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We study a certain boundary value problem in Sobolev-Slobodetskii spaces
with integral condition in a plane excluding a ray from origin. Using auxiliary
problem in outside of a convex cone and the wave factorization concept, we con-
struct a general solution and consider transfer to limit boundary value problem.
It was shown that limit boundary value problem can be solvable only if the
boundary function satisfies to a certain singular functional equation.

KEYWORDS

elliptic pseudo-differential equation, limit boundary value problem, wave factorization, general
solution

MSC CLASSIFICATION

35S15; 47G30

1 INTRODUCTION

Theory of pseudo-differential operators and equations on manifolds with a smooth boundary was very intensive which
was developed in the second half quarter of the last century,1-3 and now, there are a lot of applications of the theory.4-6 Many
papers and books are related to a theory of elliptic pseudo-differential operators and equations on nonsmooth manifolds or
on manifolds with nonsmooth boundaries.7-14 According to the local principle to obtain Fredholm property for a general
pseudo-differential operator, we need to study invertibility properties for model operators in so called canonical domains.
One of such domains is a cone.

The authors develop a special approach to studying elliptic pseudo-differential equations on manifolds with a
non-smooth boundary. Key point of the approach is studying a unique solvability for a model equation in a canonical
domains. Such canonical domains can be a whole space Rm, a half-space Rm

+ = {x ∈ Rm ∶ x = (x′, xm), xm > 0} or
a certain cone in Rm. Some results in this direction are included in the books15,16 and papers,17-19 but now, some new
results were obtained,15,20-24 and it permits developing the approach more explicitly. Moreover, some results25,26 can help
to describe more complicated situations than ordinary m-dimensional cone inRm, namely, we would like to consider here
the situation when starting cone degenerates into a cone of a lower dimension. We will start from two-dimensional case.

Outline of the paper is the following. We introduce boundary value problem with additional integral condition for a
model elliptic pseudo-differential operator in a plane sector. For solving this problem, we describe functional spaces,
operators, and a special factorization for an elliptic symbol. Further, we find a solution for the boundary value problem,
and study conditions under which the solution exists for limit value of a cone.

2 STATEMENT OF THE PROBLEM AND AUXILIARIES

Let D be a plane domain of the following type D = R2 ⧵ {x ∈ R2 ∶ x1 = 0, x2 > 0}, and A be an elliptic pseudo-differential
operator with the symbol A(𝜉)3 satisfying the condition:
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a1(1 + |𝜉|)𝛼 ≤ |A(𝜉)| ≤ a2(1 + |𝜉|)𝛼, (*)

with positive constants a1, a2.
We will study the following boundary value problem

(Au)(x) = v(x), x ∈ D, (1)

+∞

∫
−∞

u(x1, x2)dx2 = g(x1). (2)

Let us note that the condition (2) is the so-called nonlocal or integral condition. It appears in studies not often, but
nevertheless, it is used in studying some problems.27-29

Our strategy is the following. Let Ca
+ = {x ∈ R2 ∶ x = (x1, x2), x2 > a|x1|, a > 0} be plane sector with the size 2𝛼 (so that

a = cot 𝛼), and we will study Equation (1) with the condition (2) in the domain R2 ⧵ Ca
+. So our starting equation will be

the following:
(Au)(x) = v(x), x ∈ R

2 ⧵ Ca
+. (3)

Further, if we can find the solution of the problem (3), (2) then we will try to obtain limit expression for the solution
under a → ∞ (𝛼 → 0). We will see that under our assumptions the problem (1),(2) can be solvable only if the function g
satisfies a certain equation.

2.1 Spaces and operators
We study Equation (3) in Sobolev-Slobodetskii space Hs(R2 ⧵ Ca

+). By definition, this space consists of functions u from
Hs(Rm) which supports belong to R2 ⧵ Ca

+. A norm in the space Hs(R2 ⧵ Ca
+) is induced by the Hs-norm

||u||s = ⎛⎜⎜⎝∫R3

ũ(𝜉)(1 + |𝜉|)2sd𝜉
⎞⎟⎟⎠

1∕2

,

where the sign ∼ over u denotes its Fourier transform

ũ(𝜉) = ∫
R3

u(x(eix·𝜉dx.

