y_{1}\left(a \xi_{2}+\xi_{1}\right)} \hat{u}\left(y_{1}, \xi_{2}\right), \quad \chi-\left(y_{1}\right) e^{i y_{1}\left(-a \xi_{2}+\xi_{1}\right)} \hat{u}\left(y_{1}, \xi_{2}\right),
$$

on the first variable y_{1}, respectively, so we can use Plemelj-Sokhotskii formulas ${ }^{31-33}$ (see also Eskin ${ }^{3}$), and we write them as follows:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \chi_{+}(x) e^{i x \xi} u(x) d x=\frac{1}{2} \tilde{u}(\xi)+v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}(\eta) d \eta}{\xi-\eta}, \\
& \int_{-\infty}^{+\infty} \chi_{-}(x) e^{i x \xi} u(x) d x=\frac{1}{2} \tilde{u}(\xi)-v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}(\eta) d \eta}{\xi-\eta},
\end{aligned}
$$

where $v . p$. denotes principal value of the integral in Cauchy sense. ${ }^{31}$
Thus, we obtain

$$
\begin{gathered}
\quad\left(F T_{a} u\right)(\xi)=\frac{\tilde{u}\left(\xi_{1}+a \xi_{2}, \xi_{2}\right)+\tilde{u}\left(\xi_{1}-a \xi_{2}, \xi_{2}\right)}{2} \\
+v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}\left(\eta, \xi_{2}\right) d \eta}{\xi_{1}+a \xi_{2}-\eta}-v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{u}\left(\eta, \xi_{2}\right) d \eta}{\xi_{1}-a \xi_{2}-\eta} .
\end{gathered}
$$

Let us denote

$$
P_{1}=\frac{1}{2}\left(I+S_{1}\right), \quad Q_{1}=\frac{1}{2}\left(I-S_{1}\right),
$$

where

$$
\left(S_{1} \tilde{u}\right)\left(\xi_{1}, \xi_{2}\right)=\frac{i}{\pi} \nu \cdot p \cdot \int_{-\infty}^{+\infty} \frac{\tilde{u}\left(\eta, \xi_{2}\right) d \eta}{\xi_{1}-\eta},
$$

then we can write

$$
\left(F T_{a} u\right)\left(\xi_{1}, \xi_{2}\right)=\left(P_{1} \tilde{u}\right)\left(\xi_{1}+a \xi_{2}, \xi_{2}\right)+\left(Q_{1} \tilde{u}\right)\left(\xi_{1}-a \xi_{2}, \xi_{2}\right) .
$$

Corollary 1. If

$$
u\left(x_{1}, x_{2}\right)=\sum_{k=0}^{n-1} c_{k}\left(x_{1}\right) \delta^{(k)}\left(x_{2}\right),
$$

then

$$
\left(F T_{a} u\right)\left(\xi_{1}, \xi_{2}\right)=\sum_{k=0}^{n-1} \xi_{2}^{k}\left(\left(P_{1} \tilde{c}_{k}\right)\left(\xi_{1}+a \xi_{2}\right)+\left(Q_{1} \tilde{c}_{k}\right)\left(\xi_{1}-a \xi_{2}\right)\right)
$$

3 | A GENERAL SOLUTION

If the symbol $A(\xi)$ admits the wave factorization ${ }^{16}$ under the condition $1 / 2<\propto-s<3 / 2$, where \propto is the index of wave factorization, then one can show ${ }^{34}$ that a general solution of the homogeneous Equation (3) in Sobolev-Slobodetskii space $H^{s}\left(C_{+}^{a}\right)$ in Fourier image has the following form:

$$
\begin{array}{r}
\tilde{u}(\xi)=\frac{\tilde{c}_{0}\left(\xi_{1}+a \xi_{2}\right)+\tilde{c}_{0}\left(\xi_{1}-a \xi_{2}\right)}{2 A_{\neq}\left(\xi_{1}, \xi_{2}\right)}+ \\
A_{\neq}^{-1}\left(\xi_{1}, \xi_{2}\right)\left(v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{c}_{0}(\eta) d \eta}{\xi_{1}+a \xi_{2}-\eta}-v \cdot p \cdot \frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{\tilde{c}_{0}(\eta) d \eta}{\xi_{1}-a \xi_{2}-\eta}\right),
\end{array}
$$

