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Abstract— Analytic expressions describing the spectral—angular distribution of parametric X-radiation 
(PXR) and diffracted transient radiation (DTR) of a relativistic electron traversing a single-crystal plate in the 
Bragg scattering geometry are derived on the basis of the two-wave approximation of the dynamic diffraction 
theory. The expressions are obtained in the general case of asymmetric reflection of a particle’s field relative 
to the surface of the crystal plate. It is shown that in the given geometry, a significant increase of the PXR 
angular density is possible due to the dynamic effect of PXR spectral broadening. The conditions for an 
increase in the DTR spectrum width, which causes a considerable increase of the DTR angular density, are 
derived. The possibility of the most pronounced manifestation of the Bormann dynamic effect in PXR is 
demonstrated for a thick absorptive crystal.

INTRODUCTION

In this work, we consider coherent X-radiation of a 
relativistic electron moving along a straight line as a 
result of action of two different radiation mechanisms: 
diffracted transient radiation (DTR) and parametric 
X-radiation (PXR). The PXR mechanism appears 
owing to the scattering of Coulomb field pseudo-pho- 
tons of a relativistic charged particle from a system of 
parallel atomic planes of a crystal [1—3]. Diffracted 
transient radiation is the result of diffraction of tran
sient radiation photons from a system of parallel 
atomic planes of a crystal (the same planes on which 
PXR is formed) [4—6].

In order to describe the generation of coherent X- 
radiation of the indicated types, we used here the two- 
wave approximation of the dynamic diffraction theory 
[7], which takes into account the interaction between 
incident and diffracting waves. This made it possible to 
reveal and analyze new dynamic effects in coherent X- 
radiation of relativistic electrons. The dynamic effects 
in PXR were analyzed in [8—11] for a symmetric 
reflection scheme. In our earlier publications [12, 13], 
we considered the dynamic effects in the Laue scatter
ing geometry taking into account asymmetric reflec
tion. In [12], the dynamic effect of spectral broaden
ing in PXR was predicted, and in [13] we determined 
the conditions under which the effect of anomalous 
photoabsorption (the Bormann effect) in PXR is 
clearly pronounced in the Laue scattering geometry.

Considerable influence of reflection asymmetry on 
the characteristics of parametric X-radiation along the

velocity of a relativistic electron, as well as on the con
tributions from two branches of the solution to the dis
persion equation to the PXR yield, is shown in [14] for 
the Bragg scattering geometry. In this geometry, in case 
of symmetric reflection, the surface of a crystal target 
is parallel to the diffracting crystal planes (the angle 
8 =  0).

In this work, we derive expressions for spectral- 
angular density of PXR and DPR taking into account 
their interference and radiation absorption by the 
medium in the Bragg scattering geometry for the gen
eral case of asymmetric scattering (8 ^ 0) in terms of 
the two-wave approximation of the dynamic diffrac
tion theory. It will be shown that with a decrease in 
angle 8, the PXR spectrum broadens, which leads to a 
considerable increase in the angular density of this 
radiation mechanism. The contributions from each of 
the two branches of the dispersion relation, corre
sponding to two X-ray waves excited in the crystal, to 
the PXR yield and the interference of these waves are 
considered; the conditions under which every given 
wave and their interference become significant are 
indicated.

The Bragg scattering geometry considered here is 
more interesting than the Laue geometry since it 
includes the interference extinction effect in coherent 
X-radiation. This effect becomes apparent because a 
wave double-reflected from atomic planes propagates 
in the same direction as the incident wave, but retards 
in phase by n. In this case, the total wavevector takes 
on complex values even in the absence of absorption,
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Fig. 1. Geometry of the radiation process: 9' is the emis
sion angle, 9B is the Bragg angle (the angle between elec
tron velocity V and atomic planes), 8 is the angle between 
the surface and the atomic planes of the crystal, and k and 
kg = k + g are the wavevectors of the incident and the dif
fracted photons.

and the incident wave energy is transferred into the 
reflected wave. Formally, extinction can be interpreted 
as an increase of a linear absorption factor. The fre
quency range in which extinction is observed is called 
the total reflection domain.