The right hand side v in Equation (3) is taken from the space Hs−𝛼
0 (R2 ⧵Ca

+) of functions defined in R2 ⧵Ca
+ which admit

a continuation 𝓁v into whole Hs−𝛼(Rm). The norm in such a space is defined as

||v||+s = inf ||𝓁v||s,
where inf is taken over all continuations 𝓁v.

Let us remind3 that a pseudo-differential operator A is defined by its symbol A(𝜉) in the following way:

(Au)(x) = 1
(2𝜋)m ∫

R2

e−ix·𝜉 ũ(𝜉)d𝜉.

Generally speaking usually, they consider more general symbols A(x, 𝜉) depending on a spatial variable x, but here, we
will consider the simplest variant.

The operator A with the symbol A(𝜉) satisfying the condition (∗) is a linear bounded operator Hs(R2 ⧵ Ca
+) →

Hs−𝛼(R2 ⧵ Ca
+).3
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2.2 Wave factorization
Our study is based on a concept of the wave factorization.15,16 Before introducing the concept, we will remind some
definitions from multidimensional analysis.30

If C is a convex cone in R2, then the conjugate cone
∗
C is defined as follows:

∗
C = {x ∈ R

2 ∶ x · 𝑦 = x1𝑦1 + x2𝑦2 > 0, ∀𝑦 ∈ C}.

Obviously,
∗

Ca
+ = {x ∈ R2 ∶ ax2 > |x1|}. Let us denote

∗
Ca
− = −

∗
Ca
+.

A radial tube domain over the cone C is called a subset of two-dimensional complex space C2 of the following type:

T(C) = {z ∈ C
2 ∶ z = x + i𝑦, x ∈ R

2, 𝑦 ∈ C}.

Definition 1. The wave factorization of an elliptic symbol A(𝜉) with respect to the cone Ca
+ is called its representation

in the form
A(𝜉) = A≠(𝜉)A=(𝜉),

where factors A≠(𝜉),A=(𝜉) must satisfy the following conditions:

1) A≠(𝜉),A=(𝜉) are defined for all 𝜉 ∈ R2 may be except {𝜉 ∈ R2 ∶ |𝜉1|2 = a2𝜉2
2};

2) A≠(𝜉),A=(𝜉) admit an analytic continuation into radial tube domains T(
∗

Ca
−),T(

∗
Ca
+) respectively with estimates

|A±1
≠ (𝜉 + i𝜏)| ≤ c1(1 + |𝜉| + |𝜏|)±æ,

|A±1
= (𝜉 − i𝜏)| ≤ c2(1 + |𝜉| + |𝜏|)±(𝛼−æ), ∀𝜏 ∈

∗
Ca
−.

The number æ ∈ R is called an index of the wave factorization.

Remark 1. Let us note that we replace in the definition
∗

Ca
+,

∗
Ca
− in a comparison with standard definition of the wave

factorization.16

2.3 A special integral operator G2

Let us define this operator in the following way16 first for functions u from Schwartz space S(R2)

(G2ũ)(𝜉!, 𝜉2) = lim
𝜏→0+∫

R2

2aũ(𝜂1, 𝜂2)d𝜂
(𝜉1 − 𝜂1)2 − a2(𝜉2 − 𝜂2 + i𝜏)2 .