where c_{0} is an arbitrary function from $H^{s-æ+1 / 2}(\mathbb{R})$.
Here, we will consider Equation (3) for the case $æ-s=n+\delta, n \in \mathbb{N},|\delta|<1 / 2$ for the cone $\mathbb{R}^{2} \backslash C_{+}^{a}$.
Theorem 1. Let the symbol $A(\xi)$ satisfies the condition $(*)$ and admits the wave factorization with respect to the cone C_{+}^{a} with the index $\propto, \propto-s=n+\delta, n \in \mathbb{N},|\delta|<1 / 2$. A general solution of Equation (3) in Fourier image is given by the formula

$$
\begin{equation*}
\tilde{u}(\xi)=A_{\neq}^{-1}(\xi) Q_{n}(\xi)\left(I-G_{2}\right) Q_{n}^{-1}(\xi) A_{=}^{-1}(\xi) \tilde{\ell} v(\xi)+A_{\neq}^{-1}(\xi) F T_{-a} F^{-1}\left(\sum_{k=0}^{n-1} \tilde{c}_{k}\left(\xi_{1}\right) \xi_{2}^{k}\right) \tag{4}
\end{equation*}
$$

where $_{k}\left(x^{\prime}\right) \in H^{s_{k}}\left(\mathbb{R}^{m-1}\right)$ are arbitrary functions, $s_{k}=s-\propto+k+1 / 2, k=0,1,2, \ldots, n-1, \ell v$ is an arbitrary continuation off on $H^{s-\alpha}\left(\mathbb{R}^{m}\right), Q_{n}(\xi)$ is an arbitrary polynomial satisfying the condition ($*$) for $\alpha=n$.

Proof. After wave factorization for the symbol with preliminary Fourier transform, we write

$$
A_{\neq}(\xi) \tilde{u}(\xi)+A_{=}^{-1}(\xi) \tilde{u}_{-}(\xi)=A_{=}^{-1}(\xi) \tilde{\ell} v(\xi)
$$

where $u_{-}(x)=\ell v(x)-u(x), \ell v$ is an arbitrary continuation of v on the whole \mathbb{R}^{2}.
One can see that $A_{=}^{-1}(\xi) \tilde{\ell} v(\xi)$ belongs to the space $\tilde{H}^{s-x}\left(\mathbb{R}^{2}\right)$, and if we choose the polynomial $Q_{n}(\xi)$, satisfying the condition

$$
\left|Q_{n}(\xi)\right| \sim(1+|\xi|)^{n}
$$

then $Q_{n}^{-1}(\xi) A_{=}^{-1}(\xi) \tilde{\ell} v(\xi)$ will belong to the space $\tilde{H}^{-\delta}\left(\mathbb{R}^{2}\right)$.
Further, according to the theory of multi-dimensional Riemann problem, ${ }^{16}$ we can decompose the last function on two summands (jump problem):

$$
Q_{n}^{-1} A_{=}^{-1} \tilde{\ell} v=f_{+}+f_{-},
$$

where $f_{+} \in \tilde{H}\left(C_{+}^{a}\right), f_{-} \in \tilde{H}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$, and

$$
f_{+}=\left(I-G_{2}\right)\left(Q_{n}^{-1} A_{=}^{-1} \tilde{\ell} v\right), \quad f_{-}=G_{2}\left(Q_{n}^{-1} A_{=}^{-1} \tilde{\ell} v\right) .
$$

Therefore, we obtain

$$
Q_{n}^{-1} A_{\neq} \tilde{u}+Q_{n}^{-1} A_{=}^{-1} \tilde{u}_{-}=f_{+}+f_{-}
$$

or

$$
Q_{n}^{-1} A_{\neq} \tilde{u}-f_{+}=f_{-}-Q_{n}^{-1} A_{=}^{-1} \tilde{u}_{-}
$$

Rewriting we have

$$
A_{\neq} \tilde{u}-Q_{n} f_{+}=Q_{n} f_{-}-A_{=}^{-1} \tilde{u}_{-} .
$$

The left-hand side of the equality belongs to the space $\tilde{H}^{-n-\delta}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$, and the right-hand side belongs to $\tilde{H}^{-n-\delta}\left(C_{+}^{a}\right)$. Hence,

$$
\begin{equation*}
F^{-1}\left(A_{\neq} \tilde{u}-Q f_{+}\right)=F^{-1}\left(Q f_{-}-A_{=}^{-1} \tilde{u}_{-}\right) \tag{5}
\end{equation*}
$$

where the left-hand side belongs to $H^{-n-\delta}\left(\mathbb{R}^{2} \backslash C_{+}^{a}\right)$, and right-hand side belongs to $H^{-1-\delta}\left(C_{+}^{a}\right)$; therefore, we conclude immediately that this is a distribution supported on ∂C_{+}^{a}.