It will be shown here that a decrease in the angle of 
incidence of an electron to the plate at a fixed Bragg 
angle (upon a change in asymmetry) causes a growth 
of a frequency domain of total reflection and, conse
quently, an increase in the DTR spectrum width, 
which leads to a considerable increase in the DTR 
angular density. The possibility of manifestation of the 
Bormann dynamic effect in PXR and DTR is consid
ered for a thick absorptive crystal. This effect was first 
discovered by Borrmann [15] in experiments on free 
X-rays scattering in a crystal. The physics of this effect 
is the formation of an incident wave and a standing 
wave scattered by X-ray waves in a crystal; antinodes of 
the standing wave are situated in the middle of the 
space between neighboring atomic planes, where elec
tron density of the crystal and, hence, photoabsorp
tion turn out to be minimal.

It will be shown here that by changing the degree of 
reflection asymmetry, it is possible to create such con
ditions that an electron path length in the plate will be 
small; this will enable us to disregard multiple scatter
ing of the electron, while the PXR photon path in a 
crystal will become longer than the photoabsorption

length, which will lead to a more pronounced Bor
mann effect in PXR.

Our results will be useful for designing and develop
ing the sources of tunable quasi-monochromatic X- 
radiation, based on the PXR and DTR mechanisms.

SPECTRAL-ANGULAR DISTRIBUTION 
OF RADIATION

Let a fast charged particle moving with a constant 
velocity V cross a single-crystal plate in the Bragg scat
tering geometry (Fig. 1). We will consider the equa
tions for the Fourier transform of the electromagnetic 
field

E(k, co) = j"c//c/ rE(r, /)exp(/co/-/kr). (1)

Since the field of a relativistic particle can be con
sidered as transverse with a good degree of accuracy, 
the incident E0(k, co) and diffracted Eg(k, co) electro
magnetic waves can be described by two amplitudes 
with different values of transverse polarization:

E0(k, co) = t?0U(K ro)eo1) + 4 2’(k, co)eo2),

Eg(k, co) = ®)e<i1) + 4 2)(k> ®)e<i2)’

where unit vectors ef/’ and ê 2’ are perpendicular to

vector k, while unit vectors e1, '1 and e,2' are perpen-
(2) (2)dicular to vector kg = k + g. Here, vectors e0 and e, 

lie in the plane of vectors k and kg (7i-polarization),
and vectors ef/ ’ and e1,' ’ are perpendicular to the plane 
(CT-polarization); g is the reciprocal lattice vector, 
which defines the system of reflecting atomic planes of 
the crystal.

The system of equations for the Fourier transform 
of the electromagnetic field in the two-wave approxi
mation of the dynamic diffraction theory has the fol
lowing form [16]:

(c«2( l + x o ) -^ 2) 4 ,̂ + ® V gc (̂ •т,i4 ,̂

= 87wecoeFPwS(co-kV), (3)

+  ( ® 2(1 +  Xo) -  4 ) 4 * ’ =  0.

where %0 = + iy" is the mean dielectric susceptibil
ity and 7_g, •/ „ are the Fourier coefficients for the 
expansion of the dielectric susceptibility of the crystal 
in the reciprocal lattice vectors g. We will consider a 
centrally symmetrical crystal (%„ = % „).

Quantities 0 s' x) and I*s) are defined in system (3) in 
the form

c (s,T) = e(„e(,> = (_ r)Tc W c (l) = u

c (2) = |cos20B| , (4)

P(s) = ’( |x/|^i), P{1) = sincp, P {2) = coscp,
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where jjl =  k — coV/K2 is the virtual photon momentum 
component perpendicular to particle velocity V (|i = 
0)0 / K where 0 <§ 1 is the angle between k and V), ©B is 
the angle between the electron velocity and the system 
of crystallographic planes (the Bragg angle), and cp is 
the azimuth angle of radiation, measured from the 
plane formed by vectors V and g. The value of the 
reciprocal lattice vector is determined by the expres
sion g =  2coBsinOB/K  where coB is the Bragg frequency 
System (3) describes a-polarized fields for ,v = 1 and 
x = 2. For s = 2, system (3) describes 7i-polarized