This operator plays an important role for constructing a solution of Equation (3). It is linear bounded operator Hs(R2 →
Hs(R2) for |s| < 1∕2.16

If we denote by H̃s(Ca
+), H̃s(R2 ⧵ Ca

+) the Fourier images of spaces Hs(Ca
+),Hs(R2 ⧵ Ca

+), respectively, then an arbitrary
function 𝑓 ∈ H̃s(R2 can be uniquely represented in the form

𝑓 = 𝑓+ + 𝑓−,

where 𝑓+ ∈ H̃s(Ca
+), 𝑓− ∈ H̃s(R2 ⧵ Ca

+) and
𝑓= = G1𝑓 + (I − G2)𝑓

for |s| < 1∕2.

2.4 Transmutation operator
Our further considerations are based on a special transmutation operator which is related to the Fourier transform.
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We introduce Ta ∶ R2 → R2 of the following type:{
t1 = x1,

t2 = x2 − a|x1|.
This operator transforms 𝜕Ca

+ into hyperplane x2 = 0.
We are interested in the operator FTaF−1; therefore, first, we need to study FT1 and to find its explicit form. We have

(FTau)(𝜉) =

+∞

∫
−∞

eia|𝑦1|𝜉2 ei𝑦1𝜉1 û(𝑦1, 𝜉2)d𝑦1

=

+∞

∫
−∞

𝜒+(𝑦1)eia𝑦1𝜉2 ei𝑦1𝜉1 û(𝑦1, 𝜉2)d𝑦1 +

+∞

∫
−∞

𝜒−(𝑦1)e−ia𝑦1𝜉2 ei𝑦1𝜉1 û(𝑦1, 𝜉2)d𝑦1

=

+∞

∫
−∞

𝜒+(𝑦1)ei𝑦1(a𝜉2+𝜉1)û(𝑦1, 𝜉2)d𝑦1 +

+∞

∫
−∞

𝜒−(𝑦1)ei𝑦1(−a𝜉2+𝜉1)û(𝑦1, 𝜉2)d𝑦1,

where 𝜒± is an indicator of the half-axis R±.
The last two summands are the Fourier transforms of functions

𝜒+(𝑦1)ei𝑦1(a𝜉2+𝜉1)û(𝑦1, 𝜉2), 𝜒−(𝑦1)ei𝑦1(−a𝜉2+𝜉1)û(𝑦1, 𝜉2),

on the first variable y1, respectively, so we can use Plemelj-Sokhotskii formulas31-33 (see also Eskin3), and we write them
as follows:

+∞

∫
−∞

𝜒+(x)eix𝜉u(x)dx = 1
2

ũ(𝜉) + v.p. i
2𝜋

+∞

∫
−∞

ũ(𝜂)d𝜂
𝜉 − 𝜂

,

+∞

∫
−∞

𝜒−(x)eix𝜉u(x)dx = 1
2

ũ(𝜉) − v.p. i
2𝜋

+∞

∫
−∞

ũ(𝜂)d𝜂
𝜉 − 𝜂

,

where v.p. denotes principal value of the integral in Cauchy sense.31

Thus, we obtain
(FTau)(𝜉) = ũ(𝜉1 + a𝜉2, 𝜉2) + ũ(𝜉1 − a𝜉2, 𝜉2)

2

+v.p. i
2𝜋

+∞

∫
−∞

ũ(𝜂, 𝜉2)d𝜂
𝜉1 + a𝜉2 − 𝜂

− v.p. i
2𝜋

+∞

∫
−∞

ũ(𝜂, 𝜉2)d𝜂
𝜉1 − a𝜉2 − 𝜂

.

Let us denote
P1 = 1

2
(I + S1), Q1 = 1

2
(I − S1),

where

(S1ũ)(𝜉1, 𝜉2) =
i
𝜋

v.p.

+∞

∫
−∞

ũ(𝜂, 𝜉2)d𝜂
𝜉1 − 𝜂

,

then we can write
(FTau)(𝜉1, 𝜉2) = (P1ũ)(𝜉1 + a𝜉2, 𝜉2) + (Q1ũ)(𝜉1 − a𝜉2, 𝜉2).