Taking into account a general form for a distribution from $S^{\prime}\left(\mathbb{R}^{2}\right)$ supported on the straight line $x_{2}=0^{3,30}$

$$
\begin{equation*}
c\left(x_{1}, x_{2}\right)=\sum_{k=0}^{m} c_{k}\left(x_{1}\right) \delta^{(k)}\left(x_{2}\right) \tag{6}
\end{equation*}
$$

we need to apply the transform T_{-a} to the formula (6)to obtain the distribution supported on ∂C_{+}^{a}.
The formula (6) in the fourier image looks as follows:

$$
\tilde{c}\left(\xi_{1}, \xi_{2}\right)=\sum_{k=0}^{m} \tilde{c}_{k}(\xi 1) \xi_{2}^{k}
$$

Because such distribution should be belonging to $\tilde{H}^{-n-\delta}\left(\mathbb{R}^{2}\right)$, we need to estimate the integrals

$$
\begin{gathered}
\int_{\mathbb{R}^{2}}\left|\tilde{c}_{k}\left(\xi_{1}\right)\right|^{2}\left|\xi_{2}\right|^{2 k}(1+|\xi|)^{2(-n-\delta)} d \xi=\int_{\mathbb{R}^{2}}\left|\tilde{c}_{k}\left(\xi_{1}\right)\right|^{2}\left|\xi_{2}\right|^{2 k}(1+|\xi|)^{2(s-x)} d \xi \leq \\
\operatorname{const} \int_{\mathbb{R}^{2}}\left|\tilde{c}_{k}\left(\xi_{1}\right)\right|^{2}(1+|\xi|)^{2(k+s-x)} d \xi=\operatorname{const} \int_{-\infty}^{+\infty}\left|\tilde{c}_{k}\left(\xi_{1}\right)\right|^{2}\left(\int_{-\infty}^{+\infty}\left(1+\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{2(k+s-\mathfrak{x})} d \xi_{2}\right) d \xi_{1} .
\end{gathered}
$$

The latter inner integral converges only if

$$
\begin{equation*}
2(k+s-\mathfrak{x})<-1 . \tag{7}
\end{equation*}
$$

If the condition (7) is valid, then by integrating on ξ_{2}, we obtain

$$
\int_{\mathbb{R}^{2}}\left|\tilde{c}_{k}\left(\xi_{1}\right)\right|^{2}\left|\xi_{2}\right|^{2 k}(1+|\xi|)^{2(-n-\delta)} d \xi \leq \operatorname{const} \int_{-\infty}^{+\infty}\left|\tilde{c}_{k}\left(\xi_{1}\right)\right|^{2}\left(1+\left|\xi_{1}\right|\right)^{2(k+s-\mathfrak{X}+1 / 2)} d \xi_{1}
$$

so that $c_{k} \in H^{k+s-x+1 / 2}(\mathbb{R})$. Because $s-\propto=-n-\delta$ we see that the condition (7) can be fulfil only for $k=0,1, \ldots, n-1$.
Thus, we have exactly n summands in the formula (6), that is, $m=n-1$.
Now, in equality (5), we will write as follows:

$$
F^{-1}\left(A_{\neq} \tilde{u}-Q f_{+}\right)=T_{-a} c .
$$

Further, applying the Fourier transform F to both left and hand side of the latter formula, we obtain the formula (4).

Remark 2. According to Corollary 1, it is obvious that

$$
\left(F T_{-a} c\right)\left(\xi_{1}, \xi_{2}\right)=\sum_{k=0}^{n-1} \xi_{2}^{k}\left(\left(Q_{1} \tilde{c}_{k}\right)\left(\xi_{1}+a \xi_{2}\right)+\left(P_{1} \tilde{c}_{k}\right)\left(\xi_{1}-a \xi_{2}\right)\right) .
$$

Corollary 2. If $a \rightarrow \infty$ then a general solution of the equation of Equation (1) depends on unique function $c_{0}\left(x_{1}\right)$.