TCfields; in this case, if 20R < -  , then x = 2; otherwise,
2

x = 1.
Let us solve the dispersion equation for X-ray waves 

in a crystal, following from system (3),

( ® 2 ( 1  +  X o )  -  k 2) ( ( 02(  1  +  X o )  -  k l )

- ® V g X g  c(s) = 0

by the standard methods of the dynamic theory [7].
We will seek the x-components of wavevectors k 

and kg in the form

(5)

, ©Xo ^okx = cocos\|/0 + — - — + -------
2cos\|/0 cos\|/0

kgx = cocos\|/g + ® X o +
(6)

2cos\|/g cos\|/g
Here, we will use the known relation, which con

nects the dynamic corrections /.0 and [7]:

(7)

where ß = a  -  Xol 1 -  - )  , a  = —A k l  -  k2), y0 =

(1 ,2 ) = -  ß ±  /ß2 + 4XgX-gCw H  (9a)
4y» Yo

Xii.2)= ? ( p ± /ß2 + 4XgX_gCW ^ (9b)

Since \Xo\ <s? co and /.g| <§ co, we can show that 0 ~ O' 
(see Fig. 1); therefore, in what follows we will denote 
0' by 0.

The solution to the first equation from system (3) 
for the incident field in vacuum has the form

^<»vac _ 8n2ieVQp
CO

f i f - X o - ^ V ß
IY

Yôi
5(A,g -  X„), (10)

® Y g

2 a 2 
Y + 0  - X owhere ^  and ^* = co

2 yo
The solution to system (3) for a diffracted field in 

the crystal has the form

£«cr = 8nieVQP(s) 2 x)
®  X g c

co
 S(A,g -  Xg)

4ŷ X s - \ (g»)(Xg- \ ï ' )  (11)
Yg

+

where E" and /: are the free fields correspond
ing to two solutions (9b) of dispersion equation (5).

The diffracted field in vacuum can be written in the 
form

^ )VaC = ^RadS^g + ^ - 0) ,  (12)

where /:'R.|d is the required radiation field.
The expression connecting the diffracted and inci

dent fields in the crystal follows from the second equa
tion of system (3):

Y J  2 v gY cr CO
cos\|/0, yg = cos\|/g, \|/0 is the angle between wavevector 
k of the incident wave and normal vector n to the sur
face of the plate, and \|/g is the angle between wavevec
tor kg and the normal vector. The magnitudes of vec
tors k and kg are given by

k = cojl  + x 0 + X0, kg = a j l  + X0 + V  (8)
Taking into account the fact that /cy ~ cosin\|/0 and 

k  N ~ cosiny , we obtain

Ĵ S)CT _ 5)cr
(13)

The boundary conditions on the inlet and outlet 
surfaces of the crystal plate in the given geometry have 
the form

|4 " )vaĉ g = \ ^ )adxg,

J 4 )cr<a g = | 4 )vaĉ g, (14)

J i^s)crexp^/^gz)flfA,g = 0.
Yg

The expression for spectral—angular distribution of 
coherent radiation in the Laue scattering geometry 
was obtained in work [13]. Proceeding analogously for 
the Bragg scattering geometry, we obtain following 
expressions for the PXR and DTR spectral-angular 
distribution:
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co
do)dQ.