Corollary 1. If

u(x1, x2) =
n−1∑
k=0

ck(x1)𝛿(k)(x2),

then

(FTau)(𝜉1, 𝜉2) =
n−1∑
k=0

𝜉k
2 ((P1c̃k)(𝜉1 + a𝜉2) + (Q1c̃k)(𝜉1 − a𝜉2)) .
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3 A GENERAL SOLUTION

If the symbol A(𝜉) admits the wave factorization16 under the condition 1∕2 < æ − s < 3∕2, where æ is the index of wave
factorization, then one can show34 that a general solution of the homogeneous Equation (3) in Sobolev-Slobodetskii space
Hs(Ca

+) in Fourier image has the following form:

ũ(𝜉) = c̃0(𝜉1 + a𝜉2) + c̃0(𝜉1 − a𝜉2)
2A≠(𝜉1, 𝜉2)

+

A−1≠ (𝜉1, 𝜉2)
⎛⎜⎜⎝v.p. i

2𝜋

+∞

∫
−∞

c̃0(𝜂)d𝜂
𝜉1 + a𝜉2 − 𝜂

− v.p. i
2𝜋

+∞

∫
−∞

c̃0(𝜂)d𝜂
𝜉1 − a𝜉2 − 𝜂

⎞⎟⎟⎠ ,
where c0 is an arbitrary function from Hs−æ+1∕2(R).

Here, we will consider Equation (3) for the case æ − s = n + 𝛿,n ∈ N, |𝛿| < 1∕2 for the cone R2 ⧵ Ca
+.

Theorem 1. Let the symbol A(𝜉) satisfies the condition (∗) and admits the wave factorization with respect to the cone
Ca
+ with the index æ,æ − s = n + 𝛿,n ∈ N, |𝛿| < 1∕2. A general solution of Equation (3) in Fourier image is given by the

formula

ũ(𝜉) = A−1≠ (𝜉)Qn(𝜉)(I − G2)Q−1
n (𝜉)A−1

= (𝜉)𝓁v(𝜉) + A−1≠ (𝜉)FT−aF−1

(n−1∑
k=0

c̃k(𝜉1)𝜉k
2

)
, (4)

where ck(x′) ∈ Hsk (Rm−1)are arbitrary functions, sk = s−æ+k+1∕2, k = 0, 1, 2, … ,n−1,𝓁v is an arbitrary continuation
of f on Hs−𝛼(Rm), Qn(𝜉) is an arbitrary polynomial satisfying the condition (∗) for 𝛼 = n.

Proof. After wave factorization for the symbol with preliminary Fourier transform, we write

A≠(𝜉)ũ(𝜉) + A−1
= (𝜉)ũ−(𝜉) = A−1

= (𝜉)𝓁v(𝜉),

where u−(x) = 𝓁v(x) − u(x),𝓁v is an arbitrary continuation of v on the whole R2.
One can see that A−1

= (𝜉)𝓁v(𝜉) belongs to the space H̃s−æ(R2), and if we choose the polynomial Qn(𝜉), satisfying the
condition |Qn(𝜉)| ∼ (1 + |𝜉|)n,

then Q−1
n (𝜉)A−1

= (𝜉)𝓁v(𝜉) will belong to the space H̃−𝛿(R2).
Further, according to the theory of multi-dimensional Riemann problem,16 we can decompose the last function on

two summands (jump problem):
Q−1

n A−1
= 𝓁v = 𝑓+ + 𝑓−,

where 𝑓+ ∈ H̃(Ca
+), 𝑓− ∈ H̃(R2 ⧵ Ca

+), and

𝑓+ = (I − G2)(Q−1
n A−1

= 𝓁v), 𝑓− = G2(Q−1
n A−1

= 𝓁v).

Therefore, we obtain
Q−1

n A≠ũ + Q−1
n A−1

= ũ− = 𝑓+ + 𝑓−,

or
Q−1

n A≠ũ − 𝑓+ = 𝑓− − Q−1
n A−1

= ũ−.