Proof. According to Corollary 1, we have

$$
\left(F T_{a} u\right)\left(\xi_{1}, \xi_{2}\right)=\sum_{k=0}^{n-1} \xi_{2}^{k}\left(\left(P_{1} \tilde{c}_{k}\right)\left(\xi_{1}+a \xi_{2}\right)+\left(Q_{1} \tilde{c}_{k}\right)\left(\xi_{1}-a \xi_{2}\right)\right)
$$

Let us make the change of variables

$$
\left\{\begin{array}{l}
t_{1}=\xi_{1}+a \xi_{2}, \\
t_{2}=\xi_{1}-a \xi_{2},
\end{array}\right.
$$

Then, we obtain

$$
\begin{aligned}
\left(F T_{a} u\right)\left(\frac{t_{1}+t_{2}}{2}, \frac{t_{1}-t_{2}}{2 a}\right)= & \left.P_{1} \tilde{c}_{0}\right)\left(t_{1}\right)+\left(Q_{1} \tilde{c}_{0}\right)\left(t_{2}\right)+ \\
& +\sum_{k=1}^{n-1}\left(\frac{t_{1}-t_{2}}{2 a}\right)^{k}\left(\left(P_{1} \tilde{c}_{k}\right)\left(t_{1}\right)+\left(Q_{1} \tilde{c}_{k}\right)\left(t_{2}\right)\right)
\end{aligned}
$$

so we see that under $a \rightarrow \infty$ the limit exists for arbitrary fixed collection $\left\{\tilde{c}_{k}\right\}_{k=1}^{n-1}$.
Therefore, we conclude that for studying the limit boundary value problem under $a \rightarrow \infty$ we need to determine only one arbitrary function c_{0}.

4 | BOUNDARY VALUE PROBLEMS

Let us denote $\tilde{u}(\xi)=A_{\neq}^{-1}(\xi) Q_{n}(\xi)\left(I-G_{2}\right) Q_{n}^{-1}(\xi) A_{=}^{-1}(\xi) \tilde{\ell} v(\xi) \equiv \tilde{f}$. Then according to Theorem 1 and Remark 2, we have the following formula for a general solution of Equation (3):

$$
\begin{equation*}
\tilde{u}(\xi)=\tilde{f}(\xi)+A_{\neq}^{-1}(\xi) \sum_{k=0}^{n-1} \xi_{2}^{k}\left(\left(Q_{1} \tilde{c}_{k}\right)\left(\xi_{1}+a \xi_{2}\right)+\left(P_{1} \tilde{c}_{k}\right)\left(\xi_{1}-a \xi_{2}\right)\right) \tag{8}
\end{equation*}
$$

Taking into account that the condition (2) in Fourier image takes the form,

$$
\tilde{u}\left(\xi_{2}, 0\right)=\tilde{g}\left(\xi_{1}\right)
$$

and substituting it into the formula (8), we obtain

$$
\tilde{u}\left(\xi_{1}, 0\right)=\tilde{g}\left(\xi_{1}\right)=\tilde{f}\left(\xi_{1}, 0\right)+A_{\neq}^{-1}\left(\xi_{1}, 0\right) \tilde{c}_{0}\left(\xi_{1}\right)
$$

Therefore, we can find \tilde{c}_{0}

$$
\tilde{c}_{0}\left(\xi_{1}\right)=\left(\tilde{g}\left(\xi_{1}\right)-\tilde{f}\left(\xi_{1}, 0\right)\right) A_{\neq}\left(\xi_{1}, 0\right) .
$$

4.1 | The case $v \equiv 0$

For this case, the formula (8) reduces to the following:

$$
\begin{equation*}
\tilde{u}(\xi)=A_{\neq}^{-1}(\xi) \sum_{k=0}^{n-1} \xi_{2}^{k}\left(\left(Q_{1} \tilde{c}_{k}\right)\left(\xi_{1}+a \xi_{2}\right)+\left(P_{1} \tilde{c}_{k}\right)\left(\xi_{1}-a \xi_{2}\right)\right) \tag{9}
\end{equation*}
$$

and formula for \tilde{c}_{0} looks as follows:

$$
\tilde{c}_{0}\left(\xi_{1}\right)=\tilde{g}\left(\xi_{1}\right) A_{\neq}\left(\xi_{1}, 0\right)
$$