M a 2
n (s )

" ̂ PXR >

>0)
PXR

2 2 -2 . ^  
n  ( 0  + Y  - X o )

O f l - e x p H ^ A f )

_  C p {
271

Is) a 2

A W  A f

Q W 1 - exp(-/Z>w A w )
2

A W  A ? ’

a i v DXR 
CO-------------

dcadQ

r 1 1 V
: -2 . n 2 -  
+ y -Xo 0 + Y

R DTR’

(15a)

(15b)

RM
DTR

= 6
exp(-/*< '>^) _ e x p ^ Ç )

A ^ e x p ^ « ^ ) -A fexp(/Z>(5)Ç )

(16b)

In accordance with expression (15b), two branches 
of dispersion relation (5), which contribute to the 
PXR yield, are possible. These branches correspond to 
two excited X-ray waves, which are formed together 
with the electromagnetic equilibrium field of a fast 

(16a) particle.
The following notation is introduced into the for

mulas:

AW = AWexp(-/Z»WA(; )) - A (; )exp(-/Z»WAW),

Cl? = s ( (a W- / p W)e x p (-^ WA ^) + A f ) ,

A(,) = ^ ± ^ _ gW + / > (s - l ) ;
6 2s

AW = ^W± ^ ) _ / p W l ± § ) (17a)

z ( s) 2 ■ ( j ) / y i  , \ i ( 5)  o  ( 5)  \  ( s ) 2 f ( 1  +  s )  ( 5)/Ç  — 8  — Zp ( (  1 +  s ) ç ,  - 2 k  s ) - p  - K  8

«  _ rolxÊlc W  Lbw  =
C O S\|/0

where

i(5) i(5)/ \ (5)/ \ I (1 + S)= r) (®) + — j r f , 0)V = x:c-0)1

Xo

x;c'0)1 ’ 6 =

2v

|cos\|/g|
C O S\|/0

KW = X £

I Xo|

■0)

Xo (17b)

Tiw (co) - 2sin 0B + 0cos(pcot0B)

<rw =

'0)1 co

-.2 -2

x;c« (0 + Y -Xo)-

Since the inequality 2sin2 Qb/V2|XgCwl ^  1 is ful
filled in the range of X-ray frequencies, r|l' ,(co) is a fast 
function of frequency co, and it is convenient for the 
further analysis of the properties of the PXR and DTR 
spectrum to consider r|l',(co) as a spectral variable 
describing the frequency co. Note that the resultant 
formulas contain

( l  + s)Çw(üo) = îlW(œ) +
2v0)

and not r|l',(co). The second term of the last equation 
appears due to the refraction effect.

The parameter s from Eq. (17b) can be presented in 
the form s = sin(0B — 8)/sin(0B + 8), where 8 is the 
angle between the inlet surface of the target and the 
crystallographic plane. For a fixed value of 0B, quan
tity s defines the orientation of the inlet surface of the 
crystal plate relative to the system of diffracting atomic 
planes (Fig. 2). As the angle of incidence (0B + 8) of an 
electron on the target decreases, parameter 8 becomes 
negative and then increases in magnitude (in the lim
iting case, 8 —► —0B), which leads to an increase in s. 
On the contrary, upon an increase in the angle of inci
dence, s decreases (in the limiting case, 8 —► 0B).

The parameter bis) is the ratio of half the electron
1path /./(2cosv|/0) in the plate to the length 

X-ray extinction in the crystal.
® XgC'0)1

of

Functions 4 x R and R\ 'y\ R describe the PXR and 
DTR spectra. The main result of this work is expres
sions (15) and (16) for spectral—angular radiation 
density, obtained on the basis of the dynamic diffrac-

r)0)
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tion theory. Further, the dynamic effects in PXR and 
DTR will be revealed and analyzed on the basis of the 
given formulas.

THE EFFECT OF PXR SPECTRUM 
BROADENING

Let us consider a crystal of such a thickness that the 
length of the electron path is greater than the extinc
tion length of X-ray waves in the crystal:

1  / 1 > 1 .  (18)b(s) =

L 1 (19)

p(' ’ = 0, then from Eq. (15b) we get

r%
»(**) _  
a PXR -

4|® o>|
; ( i > -

-  6

- u  ' " - - R
or

-  6

(20)

where
or

a {s),

/> > JïF
(21)

-  6

V e /
The contributions from the first and second 

branches of the excited X-ray waves to the PXR spec
trum is substantial if the corresponding equations