Rewriting we have
A≠ũ − Qn𝑓+ = Qn𝑓− − A−1

= ũ−.

The left-hand side of the equality belongs to the space H̃−n−𝛿(R2⧵Ca
+), and the right-hand side belongs to H̃−n−𝛿(Ca

+).
Hence,

F−1(A≠ũ − Q𝑓+) = F−1(Q𝑓− − A−1
= ũ−), (5)

where the left-hand side belongs to H−n−𝛿(R2 ⧵Ca
+), and right-hand side belongs to H−1−𝛿(Ca

+); therefore, we conclude
immediately that this is a distribution supported on 𝜕Ca

+.

VASILYEV AND KUTAIBA11908



Taking into account a general form for a distribution from S′(R2) supported on the straight line x2 = 03,30

c(x1, x2) =
m∑

k=0
ck(x1)𝛿(k)(x2), (6)

we need to apply the transform T−a to the formula (6)to obtain the distribution supported on 𝜕Ca
+.

The formula (6) in the fourier image looks as follows:

c̃(𝜉1, 𝜉2) =
m∑

k=0
c̃k(𝜉1)𝜉k

2 .

Because such distribution should be belonging to H̃−n−𝛿(R2), we need to estimate the integrals

∫
R2

|c̃k(𝜉1)|2|𝜉2|2k(1 + |𝜉|)2(−n−𝛿)d𝜉 = ∫
R2

|c̃k(𝜉1)|2|𝜉2|2k(1 + |𝜉|)2(s−æ)d𝜉 ≤

const ∫
R2

|c̃k(𝜉1)|2(1 + |𝜉|)2(k+s−æ)d𝜉 = const

+∞

∫
−∞

|c̃k(𝜉1)|2 ⎛⎜⎜⎝
+∞

∫
−∞

(1 + |𝜉1| + |𝜉2|)2(k+s−æ)d𝜉2

⎞⎟⎟⎠ d𝜉1.

The latter inner integral converges only if
2(k + s − æ) < −1. (7)

If the condition (7) is valid, then by integrating on 𝜉2, we obtain

∫
R2

|c̃k(𝜉1)|2|𝜉2|2k(1 + |𝜉|)2(−n−𝛿)d𝜉 ≤ const

+∞

∫
−∞

|c̃k(𝜉1)|2(1 + |𝜉1|)2(k+s−æ+1∕2)d𝜉1,

so that ck ∈ Hk+s−æ+1∕2(R). Because s−æ = −n−𝛿 we see that the condition (7) can be fulfil only for k = 0, 1, … ,n−1.
Thus, we have exactly n summands in the formula (6), that is, m = n − 1.
Now, in equality (5), we will write as follows:

F−1(A≠ũ − Q𝑓+) = T−ac.

Further, applying the Fourier transform F to both left and hand side of the latter formula, we obtain the formula (4).

Remark 2. According to Corollary 1, it is obvious that

(FT−ac)(𝜉1, 𝜉2) =
n−1∑
k=0

𝜉k
2 ((Q1c̃k)(𝜉1 + a𝜉2) + (P1c̃k)(𝜉1 − a𝜉2)) .

Corollary 2. If a → ∞ then a general solution of the equation of Equation (1) depends on unique function c0(x1).

Proof. According to Corollary 1, we have

(FTau)(𝜉1, 𝜉2) =
n−1∑
k=0

𝜉k
2 ((P1c̃k)(𝜉1 + a𝜉2) + (Q1c̃k)(𝜉1 − a𝜉2)) .

Let us make the change of variables
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{
t1 = 𝜉1 + a𝜉2,
t2 = 𝜉1 − a𝜉2,

Then, we obtain
(FTau)

( t1 + t2

2
,

t1 − t2

2a

)
= P1c̃0)(t1) + (Q1c̃0)(t2)+

+
n−1∑
k=1

( t1 − t2

2a

)k
((P1c̃k)(t1) + (Q1c̃k)(t2)) ,

so we see that under a → ∞ the limit exists for arbitrary fixed collection {c̃k}n−1
k=1.