We make change of variables in the formula (9) like the proof of Corollary 2 and obtain

$$
\tilde{u}\left(\frac{t_{1}+t_{2}}{2}, \frac{t_{1}-t_{2}}{2 a}\right)=A_{\neq}^{-1}\left(\frac{t_{1}+t_{2}}{2}, \frac{t_{1}-t_{2}}{2 a}\right) \sum_{k=0}^{n-1}\left(\frac{t_{1}-t_{2}}{2 a}\right)^{k}\left(\left(Q_{1} \tilde{c}_{k}\right)\left(t_{1}\right)+\left(P_{1} \tilde{c}_{k}\right)\left(t_{2}\right)\right) .
$$

Then we see that under $a \rightarrow \infty$, the following equality,

$$
\begin{equation*}
u\left(\frac{t_{1}+t_{2}}{2}, 0\right)=A_{\neq}^{-1}\left(\frac{t_{1}+t_{2}}{2}, 0\right)\left(\left(Q_{1} \tilde{c}_{0}\right)\left(t_{1}\right)+\left(P_{1} \tilde{c}_{0}\right)\left(t_{2}\right)\right) \tag{10}
\end{equation*}
$$

appears

5 | SOLVABILITY CONDITION

Now, we are able to make a certain conclusion on solvability of starting boundary value problem (1),(2).
Let us denote

$$
\tilde{b}(t)=A_{\neq}(t, 0)
$$

Taking into account our additional condition (2), we can write

$$
\begin{equation*}
(\tilde{b} \tilde{g})\left(\frac{t_{1}+t_{2}}{2}\right)=\left(Q_{1}(\tilde{b} \tilde{g})\right)\left(t_{1}\right)+\left(P_{1}(\tilde{b} \tilde{g})\right)\left(t_{2}\right) \tag{11}
\end{equation*}
$$

Theorem 2. Let elliptic symbol $A(\xi)$ admits wavefactorization with respect to C_{+}^{a} with index \propto such that $\propto-s=n+\delta, n \in$ $\mathbb{N},|\delta|<1 / 2$ for all enough large a, and $v \equiv 0, g \in H^{s+1 / 2}(\mathbb{R})$. Then the limit problem (1),(2) can be solvable in the space $H^{S}(D)$ if and only if the function g satisfies Equation (11) for all t_{1}, t_{2}.

Proof. We act like previous steps. First, we find a general solution (8) using wave factorization method. Second, we verify that limit of a general solution under $a \rightarrow \infty$ includes only one arbitrary function, which can be found using the condition (2). Third, changing variables and passing to limit we obtain Equation (11).

6 | CONCLUSION

As it was shown for limit boundary value problem, the value of index of wave factorization does not play such important role in comparison with standard case of a cone. Although there are a lot of solutions to preliminary boundary value problem, we have only one limit solution, and the solvability condition for considered limit boundary value problem is the same like the case $n=1$. Maybe if we will consider other types of additional conditions to determine arbitrary functions in a general solution, we will not find such a phenomenon.

CONFLICTS OFINTEREST

This work does not have any conflicts of interest.