5(,)(<d) + V ^ ’Ceo)2 
6

5(,)(<b) - a/5 (,W

=  0 ,

= 0

(22a)

(22b)

2 c o s V  r o |z ; c (i)|

This relation is a condition for manifestation of the 
dynamic effects in radiation. To isolate the dynamic 
effect of the PXR spectrum broadening in pure form, 
we eliminate a possible influence of the effect of pho
ton absorption in the crystal, by imposing an addi
tional condition on the crystal thickness; i.e., we 
assume that is: path length Z/|cos\|/g| of a diffracted 
photon in the plate is considerably smaller than 
absorption length 1 /co %" of X-ray waves in the crystal:

Fig. 2. Asymmetric (s > 1, s < 1) reflections of radiation 
from a crystal plate. The case s = 1 (8 = 0) corresponds to 
symmetric reflection.

6 |cos\|/g|i<Bx„
If we do not consider absorption and assume that

2a
(23)

therefore, formula (20) correctly describes the PXR 
spectrum for a thin crystal.

The domain of total reflection is determined by the 
following inequality:

r  1 +  6  „ (s>, . _ r  1 +  6-  V 6 ------p < r l ( r o ) <Ve -
X s ) U)' (24)

2v 2v

which shows that the width of the domain is deter
mined by the value of 2 Vs .

It can be shown that Eq. (22a) has a solution pro
vided that

6 >
o r

,or
or 6 > 2’ (25a)

+ + 1
vl xôl  y 2|xo| /

while Eq. (22b) is solvable only under the condition

6 < or 6 <
Jsf

+ 1
\ 2

(25b)

have solutions.
The solution to Eqs. (22a) and (22b) defines the 

frequency, in the vicinity of which the spectrum of the 
PXR photons emitted at a fixed observation angle, is 
concentrated. It follows from Eqs. (22) that the PXR 
spectrum maximum is always located outside the 
domain of total reflection (extinction):

+ 1
■Ixöl y 2 |xôl J

In the case of strong reflections ofX-ray waves from 

atomic planes, parameter v(s) = |A,,g~, 1 is close tolx;c(1
Ixôl

unity, while in the case of weak reflections, it is close to 
zero. Since v(s) < 1, only inequality (25a) is fulfilled if
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(2 ys)
PXR

rj^(co)

Fig. 3. Spectrum broadening upon an increase in asymme
try parameter s: 1—s = 1,2—3, 3—7. Parameters: = 5,
v(i) = 0.8, = 1. and 1/(y7 M  ) = ° '5'

(s)s > v and, hence only equality (22a) is solvable in 
this case and the second branch contributes to the 
PXR yield. In this case, expressions (20) for the PXR 
spectrum assume the following form:

2

R (2) _  
PXR - ,(5)Z (26)

cW / \  W / \ , (1 +  e)^ ' ( ® )  = W )  + L— - A
2 v

If the asymmetry of the photon reflection from the 
plate is increased with the parameter 8 (see Fig. 2) 
(decrease of the angle of incidence of an electron on 
the crystal plate), then the spectrum width will grow 
(Fig. 3), which will lead to an increase in the PXR 
angular density. The spectrum broadening is caused by
the fact that upon increasing s, the expression 2 ^  in 
the denominator of formula (26) changes less upon a 
change in Qs). It should be noted that the electron path 
I/cos\|/0 in the crystal plate remains constant for a 
fixed value of parameter b(s).

It is important to note that when absorption of 
photons by a crystal is taken into account, the given 
effect is stronger since the photon path in the crystal 
plate decreases with increasing spectrum width (see 
Fig. 2).