Therefore, we conclude that for studying the limit boundary value problem under a → ∞ we need to determine only
one arbitrary function c0.

4 BOUNDARY VALUE PROBLEMS

Let us denote ũ(𝜉) = A−1≠ (𝜉)Qn(𝜉)(I − G2)Q−1
n (𝜉)A−1

= (𝜉)𝓁v(𝜉) ≡ 𝑓 . Then according to Theorem 1 and Remark 2, we have
the following formula for a general solution of Equation (3):

ũ(𝜉) = 𝑓 (𝜉) + A−1≠ (𝜉)
n−1∑
k=0

𝜉k
2 ((Q1c̃k)(𝜉1 + a𝜉2) + (P1c̃k)(𝜉1 − a𝜉2)) . (8)

Taking into account that the condition (2) in Fourier image takes the form,

ũ(𝜉2, 0) = g̃(𝜉1),

and substituting it into the formula (8), we obtain

ũ(𝜉1, 0) = g̃(𝜉1) = 𝑓 (𝜉1, 0) + A−1≠ (𝜉1, 0)c̃0(𝜉1).

Therefore, we can find c̃0

c̃0(𝜉1) = (g̃(𝜉1) − 𝑓 (𝜉1, 0))A≠(𝜉1, 0).

4.1 The case v ≡ 0
For this case, the formula (8) reduces to the following:

ũ(𝜉) = A−1≠ (𝜉)
n−1∑
k=0

𝜉k
2 ((Q1c̃k)(𝜉1 + a𝜉2) + (P1c̃k)(𝜉1 − a𝜉2)) , (9)

and formula for c̃0 looks as follows:
c̃0(𝜉1) = g̃(𝜉1)A≠(𝜉1, 0).

We make change of variables in the formula (9) like the proof of Corollary 2 and obtain

ũ
( t1 + t2

2
,

t1 − t2

2a

)
= A−1≠

( t1 + t2

2
,

t1 − t2

2a

) n−1∑
k=0

( t1 − t2

2a

)k
((Q1c̃k)(t1) + (P1c̃k)(t2)) .

Then we see that under a → ∞, the following equality,

u
( t1 + t2

2
, 0
)
= A−1≠

( t1 + t2

2
, 0
)
((Q1c̃0)(t1) + (P1c̃0)(t2)), (10)

appears.
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5 SOLVABILITY CONDITION

Now, we are able to make a certain conclusion on solvability of starting boundary value problem (1),(2).
Let us denote

b̃(t) = A≠(t, 0).
Taking into account our additional condition (2), we can write

(b̃g̃)
( t1 + t2

2

)
= (Q1(b̃g̃))(t1) + (P1(b̃g̃))(t2). (11)

Theorem 2. Let elliptic symbol A(𝜉)admits wave factorization with respect to Ca
+ with index æ such that æ−s = n+𝛿,n ∈

N, |𝛿| < 1∕2 for all enough large a, and v ≡ 0, g ∈ Hs+1∕2(R). Then the limit problem (1),(2) can be solvable in the space
Hs(D) if and only if the function g satisfies Equation (11) for all t1, t2.

Proof. We act like previous steps. First, we find a general solution (8) using wave factorization method. Second, we
verify that limit of a general solution under a → ∞ includes only one arbitrary function, which can be found using
the condition (2). Third, changing variables and passing to limit we obtain Equation (11).

6 CONCLUSION

As it was shown for limit boundary value problem, the value of index of wave factorization does not play such important
role in comparison with standard case of a cone. Although there are a lot of solutions to preliminary boundary value
problem, we have only one limit solution, and the solvability condition for considered limit boundary value problem is the
same like the case n = 1. Maybe if we will consider other types of additional conditions to determine arbitrary functions
in a general solution, we will not find such a phenomenon.
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