ORCID

Vladimir B. Vasilyev (D) https://orcid.org/0000-0001-9351-8084

REFERENCES

1. Hörmander L. Analysis of Partial Differential Operators, Vol. I-IV. Berlin: Springer-Verlag; 1983.
2. Rempel S, Schulze B-W. Index Theory of Elliptic Boundary Problems. Berlin: Akademie-Verlag; 1982.
3. Eskin GI. Boundary Value Problems for Elliptic Pseudodifferential Equations. Providence: AMS; 1981.
4. Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. Eds. Karlovich Y.I., Rodino L.G., Silbermann B. Basel: Birkhäuser/Springer, 2013.
5. Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis (Fields Institute Communications). Eds. Rodino L., Schulze B.-W., Wong M.W. Providence, AMS, 2007.
6. Pseudo-Differential Operators: Quantization and Signals. Eds. Rodino L., Wong M.W. Lect. Notes Math. 2008. V. 1949.
7. Nazarov SA, Plamenevsky BA. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Berlin-New York: Walter de Gruyter; 1994.
8. Schulze B-W, Sternin B, Shatalov V. Differential Equations on Singular Manifolds: Semiclassical Theory and Operator Algebras. Berlin: Wiley-VCH; 1998.
9. Nazaikinskii VE, Savin AY, Schulze B-W, Sternin BY. Elliptic Theory on Singular Manifolds. Boca Raton: Chapman \& Hall/CRC; 2006.
10. Nazaikinskii V, Schulze B-W, Sternin B. The Localization Problem in Index Theory of Elliptic Operators. Pseudo-Differential Operators Theory and Applications, Vol. 10. Basel: Birkhäuser/Springer; 2014.
11. Kottke C, Melrose RB. Generalized blow-up of corners and fiber products. Trans Am Math Soc. 2015;367(1):651-705.
12. Egorov JV, Schulze B-W. Pseudo-Differential Operators, Singularities, Applications. Basel: Birkhäuser-Verlag; 1997.
13. Plamenevskii B. Algebras of Pseudodofferential Operators. Netherlands: Springer; 1989.
14. Schulze B-W. Boundary Value Problems and Singular Pseudo-Differential Operators. Chichester: J. Wiley; 1998.
15. Vasilyev VB. Multipliers of Fourier Integrals, Pseudodifferential Equations, the Wave Factorization, Boundary Value Problems. 2nd ed. Moscow: Editorial URSS; 2010. (Russian).
16. Vasil'ev VB. Wave Factorization of Elliptic Symbols: Theory and Applications. Dordrecht-Boston-London: Kluwer Academic Publishers; 2000.
17. Vasilyev VB. Elliptic equations and boundary value problems in non-smooth domains. In: Rodino L. et al., eds. Pseudo differential operators: Analysis, applications and computations. Basel: Birkhäuser:105-121.
18. Vasilyev VB. General boundary value problems for pseudo-differential equations and related difference equations. Adv Difference Equ. 2013;289:1-7.
19. Vasilyev VB. Elliptic equations, manifolds with non-smooth boundaries, and boundary value problems. In: Dang P, ed. New trends in analysis and interdisciplinary applications. Birkhäuser: Cham; 2017:337-344.
20. Vasilyev VB. Pseudo differential equations on manifolds with non-smooth boundaries. Differential and difference equations and applications, Vol. 47: Springer Proc. Math. \& Stat.; 2013:625-637.
21. Vasilyev VB. Potentials for elliptic boundary value problems in cones. Siberian Electron Math Repts 2016;13:1129-1149. (Russian).
22. Vasilyev VB. On certain elliptic problems for pseudo differential equations in a polyhedral cone. Adv Dyn Syst Appl. 2014;9(2):227-237.
23. Vasilyev VB. New constructions in the theory of elliptic boundary value problems. Integral methods in science and engineering. Proc. IMSE conference, karlsruhe, germany, 2014. Basel: Birkhäuser; 2015:629-641.
24. Vasilyev VB. On the Dirichlet and Neumann problems in multi-dimensional cone. Math Bohem. 2014;139(2):333-340.
25. Vasilyev VB. Asymptotical analysis of singularities for pseudo differential equations in canonical non-smooth domains. Integral methods in science and engineering. Computational and analytic aspects. Boston: Birkhäuser; 2011:379-390.
26. Vasilyev VB. On the asymptotic expansion of certain plane singular integral operators. Bound Value Probl. 2017;116:1-13.
27. Avalishvili G, Avalishvili M, Gordeziani D. On a nonlocal problem with integral boundary conditions for a multidimensional elliptic equation. Appl Math Lett. 2011;24:566-571.
28. Egorov IE. Vragov boundary value problem with integral boundary condition for a mixed type equation. AIP Conf Proc. 2010;2172:030005.
29. Pulkina L. Nonlocal problems for hyperbolic equations from the viewpoint of strongly regular boundary conditions. Electron J Differ Equations. 2020;28:1-20.
30. Vladimirov VS. Generalized Functions in Mathematical Physics. Moscow: Mir; 1979.
31. Milkhin SG, Prößdorf S. Singular Integral Operators. Berlin: Akademie-Verlag; 1986.
32. Gakhov FD. Boundary Value Problems. NY: Dover Publications; 1981.
33. Muskhelishvili NI. Singular Integral Equations. North Holland Amsterdam; 1976.
34. Vasilyev VB. Pseudo-differential equations and conical potentials: 2-dimensional case. Opusc Math. 2019;39:109-124.

How to cite this article: Vasilyev VB, Kutaiba S. On limit behavior of a solution to boundary value problem in a plane sector. Math Meth Appl Sci. 2021;44:11904-11912. https://doi.org/10.1002/mma.6741