(s)2Now let us consider the case when s < v . Ine
qualities (25a) and (25b) are fulfilled depending on 
observation angle 0 and electron energy y and, there
fore, two branches of excited X-ray waves may contrib
ute into the PXR yield. In this case, the second term in 
expression (20) should not be neglected. By simplify
ing expression (20), we get the PXR spectrum as the

T|(i)(co)

Fig. 4. Contribution of two PXR brunches and their inter-
(1)(̂  (2)(̂  ference term to the total spectrum: 1— /rpxR , 2— /rpxR ,

(INT)^3— /rpxR . Parameters: 8 = 0.2; the remaining parame
ters are the same as in Fig. 3.

sum of spectra of two branches of excited X-ray waves 
and their interference:

d W  _  p (2 )W , n (D W , n(IN T)<s) P̂XR — ^PXR "T" ^PXR ^PXR >

2 't(s )

R ■ (1)
PXR “

sin2( ? - ï w

(S)

COS
lU)

(27a)

(27b)

jp(INT) _  
A PXR -

cos(  a (i) ] ] -  cos

(27c)

j  j

The curves constructed in accordance with formu
las (26), (27b), and (27c) for the same value of the 
energy of a relativistic particle are given in Figs. 4 and
5. It is clear from these figures that at certain observa
tion angles 0, the second branch of PXR contributes 
significantly to the spectrum (see Fig. 4), while the 
first branch makes a significant contribution at other 
angles (see Fig. 5), the interference in the second case 
being is more appreciable. However, the contribution 
from the first PXR branch and interference of two 
branches to the total angular density is insignificant.
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R.(S)
PXR Ris)

DTR

r|(i)(co)

Fig. 5. The same as in Fig. 4 for 0/ J\x'o\ = 0-5-

EFFECT OF ASYMMETRY 
ON THE DTR SPECTRUM WIDTH

Let us now consider the effect of reflection asym
metry on the DTR spectrum. We present expression 
(16b) for the case of a thin crystal in the following 
form:

2

Ris)
DTR

^(s) - s )c o th ';№ a/s - 1

(28)

dO.

2 (s) nM e v P
27i2sin20j
As)
^DTR

Xo

+
\ 2/

+ 1
LOI J M

-r(8,0(S)), (29b)

I xôl y 2| xô|  '  v l x ô l  y 2| xo
+

The curves constructed according to for
mula (28) (Fig. 6) show a strong influence of reflection 
asymmetry on the DTR spectrum. It is seen that the 
spectrum width increases with parameter s, which 
corresponds to broadening of the frequency domain of 
total reflection (24). It should be noted that the DTR 
spectral density also increases significantly in this case. 
For b(s> > 1, formula (28) describing the DTR spec-
trum shows that kDjR =  s in the domain of the total

(s)2external reflection c, < s.
The DTR spectrum broadening obviously leads to 

a considerable increase in the DTR angular density. 
Integrating expressions (16a) over frequency using 
Eq. (28), we obtain the expression describing the DTR 
angular distribution:

(29a)

T| (̂co)

Fig. 6. DTR spectrum broadening e: 1— 1, 2—3, 3—7. 
Parameters: 0 /A/[xo{ = 0.5; the remaining parameters are 
the same as in Fig. 3.

where

r (s , b{s)) = sVs7itanhf—
Vs

determines the effect of the crystal geometry on the 
DTR angular density.

With increasing asymmetric parameter s, the angu
lar density maximum increases in proportion to the 
angle-independent part of expression (29b). This 
obviously leads to the conclusion that the DTR yield 
can be increased not only by increasing the electron 
velocity, which is disadvantageous for designing radia
tion sources based on the DTR mechanism, but by 
selecting a proper radiation geometry.

INFLUENCE OF THE BORMANN EFFECT 
ON SPECTRAL-ANGULAR 

CHARACTERISTICS OF RADIATION

Influence of the Bormann effect on the spectral- 
angular characteristics of PXR in the Laue scattering 
geometry under the conditions of asymmetric reflec
tion was analyzed in detail in [13].

Let us consider the influence of the effect of anom
alously low photoabsorption on the PXR and DTR 
spectra in the general asymmetric case in the Bragg 
scattering geometry using expressions (15b) and (16b) 
that take into account absorption.

The curves constructed according to formula (15b) 
and demonstrating the influence of the Bormann 
effect on the PXR spectrum for a crystal with a finite 
thickness at the given asymmetry parameter e are given 
in Fig. 7. When the parameter
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Ris)
PXR

r|^(co)

Fig. 7. Extent of the Bormann effect manifestation in PXR 
for asymmetry parameter 8 = 0.7: 1— = 0, 2—0.9. 
Parameters: = 10, = 0.9, = 0.1, Q/ /̂fxoj = 1,

V ( Y ^ )  = 0.5.

»K = x ; c
Xo

approaches unity, the manifestation of the given effect 
in PXR, as well as for free X-ray waves, becomes 
appreciable (at k (s) = 0, the Bormann effect is zero, 
while at k(-v) =1, it is maximal). It should be recalled 
that the given parameter depends on the choice of the 
system of parallel diffracting atomic planes of the crys
tal, the radiation frequency, and the polarization of the 
crystal. For cr-polarization (C(1) = 1), the effect is 
manifested more clearly than for 7i-polarization 
(C<2> = |cos26B|).

It should be noted that in a real experiment, it is 
impossible to select the conditions in which k(s) is 
unity; the maximum possible value is k(s) « 0.9. When 
asymmetry factor s §> 1, the Bormann effect is weaker, 
which is due to a decrease of the PXR photon path 
length in the plate. Thus, by changing the reflection 
asymmetry, it is possible to create the conditions such 
that the electron path in the plate is small; this will 
allow us to disregard multiple electron scattering. At 
the same time, the PXR photon path length in the 
crystal will be greater than the photoabsorption length 
(see Fig. 2), which will lead to a stronger manifestation 
of the Bormann effect in PXR.

The influence of the Bormann effect on the PXR 
angular density is demonstrated by the /^ xr curves 
(Fig. 8) constructed according to the formula

As)
PXR

0/ÆÏÎ
Fig. 8. Influence of the Bormann effect on the PXR angu
lar density. The notation and parameters are the same as in 
Fig. 7.

PXR

dQ

2 (s) nMe v P 
27i2sin20r

cO)
* PYPXR 5 (30a)

As) _ 
r PXR ~

Xo

Fm + ~ T ~  + 1
h'o\ Y Ixol '

r  1+8 
a / s ----------—;

2v

which follows from (15a). It is clear that this dynamic 
effect may significantly increase the PXR angular den
sity. The maximum in the PXR angular distribution is 
shifted towards small observation angles of radiation in 
the conditions in which the anomalous photoabsorp
tion effect is observed.

Since the maximum of the DTR spectrum is 
located in the frequency domain of the total reflection 
(see Fig. 6) and the incident wave energy is transferred 
to the reflected wave, the incident and scattered X-ray 
waves in this frequency domain cannot form a stand
ing wave and, hence, the Bormann effect is poorly 
manifested.

CONCLUSIONS
Analytic expressions describing spectral—angular 

distribution of parametric X-radiation and diffracted 
transient radiation of a relativistic electron traversing a 
crystal plate in the Bragg scattering geometry are 
obtained on the basis of the dynamic diffraction theory 
in the general case of asymmetric reflection. It is 
shown that if the electron angle of incidence on the 
crystal plate decreases for a constant Bragg angle, the 
spectral width of parametric X-radiation considerably
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increases, which causes an increase in the angular 
density (this effect is not connected with absorption). 
The conditions are indicated in which each of the two 
PXR branches and their interference are significant.

It is found that a decrease of the electron angle of 
incidence on the crystal plate results in expansion of 
the frequency domain of the total reflection and, as a 
consequence, in an increase in the DTR spectrum 
width, which facilitates a considerable increase in the 
DTR angular density. It is shown that by changing the 
reflectance, it is possible to create conditions in which 
the electron path length in the plate will be small. This 
will make it possible to disregard multiple scattering of 
an electron, and the PXR photon path in the crystal 
will become greater than the photoabsorption length, 
which will lead to a stronger manifestation of the Bor
mann effect in PXR.
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